-
Notifications
You must be signed in to change notification settings - Fork 12.7k
/
parse.rs
233 lines (214 loc) · 7.49 KB
/
parse.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//! Functions to parse floating-point numbers.
use crate::num::dec2flt::common::{is_8digits, AsciiStr, ByteSlice};
use crate::num::dec2flt::float::RawFloat;
use crate::num::dec2flt::number::Number;
const MIN_19DIGIT_INT: u64 = 100_0000_0000_0000_0000;
/// Parse 8 digits, loaded as bytes in little-endian order.
///
/// This uses the trick where every digit is in [0x030, 0x39],
/// and therefore can be parsed in 3 multiplications, much
/// faster than the normal 8.
///
/// This is based off the algorithm described in "Fast numeric string to
/// int", available here: <https://johnnylee-sde.github.io/Fast-numeric-string-to-int/>.
fn parse_8digits(mut v: u64) -> u64 {
const MASK: u64 = 0x0000_00FF_0000_00FF;
const MUL1: u64 = 0x000F_4240_0000_0064;
const MUL2: u64 = 0x0000_2710_0000_0001;
v -= 0x3030_3030_3030_3030;
v = (v * 10) + (v >> 8); // will not overflow, fits in 63 bits
let v1 = (v & MASK).wrapping_mul(MUL1);
let v2 = ((v >> 16) & MASK).wrapping_mul(MUL2);
((v1.wrapping_add(v2) >> 32) as u32) as u64
}
/// Parse digits until a non-digit character is found.
fn try_parse_digits(s: &mut AsciiStr<'_>, x: &mut u64) {
// may cause overflows, to be handled later
s.parse_digits(|digit| {
*x = x.wrapping_mul(10).wrapping_add(digit as _);
});
}
/// Parse up to 19 digits (the max that can be stored in a 64-bit integer).
fn try_parse_19digits(s: &mut AsciiStr<'_>, x: &mut u64) {
while *x < MIN_19DIGIT_INT {
if let Some(&c) = s.as_ref().first() {
let digit = c.wrapping_sub(b'0');
if digit < 10 {
*x = (*x * 10) + digit as u64; // no overflows here
// SAFETY: cannot be empty
unsafe {
s.step();
}
} else {
break;
}
} else {
break;
}
}
}
/// Try to parse 8 digits at a time, using an optimized algorithm.
fn try_parse_8digits(s: &mut AsciiStr<'_>, x: &mut u64) {
// may cause overflows, to be handled later
if let Some(v) = s.read_u64() {
if is_8digits(v) {
*x = x.wrapping_mul(1_0000_0000).wrapping_add(parse_8digits(v));
// SAFETY: already ensured the buffer was >= 8 bytes in read_u64.
unsafe {
s.step_by(8);
}
if let Some(v) = s.read_u64() {
if is_8digits(v) {
*x = x.wrapping_mul(1_0000_0000).wrapping_add(parse_8digits(v));
// SAFETY: already ensured the buffer was >= 8 bytes in try_read_u64.
unsafe {
s.step_by(8);
}
}
}
}
}
}
/// Parse the scientific notation component of a float.
fn parse_scientific(s: &mut AsciiStr<'_>) -> Option<i64> {
let mut exponent = 0_i64;
let mut negative = false;
if let Some(&c) = s.as_ref().get(0) {
negative = c == b'-';
if c == b'-' || c == b'+' {
// SAFETY: s cannot be empty
unsafe {
s.step();
}
}
}
if s.first_isdigit() {
s.parse_digits(|digit| {
// no overflows here, saturate well before overflow
if exponent < 0x10000 {
exponent = 10 * exponent + digit as i64;
}
});
if negative { Some(-exponent) } else { Some(exponent) }
} else {
None
}
}
/// Parse a partial, non-special floating point number.
///
/// This creates a representation of the float as the
/// significant digits and the decimal exponent.
fn parse_partial_number(s: &[u8], negative: bool) -> Option<(Number, usize)> {
let mut s = AsciiStr::new(s);
let start = s;
debug_assert!(!s.is_empty());
// parse initial digits before dot
let mut mantissa = 0_u64;
let digits_start = s;
try_parse_digits(&mut s, &mut mantissa);
let mut n_digits = s.offset_from(&digits_start);
// handle dot with the following digits
let mut n_after_dot = 0;
let mut exponent = 0_i64;
let int_end = s;
if s.first_is(b'.') {
// SAFETY: s cannot be empty due to first_is
unsafe { s.step() };
let before = s;
try_parse_8digits(&mut s, &mut mantissa);
try_parse_digits(&mut s, &mut mantissa);
n_after_dot = s.offset_from(&before);
exponent = -n_after_dot as i64;
}
n_digits += n_after_dot;
if n_digits == 0 {
return None;
}
// handle scientific format
let mut exp_number = 0_i64;
if s.first_is2(b'e', b'E') {
// SAFETY: s cannot be empty
unsafe {
s.step();
}
// If None, we have no trailing digits after exponent, or an invalid float.
exp_number = parse_scientific(&mut s)?;
exponent += exp_number;
}
let len = s.offset_from(&start) as _;
// handle uncommon case with many digits
if n_digits <= 19 {
return Some((Number { exponent, mantissa, negative, many_digits: false }, len));
}
n_digits -= 19;
let mut many_digits = false;
let mut p = digits_start;
while p.first_is2(b'0', b'.') {
// SAFETY: p cannot be empty due to first_is2
unsafe {
// '0' = b'.' + 2
n_digits -= p.first_unchecked().saturating_sub(b'0' - 1) as isize;
p.step();
}
}
if n_digits > 0 {
// at this point we have more than 19 significant digits, let's try again
many_digits = true;
mantissa = 0;
let mut s = digits_start;
try_parse_19digits(&mut s, &mut mantissa);
exponent = if mantissa >= MIN_19DIGIT_INT {
// big int
int_end.offset_from(&s)
} else {
// SAFETY: the next byte must be present and be '.'
// We know this is true because we had more than 19
// digits previously, so we overflowed a 64-bit integer,
// but parsing only the integral digits produced less
// than 19 digits. That means we must have a decimal
// point, and at least 1 fractional digit.
unsafe { s.step() };
let before = s;
try_parse_19digits(&mut s, &mut mantissa);
-s.offset_from(&before)
} as i64;
// add back the explicit part
exponent += exp_number;
}
Some((Number { exponent, mantissa, negative, many_digits }, len))
}
/// Try to parse a non-special floating point number.
pub fn parse_number(s: &[u8], negative: bool) -> Option<Number> {
if let Some((float, rest)) = parse_partial_number(s, negative) {
if rest == s.len() {
return Some(float);
}
}
None
}
/// Parse a partial representation of a special, non-finite float.
fn parse_partial_inf_nan<F: RawFloat>(s: &[u8]) -> Option<(F, usize)> {
fn parse_inf_rest(s: &[u8]) -> usize {
if s.len() >= 8 && s[3..].as_ref().starts_with_ignore_case(b"inity") { 8 } else { 3 }
}
if s.len() >= 3 {
if s.starts_with_ignore_case(b"nan") {
return Some((F::NAN, 3));
} else if s.starts_with_ignore_case(b"inf") {
return Some((F::INFINITY, parse_inf_rest(s)));
}
}
None
}
/// Try to parse a special, non-finite float.
pub fn parse_inf_nan<F: RawFloat>(s: &[u8], negative: bool) -> Option<F> {
if let Some((mut float, rest)) = parse_partial_inf_nan::<F>(s) {
if rest == s.len() {
if negative {
float = -float;
}
return Some(float);
}
}
None
}