If you want to train the model, please run the following command:
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
For example, if you want to train TopoMLP on OpenLane-V2 subset-A train set, please run the following command:
./tools/dist_train.sh projects/configs/topomlp/topomlp_setA_r50_wo_yolov8.py 8 --work-dir=./work_dirs/topomlp_setA_r50_wo_yolov8
The training on 8 Nvidia A100 GPUs takes about 15 hours.
If you want to evaluate the model, please run the following command:
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} --eval=bbox
OpenLane-V2 subset-A val set:
Method | Backbone | Epoch | DETl | TOPll | DETt | TOPlt | OLS | Weight/Log |
---|---|---|---|---|---|---|---|---|
STSU | ResNet-50 | 24 | 12.7 | 0.5 | 43.0 | 15.1 | 25.4 | - |
VectorMapNet | ResNet-50 | 24 | 11.1 | 0.4 | 41.7 | 6.2 | 20.8 | - |
MapTR | ResNet-50 | 24 | 17.7 | 1.1 | 43.5 | 10.4 | 26.0 | - |
TopoNet | ResNet-50 | 24 | 28.5 | 4.1 | 48.1 | 20.8 | 35.6 | - |
TopoMLP | ResNet-50 | 24 | 28.5 | 7.1 | 49.5 | 23.4 | 38.3 | weight/log |
TopoMLP* | ResNet-50 | 24 | 28.8 | 7.8 | 53.3 | 30.1 | 41.2 |
$*$ means using YOLOv8 proposals.
OpenLane-V2 subset-B val set:
Method | Backbone | Epoch | DETl | TOPll | DETt | TOPlt | OLS | Weight/Log |
---|---|---|---|---|---|---|---|---|
STSU | ResNet-50 | 24 | 8.2 | 0.0 | 43.9 | 9.4 | 21.2 | - |
VectorMapNet | ResNet-50 | 24 | 3.5 | 0.0 | 49.1 | 1.4 | 16.3 | - |
MapTR | ResNet-50 | 24 | 15.2 | 0.5 | 54.0 | 6.1 | 25.2 | - |
TopoNet | ResNet-50 | 24 | 24.3 | 2.5 | 55.0 | 14.2 | 33.2 | - |
TopoMLP | ResNet-50 | 24 | 26.6 | 7.6 | 58.3 | 17.8 | 38.7 | weight/log |