Skip to content

Latest commit

 

History

History
45 lines (35 loc) · 5.39 KB

training_inference.md

File metadata and controls

45 lines (35 loc) · 5.39 KB

Training and Evaluation

Training

If you want to train the model, please run the following command:

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

For example, if you want to train TopoMLP on OpenLane-V2 subset-A train set, please run the following command:

./tools/dist_train.sh projects/configs/topomlp/topomlp_setA_r50_wo_yolov8.py 8 --work-dir=./work_dirs/topomlp_setA_r50_wo_yolov8

The training on 8 Nvidia A100 GPUs takes about 15 hours.

Evaluation

If you want to evaluate the model, please run the following command:

./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} --eval=bbox

Main Results

OpenLane-V2 subset-A val set:

Method Backbone Epoch DETl TOPll DETt TOPlt OLS Weight/Log
STSU ResNet-50 24 12.7 0.5 43.0 15.1 25.4 -
VectorMapNet ResNet-50 24 11.1 0.4 41.7 6.2 20.8 -
MapTR ResNet-50 24 17.7 1.1 43.5 10.4 26.0 -
TopoNet ResNet-50 24 28.5 4.1 48.1 20.8 35.6 -
TopoMLP ResNet-50 24 28.5 7.1 49.5 23.4 38.3 weight/log
TopoMLP* ResNet-50 24 28.8 7.8 53.3 30.1 41.2

$*$ means using YOLOv8 proposals.

OpenLane-V2 subset-B val set:

Method Backbone Epoch DETl TOPll DETt TOPlt OLS Weight/Log
STSU ResNet-50 24 8.2 0.0 43.9 9.4 21.2 -
VectorMapNet ResNet-50 24 3.5 0.0 49.1 1.4 16.3 -
MapTR ResNet-50 24 15.2 0.5 54.0 6.1 25.2 -
TopoNet ResNet-50 24 24.3 2.5 55.0 14.2 33.2 -
TopoMLP ResNet-50 24 26.6 7.6 58.3 17.8 38.7 weight/log