-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_kmeans.py
155 lines (121 loc) · 4.85 KB
/
get_kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding: utf-8
# This script is modified from https://github.com/lars76/kmeans-anchor-boxes
from __future__ import division, print_function
import numpy as np
def iou(box, clusters):
"""
Calculates the Intersection over Union (IoU) between a box and k clusters.
param:
box: tuple or array, shifted to the origin (i. e. width and height)
clusters: numpy array of shape (k, 2) where k is the number of clusters
return:
numpy array of shape (k, 0) where k is the number of clusters
"""
x = np.minimum(clusters[:, 0], box[0])
y = np.minimum(clusters[:, 1], box[1])
if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
raise ValueError("Box has no area")
intersection = x * y
box_area = box[0] * box[1]
cluster_area = clusters[:, 0] * clusters[:, 1]
iou_ = np.true_divide(intersection, box_area + cluster_area - intersection + 1e-10)
# iou_ = intersection / (box_area + cluster_area - intersection + 1e-10)
return iou_
def avg_iou(boxes, clusters):
"""
Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.
param:
boxes: numpy array of shape (r, 2), where r is the number of rows
clusters: numpy array of shape (k, 2) where k is the number of clusters
return:
average IoU as a single float
"""
return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
def translate_boxes(boxes):
"""
Translates all the boxes to the origin.
param:
boxes: numpy array of shape (r, 4)
return:
numpy array of shape (r, 2)
"""
new_boxes = boxes.copy()
for row in range(new_boxes.shape[0]):
new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
return np.delete(new_boxes, [0, 1], axis=1)
def kmeans(boxes, k, dist=np.median):
"""
Calculates k-means clustering with the Intersection over Union (IoU) metric.
param:
boxes: numpy array of shape (r, 2), where r is the number of rows
k: number of clusters
dist: distance function
return:
numpy array of shape (k, 2)
"""
rows = boxes.shape[0]
distances = np.empty((rows, k))
last_clusters = np.zeros((rows,))
np.random.seed()
# the Forgy method will fail if the whole array contains the same rows
clusters = boxes[np.random.choice(rows, k, replace=False)]
while True:
for row in range(rows):
distances[row] = 1 - iou(boxes[row], clusters)
nearest_clusters = np.argmin(distances, axis=1)
if (last_clusters == nearest_clusters).all():
break
for cluster in range(k):
clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)
last_clusters = nearest_clusters
return clusters
def parse_anno(annotation_path, target_size=None):
anno = open(annotation_path, 'r')
result = []
for line in anno:
s = line.strip().split(' ')
img_w = int(s[2])
img_h = int(s[3])
s = s[4:]
box_cnt = len(s) // 5
for i in range(box_cnt):
x_min, y_min, x_max, y_max = float(s[i*5+1]), float(s[i*5+2]), float(s[i*5+3]), float(s[i*5+4])
width = x_max - x_min
height = y_max - y_min
assert width > 0
assert height > 0
# use letterbox resize, i.e. keep the original aspect ratio
# get k-means anchors on the resized target image size
if target_size is not None:
resize_ratio = min(target_size[0] / img_w, target_size[1] / img_h)
width *= resize_ratio
height *= resize_ratio
result.append([width, height])
# get k-means anchors on the original image size
else:
result.append([width, height])
result = np.asarray(result)
return result
def get_kmeans(anno, cluster_num=9):
anchors = kmeans(anno, cluster_num)
ave_iou = avg_iou(anno, anchors)
anchors = anchors.astype('int').tolist()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors, ave_iou
if __name__ == '__main__':
# target resize format: [width, height]
# if target_resize is speficied, the anchors are on the resized image scale
# if target_resize is set to None, the anchors are on the original image scale
target_size = [416, 416]
annotation_path = "train.txt"
anno_result = parse_anno(annotation_path, target_size=target_size)
anchors, ave_iou = get_kmeans(anno_result, 9)
anchor_string = ''
for anchor in anchors:
anchor_string += '{},{}, '.format(anchor[0], anchor[1])
anchor_string = anchor_string[:-2]
print('anchors are:')
print(anchor_string)
print('the average iou is:')
print(ave_iou)