-
Notifications
You must be signed in to change notification settings - Fork 12.7k
/
expr.rs
2293 lines (2111 loc) · 93.6 KB
/
expr.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
use super::pat::{GateOr, PARAM_EXPECTED};
use super::ty::{AllowPlus, RecoverQPath};
use super::{BlockMode, Parser, PathStyle, Restrictions, TokenType};
use super::{SemiColonMode, SeqSep, TokenExpectType};
use crate::maybe_recover_from_interpolated_ty_qpath;
use rustc_ast::ptr::P;
use rustc_ast::token::{self, Token, TokenKind};
use rustc_ast::util::classify;
use rustc_ast::util::literal::LitError;
use rustc_ast::util::parser::{prec_let_scrutinee_needs_par, AssocOp, Fixity};
use rustc_ast::{self as ast, AttrStyle, AttrVec, CaptureBy, Field, Lit, UnOp, DUMMY_NODE_ID};
use rustc_ast::{AnonConst, BinOp, BinOpKind, FnDecl, FnRetTy, MacCall, Param, Ty, TyKind};
use rustc_ast::{Arm, Async, BlockCheckMode, Expr, ExprKind, Label, Movability, RangeLimits};
use rustc_ast_pretty::pprust;
use rustc_errors::{Applicability, DiagnosticBuilder, PResult};
use rustc_span::source_map::{self, Span, Spanned};
use rustc_span::symbol::{kw, sym, Ident, Symbol};
use std::mem;
use tracing::debug;
/// Possibly accepts an `token::Interpolated` expression (a pre-parsed expression
/// dropped into the token stream, which happens while parsing the result of
/// macro expansion). Placement of these is not as complex as I feared it would
/// be. The important thing is to make sure that lookahead doesn't balk at
/// `token::Interpolated` tokens.
macro_rules! maybe_whole_expr {
($p:expr) => {
if let token::Interpolated(nt) = &$p.token.kind {
match &**nt {
token::NtExpr(e) | token::NtLiteral(e) => {
let e = e.clone();
$p.bump();
return Ok(e);
}
token::NtPath(path) => {
let path = path.clone();
$p.bump();
return Ok($p.mk_expr(
$p.token.span,
ExprKind::Path(None, path),
AttrVec::new(),
));
}
token::NtBlock(block) => {
let block = block.clone();
$p.bump();
return Ok($p.mk_expr(
$p.token.span,
ExprKind::Block(block, None),
AttrVec::new(),
));
}
_ => {}
};
}
};
}
#[derive(Debug)]
pub(super) enum LhsExpr {
NotYetParsed,
AttributesParsed(AttrVec),
AlreadyParsed(P<Expr>),
}
impl From<Option<AttrVec>> for LhsExpr {
/// Converts `Some(attrs)` into `LhsExpr::AttributesParsed(attrs)`
/// and `None` into `LhsExpr::NotYetParsed`.
///
/// This conversion does not allocate.
fn from(o: Option<AttrVec>) -> Self {
if let Some(attrs) = o { LhsExpr::AttributesParsed(attrs) } else { LhsExpr::NotYetParsed }
}
}
impl From<P<Expr>> for LhsExpr {
/// Converts the `expr: P<Expr>` into `LhsExpr::AlreadyParsed(expr)`.
///
/// This conversion does not allocate.
fn from(expr: P<Expr>) -> Self {
LhsExpr::AlreadyParsed(expr)
}
}
impl<'a> Parser<'a> {
/// Parses an expression.
#[inline]
pub fn parse_expr(&mut self) -> PResult<'a, P<Expr>> {
self.parse_expr_res(Restrictions::empty(), None)
}
pub(super) fn parse_anon_const_expr(&mut self) -> PResult<'a, AnonConst> {
self.parse_expr().map(|value| AnonConst { id: DUMMY_NODE_ID, value })
}
fn parse_expr_catch_underscore(&mut self) -> PResult<'a, P<Expr>> {
match self.parse_expr() {
Ok(expr) => Ok(expr),
Err(mut err) => match self.token.ident() {
Some((Ident { name: kw::Underscore, .. }, false))
if self.look_ahead(1, |t| t == &token::Comma) =>
{
// Special-case handling of `foo(_, _, _)`
err.emit();
self.bump();
Ok(self.mk_expr(self.prev_token.span, ExprKind::Err, AttrVec::new()))
}
_ => Err(err),
},
}
}
/// Parses a sequence of expressions delimited by parentheses.
fn parse_paren_expr_seq(&mut self) -> PResult<'a, Vec<P<Expr>>> {
self.parse_paren_comma_seq(|p| p.parse_expr_catch_underscore()).map(|(r, _)| r)
}
/// Parses an expression, subject to the given restrictions.
#[inline]
pub(super) fn parse_expr_res(
&mut self,
r: Restrictions,
already_parsed_attrs: Option<AttrVec>,
) -> PResult<'a, P<Expr>> {
self.with_res(r, |this| this.parse_assoc_expr(already_parsed_attrs))
}
/// Parses an associative expression.
///
/// This parses an expression accounting for associativity and precedence of the operators in
/// the expression.
#[inline]
fn parse_assoc_expr(&mut self, already_parsed_attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
self.parse_assoc_expr_with(0, already_parsed_attrs.into())
}
/// Parses an associative expression with operators of at least `min_prec` precedence.
pub(super) fn parse_assoc_expr_with(
&mut self,
min_prec: usize,
lhs: LhsExpr,
) -> PResult<'a, P<Expr>> {
let mut lhs = if let LhsExpr::AlreadyParsed(expr) = lhs {
expr
} else {
let attrs = match lhs {
LhsExpr::AttributesParsed(attrs) => Some(attrs),
_ => None,
};
if [token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind) {
return self.parse_prefix_range_expr(attrs);
} else {
self.parse_prefix_expr(attrs)?
}
};
let last_type_ascription_set = self.last_type_ascription.is_some();
if !self.should_continue_as_assoc_expr(&lhs) {
self.last_type_ascription = None;
return Ok(lhs);
}
self.expected_tokens.push(TokenType::Operator);
while let Some(op) = self.check_assoc_op() {
// Adjust the span for interpolated LHS to point to the `$lhs` token
// and not to what it refers to.
let lhs_span = match self.prev_token.kind {
TokenKind::Interpolated(..) => self.prev_token.span,
_ => lhs.span,
};
let cur_op_span = self.token.span;
let restrictions = if op.node.is_assign_like() {
self.restrictions & Restrictions::NO_STRUCT_LITERAL
} else {
self.restrictions
};
let prec = op.node.precedence();
if prec < min_prec {
break;
}
// Check for deprecated `...` syntax
if self.token == token::DotDotDot && op.node == AssocOp::DotDotEq {
self.err_dotdotdot_syntax(self.token.span);
}
if self.token == token::LArrow {
self.err_larrow_operator(self.token.span);
}
self.bump();
if op.node.is_comparison() {
if let Some(expr) = self.check_no_chained_comparison(&lhs, &op)? {
return Ok(expr);
}
}
if (op.node == AssocOp::Equal || op.node == AssocOp::NotEqual)
&& self.token.kind == token::Eq
&& self.prev_token.span.hi() == self.token.span.lo()
{
// Look for JS' `===` and `!==` and recover 😇
let sp = op.span.to(self.token.span);
let sugg = match op.node {
AssocOp::Equal => "==",
AssocOp::NotEqual => "!=",
_ => unreachable!(),
};
self.struct_span_err(sp, &format!("invalid comparison operator `{}=`", sugg))
.span_suggestion_short(
sp,
&format!("`{s}=` is not a valid comparison operator, use `{s}`", s = sugg),
sugg.to_string(),
Applicability::MachineApplicable,
)
.emit();
self.bump();
}
let op = op.node;
// Special cases:
if op == AssocOp::As {
lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Cast)?;
continue;
} else if op == AssocOp::Colon {
lhs = self.parse_assoc_op_ascribe(lhs, lhs_span)?;
continue;
} else if op == AssocOp::DotDot || op == AssocOp::DotDotEq {
// If we didn’t have to handle `x..`/`x..=`, it would be pretty easy to
// generalise it to the Fixity::None code.
lhs = self.parse_range_expr(prec, lhs, op, cur_op_span)?;
break;
}
let fixity = op.fixity();
let prec_adjustment = match fixity {
Fixity::Right => 0,
Fixity::Left => 1,
// We currently have no non-associative operators that are not handled above by
// the special cases. The code is here only for future convenience.
Fixity::None => 1,
};
let rhs = self.with_res(restrictions - Restrictions::STMT_EXPR, |this| {
this.parse_assoc_expr_with(prec + prec_adjustment, LhsExpr::NotYetParsed)
})?;
// Make sure that the span of the parent node is larger than the span of lhs and rhs,
// including the attributes.
let lhs_span =
lhs.attrs.iter().find(|a| a.style == AttrStyle::Outer).map_or(lhs_span, |a| a.span);
let span = lhs_span.to(rhs.span);
lhs = match op {
AssocOp::Add
| AssocOp::Subtract
| AssocOp::Multiply
| AssocOp::Divide
| AssocOp::Modulus
| AssocOp::LAnd
| AssocOp::LOr
| AssocOp::BitXor
| AssocOp::BitAnd
| AssocOp::BitOr
| AssocOp::ShiftLeft
| AssocOp::ShiftRight
| AssocOp::Equal
| AssocOp::Less
| AssocOp::LessEqual
| AssocOp::NotEqual
| AssocOp::Greater
| AssocOp::GreaterEqual => {
let ast_op = op.to_ast_binop().unwrap();
let binary = self.mk_binary(source_map::respan(cur_op_span, ast_op), lhs, rhs);
self.mk_expr(span, binary, AttrVec::new())
}
AssocOp::Assign => {
self.mk_expr(span, ExprKind::Assign(lhs, rhs, cur_op_span), AttrVec::new())
}
AssocOp::AssignOp(k) => {
let aop = match k {
token::Plus => BinOpKind::Add,
token::Minus => BinOpKind::Sub,
token::Star => BinOpKind::Mul,
token::Slash => BinOpKind::Div,
token::Percent => BinOpKind::Rem,
token::Caret => BinOpKind::BitXor,
token::And => BinOpKind::BitAnd,
token::Or => BinOpKind::BitOr,
token::Shl => BinOpKind::Shl,
token::Shr => BinOpKind::Shr,
};
let aopexpr = self.mk_assign_op(source_map::respan(cur_op_span, aop), lhs, rhs);
self.mk_expr(span, aopexpr, AttrVec::new())
}
AssocOp::As | AssocOp::Colon | AssocOp::DotDot | AssocOp::DotDotEq => {
self.span_bug(span, "AssocOp should have been handled by special case")
}
};
if let Fixity::None = fixity {
break;
}
}
if last_type_ascription_set {
self.last_type_ascription = None;
}
Ok(lhs)
}
fn should_continue_as_assoc_expr(&mut self, lhs: &Expr) -> bool {
match (self.expr_is_complete(lhs), AssocOp::from_token(&self.token)) {
// Semi-statement forms are odd:
// See https://github.com/rust-lang/rust/issues/29071
(true, None) => false,
(false, _) => true, // Continue parsing the expression.
// An exhaustive check is done in the following block, but these are checked first
// because they *are* ambiguous but also reasonable looking incorrect syntax, so we
// want to keep their span info to improve diagnostics in these cases in a later stage.
(true, Some(AssocOp::Multiply)) | // `{ 42 } *foo = bar;` or `{ 42 } * 3`
(true, Some(AssocOp::Subtract)) | // `{ 42 } -5`
(true, Some(AssocOp::Add)) // `{ 42 } + 42
// If the next token is a keyword, then the tokens above *are* unambiguously incorrect:
// `if x { a } else { b } && if y { c } else { d }`
if !self.look_ahead(1, |t| t.is_used_keyword()) => {
// These cases are ambiguous and can't be identified in the parser alone.
let sp = self.sess.source_map().start_point(self.token.span);
self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
false
}
(true, Some(AssocOp::LAnd)) => {
// `{ 42 } &&x` (#61475) or `{ 42 } && if x { 1 } else { 0 }`. Separated from the
// above due to #74233.
// These cases are ambiguous and can't be identified in the parser alone.
let sp = self.sess.source_map().start_point(self.token.span);
self.sess.ambiguous_block_expr_parse.borrow_mut().insert(sp, lhs.span);
false
}
(true, Some(ref op)) if !op.can_continue_expr_unambiguously() => false,
(true, Some(_)) => {
self.error_found_expr_would_be_stmt(lhs);
true
}
}
}
/// We've found an expression that would be parsed as a statement,
/// but the next token implies this should be parsed as an expression.
/// For example: `if let Some(x) = x { x } else { 0 } / 2`.
fn error_found_expr_would_be_stmt(&self, lhs: &Expr) {
let mut err = self.struct_span_err(
self.token.span,
&format!("expected expression, found `{}`", pprust::token_to_string(&self.token),),
);
err.span_label(self.token.span, "expected expression");
self.sess.expr_parentheses_needed(&mut err, lhs.span, Some(pprust::expr_to_string(&lhs)));
err.emit();
}
/// Possibly translate the current token to an associative operator.
/// The method does not advance the current token.
///
/// Also performs recovery for `and` / `or` which are mistaken for `&&` and `||` respectively.
fn check_assoc_op(&self) -> Option<Spanned<AssocOp>> {
let (op, span) = match (AssocOp::from_token(&self.token), self.token.ident()) {
(Some(op), _) => (op, self.token.span),
(None, Some((Ident { name: sym::and, span }, false))) => {
self.error_bad_logical_op("and", "&&", "conjunction");
(AssocOp::LAnd, span)
}
(None, Some((Ident { name: sym::or, span }, false))) => {
self.error_bad_logical_op("or", "||", "disjunction");
(AssocOp::LOr, span)
}
_ => return None,
};
Some(source_map::respan(span, op))
}
/// Error on `and` and `or` suggesting `&&` and `||` respectively.
fn error_bad_logical_op(&self, bad: &str, good: &str, english: &str) {
self.struct_span_err(self.token.span, &format!("`{}` is not a logical operator", bad))
.span_suggestion_short(
self.token.span,
&format!("use `{}` to perform logical {}", good, english),
good.to_string(),
Applicability::MachineApplicable,
)
.note("unlike in e.g., python and PHP, `&&` and `||` are used for logical operators")
.emit();
}
/// Checks if this expression is a successfully parsed statement.
fn expr_is_complete(&self, e: &Expr) -> bool {
self.restrictions.contains(Restrictions::STMT_EXPR)
&& !classify::expr_requires_semi_to_be_stmt(e)
}
/// Parses `x..y`, `x..=y`, and `x..`/`x..=`.
/// The other two variants are handled in `parse_prefix_range_expr` below.
fn parse_range_expr(
&mut self,
prec: usize,
lhs: P<Expr>,
op: AssocOp,
cur_op_span: Span,
) -> PResult<'a, P<Expr>> {
let rhs = if self.is_at_start_of_range_notation_rhs() {
Some(self.parse_assoc_expr_with(prec + 1, LhsExpr::NotYetParsed)?)
} else {
None
};
let rhs_span = rhs.as_ref().map_or(cur_op_span, |x| x.span);
let span = lhs.span.to(rhs_span);
let limits =
if op == AssocOp::DotDot { RangeLimits::HalfOpen } else { RangeLimits::Closed };
Ok(self.mk_expr(span, self.mk_range(Some(lhs), rhs, limits)?, AttrVec::new()))
}
fn is_at_start_of_range_notation_rhs(&self) -> bool {
if self.token.can_begin_expr() {
// Parse `for i in 1.. { }` as infinite loop, not as `for i in (1..{})`.
if self.token == token::OpenDelim(token::Brace) {
return !self.restrictions.contains(Restrictions::NO_STRUCT_LITERAL);
}
true
} else {
false
}
}
/// Parses prefix-forms of range notation: `..expr`, `..`, `..=expr`.
fn parse_prefix_range_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
// Check for deprecated `...` syntax.
if self.token == token::DotDotDot {
self.err_dotdotdot_syntax(self.token.span);
}
debug_assert!(
[token::DotDot, token::DotDotDot, token::DotDotEq].contains(&self.token.kind),
"parse_prefix_range_expr: token {:?} is not DotDot/DotDotEq",
self.token
);
let limits = match self.token.kind {
token::DotDot => RangeLimits::HalfOpen,
_ => RangeLimits::Closed,
};
let op = AssocOp::from_token(&self.token);
let attrs = self.parse_or_use_outer_attributes(attrs)?;
let lo = self.token.span;
self.bump();
let (span, opt_end) = if self.is_at_start_of_range_notation_rhs() {
// RHS must be parsed with more associativity than the dots.
self.parse_assoc_expr_with(op.unwrap().precedence() + 1, LhsExpr::NotYetParsed)
.map(|x| (lo.to(x.span), Some(x)))?
} else {
(lo, None)
};
Ok(self.mk_expr(span, self.mk_range(None, opt_end, limits)?, attrs))
}
/// Parses a prefix-unary-operator expr.
fn parse_prefix_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
let attrs = self.parse_or_use_outer_attributes(attrs)?;
self.maybe_collect_tokens(!attrs.is_empty(), |this| {
let lo = this.token.span;
// Note: when adding new unary operators, don't forget to adjust TokenKind::can_begin_expr()
let (hi, ex) = match this.token.uninterpolate().kind {
token::Not => this.parse_unary_expr(lo, UnOp::Not), // `!expr`
token::Tilde => this.recover_tilde_expr(lo), // `~expr`
token::BinOp(token::Minus) => this.parse_unary_expr(lo, UnOp::Neg), // `-expr`
token::BinOp(token::Star) => this.parse_unary_expr(lo, UnOp::Deref), // `*expr`
token::BinOp(token::And) | token::AndAnd => this.parse_borrow_expr(lo),
token::Ident(..) if this.token.is_keyword(kw::Box) => this.parse_box_expr(lo),
token::Ident(..) if this.is_mistaken_not_ident_negation() => {
this.recover_not_expr(lo)
}
_ => return this.parse_dot_or_call_expr(Some(attrs)),
}?;
Ok(this.mk_expr(lo.to(hi), ex, attrs))
})
}
fn parse_prefix_expr_common(&mut self, lo: Span) -> PResult<'a, (Span, P<Expr>)> {
self.bump();
let expr = self.parse_prefix_expr(None);
let (span, expr) = self.interpolated_or_expr_span(expr)?;
Ok((lo.to(span), expr))
}
fn parse_unary_expr(&mut self, lo: Span, op: UnOp) -> PResult<'a, (Span, ExprKind)> {
let (span, expr) = self.parse_prefix_expr_common(lo)?;
Ok((span, self.mk_unary(op, expr)))
}
// Recover on `!` suggesting for bitwise negation instead.
fn recover_tilde_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
self.struct_span_err(lo, "`~` cannot be used as a unary operator")
.span_suggestion_short(
lo,
"use `!` to perform bitwise not",
"!".to_owned(),
Applicability::MachineApplicable,
)
.emit();
self.parse_unary_expr(lo, UnOp::Not)
}
/// Parse `box expr`.
fn parse_box_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
let (span, expr) = self.parse_prefix_expr_common(lo)?;
self.sess.gated_spans.gate(sym::box_syntax, span);
Ok((span, ExprKind::Box(expr)))
}
fn is_mistaken_not_ident_negation(&self) -> bool {
let token_cannot_continue_expr = |t: &Token| match t.uninterpolate().kind {
// These tokens can start an expression after `!`, but
// can't continue an expression after an ident
token::Ident(name, is_raw) => token::ident_can_begin_expr(name, t.span, is_raw),
token::Literal(..) | token::Pound => true,
_ => t.is_whole_expr(),
};
self.token.is_ident_named(sym::not) && self.look_ahead(1, token_cannot_continue_expr)
}
/// Recover on `not expr` in favor of `!expr`.
fn recover_not_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
// Emit the error...
let not_token = self.look_ahead(1, |t| t.clone());
self.struct_span_err(
not_token.span,
&format!("unexpected {} after identifier", super::token_descr(¬_token)),
)
.span_suggestion_short(
// Span the `not` plus trailing whitespace to avoid
// trailing whitespace after the `!` in our suggestion
self.sess.source_map().span_until_non_whitespace(lo.to(not_token.span)),
"use `!` to perform logical negation",
"!".to_owned(),
Applicability::MachineApplicable,
)
.emit();
// ...and recover!
self.parse_unary_expr(lo, UnOp::Not)
}
/// Returns the span of expr, if it was not interpolated or the span of the interpolated token.
fn interpolated_or_expr_span(
&self,
expr: PResult<'a, P<Expr>>,
) -> PResult<'a, (Span, P<Expr>)> {
expr.map(|e| {
(
match self.prev_token.kind {
TokenKind::Interpolated(..) => self.prev_token.span,
_ => e.span,
},
e,
)
})
}
fn parse_assoc_op_cast(
&mut self,
lhs: P<Expr>,
lhs_span: Span,
expr_kind: fn(P<Expr>, P<Ty>) -> ExprKind,
) -> PResult<'a, P<Expr>> {
let mk_expr = |this: &mut Self, rhs: P<Ty>| {
this.mk_expr(lhs_span.to(rhs.span), expr_kind(lhs, rhs), AttrVec::new())
};
// Save the state of the parser before parsing type normally, in case there is a
// LessThan comparison after this cast.
let parser_snapshot_before_type = self.clone();
let cast_expr = match self.parse_ty_no_plus() {
Ok(rhs) => mk_expr(self, rhs),
Err(mut type_err) => {
// Rewind to before attempting to parse the type with generics, to recover
// from situations like `x as usize < y` in which we first tried to parse
// `usize < y` as a type with generic arguments.
let parser_snapshot_after_type = mem::replace(self, parser_snapshot_before_type);
match self.parse_path(PathStyle::Expr) {
Ok(path) => {
let (op_noun, op_verb) = match self.token.kind {
token::Lt => ("comparison", "comparing"),
token::BinOp(token::Shl) => ("shift", "shifting"),
_ => {
// We can end up here even without `<` being the next token, for
// example because `parse_ty_no_plus` returns `Err` on keywords,
// but `parse_path` returns `Ok` on them due to error recovery.
// Return original error and parser state.
*self = parser_snapshot_after_type;
return Err(type_err);
}
};
// Successfully parsed the type path leaving a `<` yet to parse.
type_err.cancel();
// Report non-fatal diagnostics, keep `x as usize` as an expression
// in AST and continue parsing.
let msg = format!(
"`<` is interpreted as a start of generic arguments for `{}`, not a {}",
pprust::path_to_string(&path),
op_noun,
);
let span_after_type = parser_snapshot_after_type.token.span;
let expr = mk_expr(self, self.mk_ty(path.span, TyKind::Path(None, path)));
let expr_str = self
.span_to_snippet(expr.span)
.unwrap_or_else(|_| pprust::expr_to_string(&expr));
self.struct_span_err(self.token.span, &msg)
.span_label(
self.look_ahead(1, |t| t.span).to(span_after_type),
"interpreted as generic arguments",
)
.span_label(self.token.span, format!("not interpreted as {}", op_noun))
.span_suggestion(
expr.span,
&format!("try {} the cast value", op_verb),
format!("({})", expr_str),
Applicability::MachineApplicable,
)
.emit();
expr
}
Err(mut path_err) => {
// Couldn't parse as a path, return original error and parser state.
path_err.cancel();
*self = parser_snapshot_after_type;
return Err(type_err);
}
}
}
};
self.parse_and_disallow_postfix_after_cast(cast_expr)
}
/// Parses a postfix operators such as `.`, `?`, or index (`[]`) after a cast,
/// then emits an error and returns the newly parsed tree.
/// The resulting parse tree for `&x as T[0]` has a precedence of `((&x) as T)[0]`.
fn parse_and_disallow_postfix_after_cast(
&mut self,
cast_expr: P<Expr>,
) -> PResult<'a, P<Expr>> {
// Save the memory location of expr before parsing any following postfix operators.
// This will be compared with the memory location of the output expression.
// If they different we can assume we parsed another expression because the existing expression is not reallocated.
let addr_before = &*cast_expr as *const _ as usize;
let span = cast_expr.span;
let with_postfix = self.parse_dot_or_call_expr_with_(cast_expr, span)?;
let changed = addr_before != &*with_postfix as *const _ as usize;
// Check if an illegal postfix operator has been added after the cast.
// If the resulting expression is not a cast, or has a different memory location, it is an illegal postfix operator.
if !matches!(with_postfix.kind, ExprKind::Cast(_, _) | ExprKind::Type(_, _)) || changed {
let msg = format!(
"casts cannot be followed by {}",
match with_postfix.kind {
ExprKind::Index(_, _) => "indexing",
ExprKind::Try(_) => "?",
ExprKind::Field(_, _) => "a field access",
ExprKind::MethodCall(_, _, _) => "a method call",
ExprKind::Call(_, _) => "a function call",
ExprKind::Await(_) => "`.await`",
ExprKind::Err => return Ok(with_postfix),
_ => unreachable!("parse_dot_or_call_expr_with_ shouldn't produce this"),
}
);
let mut err = self.struct_span_err(span, &msg);
// If type ascription is "likely an error", the user will already be getting a useful
// help message, and doesn't need a second.
if self.last_type_ascription.map_or(false, |last_ascription| last_ascription.1) {
self.maybe_annotate_with_ascription(&mut err, false);
} else {
let suggestions = vec![
(span.shrink_to_lo(), "(".to_string()),
(span.shrink_to_hi(), ")".to_string()),
];
err.multipart_suggestion(
"try surrounding the expression in parentheses",
suggestions,
Applicability::MachineApplicable,
);
}
err.emit();
};
Ok(with_postfix)
}
fn parse_assoc_op_ascribe(&mut self, lhs: P<Expr>, lhs_span: Span) -> PResult<'a, P<Expr>> {
let maybe_path = self.could_ascription_be_path(&lhs.kind);
self.last_type_ascription = Some((self.prev_token.span, maybe_path));
let lhs = self.parse_assoc_op_cast(lhs, lhs_span, ExprKind::Type)?;
self.sess.gated_spans.gate(sym::type_ascription, lhs.span);
Ok(lhs)
}
/// Parse `& mut? <expr>` or `& raw [ const | mut ] <expr>`.
fn parse_borrow_expr(&mut self, lo: Span) -> PResult<'a, (Span, ExprKind)> {
self.expect_and()?;
let has_lifetime = self.token.is_lifetime() && self.look_ahead(1, |t| t != &token::Colon);
let lifetime = has_lifetime.then(|| self.expect_lifetime()); // For recovery, see below.
let (borrow_kind, mutbl) = self.parse_borrow_modifiers(lo);
let expr = self.parse_prefix_expr(None);
let (hi, expr) = self.interpolated_or_expr_span(expr)?;
let span = lo.to(hi);
if let Some(lt) = lifetime {
self.error_remove_borrow_lifetime(span, lt.ident.span);
}
Ok((span, ExprKind::AddrOf(borrow_kind, mutbl, expr)))
}
fn error_remove_borrow_lifetime(&self, span: Span, lt_span: Span) {
self.struct_span_err(span, "borrow expressions cannot be annotated with lifetimes")
.span_label(lt_span, "annotated with lifetime here")
.span_suggestion(
lt_span,
"remove the lifetime annotation",
String::new(),
Applicability::MachineApplicable,
)
.emit();
}
/// Parse `mut?` or `raw [ const | mut ]`.
fn parse_borrow_modifiers(&mut self, lo: Span) -> (ast::BorrowKind, ast::Mutability) {
if self.check_keyword(kw::Raw) && self.look_ahead(1, Token::is_mutability) {
// `raw [ const | mut ]`.
let found_raw = self.eat_keyword(kw::Raw);
assert!(found_raw);
let mutability = self.parse_const_or_mut().unwrap();
self.sess.gated_spans.gate(sym::raw_ref_op, lo.to(self.prev_token.span));
(ast::BorrowKind::Raw, mutability)
} else {
// `mut?`
(ast::BorrowKind::Ref, self.parse_mutability())
}
}
/// Parses `a.b` or `a(13)` or `a[4]` or just `a`.
fn parse_dot_or_call_expr(&mut self, attrs: Option<AttrVec>) -> PResult<'a, P<Expr>> {
let attrs = self.parse_or_use_outer_attributes(attrs)?;
let base = self.parse_bottom_expr();
let (span, base) = self.interpolated_or_expr_span(base)?;
self.parse_dot_or_call_expr_with(base, span, attrs)
}
pub(super) fn parse_dot_or_call_expr_with(
&mut self,
e0: P<Expr>,
lo: Span,
mut attrs: AttrVec,
) -> PResult<'a, P<Expr>> {
// Stitch the list of outer attributes onto the return value.
// A little bit ugly, but the best way given the current code
// structure
self.parse_dot_or_call_expr_with_(e0, lo).map(|expr| {
expr.map(|mut expr| {
attrs.extend::<Vec<_>>(expr.attrs.into());
expr.attrs = attrs;
expr
})
})
}
fn parse_dot_or_call_expr_with_(&mut self, mut e: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
loop {
if self.eat(&token::Question) {
// `expr?`
e = self.mk_expr(lo.to(self.prev_token.span), ExprKind::Try(e), AttrVec::new());
continue;
}
if self.eat(&token::Dot) {
// expr.f
e = self.parse_dot_suffix_expr(lo, e)?;
continue;
}
if self.expr_is_complete(&e) {
return Ok(e);
}
e = match self.token.kind {
token::OpenDelim(token::Paren) => self.parse_fn_call_expr(lo, e),
token::OpenDelim(token::Bracket) => self.parse_index_expr(lo, e)?,
_ => return Ok(e),
}
}
}
fn parse_dot_suffix_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
match self.token.uninterpolate().kind {
token::Ident(..) => self.parse_dot_suffix(base, lo),
token::Literal(token::Lit { kind: token::Integer, symbol, suffix }) => {
Ok(self.parse_tuple_field_access_expr(lo, base, symbol, suffix, None))
}
token::Literal(token::Lit { kind: token::Float, symbol, suffix }) => {
Ok(self.parse_tuple_field_access_expr_float(lo, base, symbol, suffix))
}
_ => {
self.error_unexpected_after_dot();
Ok(base)
}
}
}
fn error_unexpected_after_dot(&self) {
// FIXME Could factor this out into non_fatal_unexpected or something.
let actual = pprust::token_to_string(&self.token);
self.struct_span_err(self.token.span, &format!("unexpected token: `{}`", actual)).emit();
}
// We need and identifier or integer, but the next token is a float.
// Break the float into components to extract the identifier or integer.
// FIXME: With current `TokenCursor` it's hard to break tokens into more than 2
// parts unless those parts are processed immediately. `TokenCursor` should either
// support pushing "future tokens" (would be also helpful to `break_and_eat`), or
// we should break everything including floats into more basic proc-macro style
// tokens in the lexer (probably preferable).
fn parse_tuple_field_access_expr_float(
&mut self,
lo: Span,
base: P<Expr>,
float: Symbol,
suffix: Option<Symbol>,
) -> P<Expr> {
#[derive(Debug)]
enum FloatComponent {
IdentLike(String),
Punct(char),
}
use FloatComponent::*;
let mut components = Vec::new();
let mut ident_like = String::new();
for c in float.as_str().chars() {
if c == '_' || c.is_ascii_alphanumeric() {
ident_like.push(c);
} else if matches!(c, '.' | '+' | '-') {
if !ident_like.is_empty() {
components.push(IdentLike(mem::take(&mut ident_like)));
}
components.push(Punct(c));
} else {
panic!("unexpected character in a float token: {:?}", c)
}
}
if !ident_like.is_empty() {
components.push(IdentLike(ident_like));
}
// FIXME: Make the span more precise.
let span = self.token.span;
match &*components {
// 1e2
[IdentLike(i)] => {
self.parse_tuple_field_access_expr(lo, base, Symbol::intern(&i), suffix, None)
}
// 1.
[IdentLike(i), Punct('.')] => {
assert!(suffix.is_none());
let symbol = Symbol::intern(&i);
self.token = Token::new(token::Ident(symbol, false), span);
let next_token = Token::new(token::Dot, span);
self.parse_tuple_field_access_expr(lo, base, symbol, None, Some(next_token))
}
// 1.2 | 1.2e3
[IdentLike(i1), Punct('.'), IdentLike(i2)] => {
let symbol1 = Symbol::intern(&i1);
self.token = Token::new(token::Ident(symbol1, false), span);
let next_token1 = Token::new(token::Dot, span);
let base1 =
self.parse_tuple_field_access_expr(lo, base, symbol1, None, Some(next_token1));
let symbol2 = Symbol::intern(&i2);
let next_token2 = Token::new(token::Ident(symbol2, false), span);
self.bump_with(next_token2); // `.`
self.parse_tuple_field_access_expr(lo, base1, symbol2, suffix, None)
}
// 1e+ | 1e- (recovered)
[IdentLike(_), Punct('+' | '-')] |
// 1e+2 | 1e-2
[IdentLike(_), Punct('+' | '-'), IdentLike(_)] |
// 1.2e+3 | 1.2e-3
[IdentLike(_), Punct('.'), IdentLike(_), Punct('+' | '-'), IdentLike(_)] => {
// See the FIXME about `TokenCursor` above.
self.error_unexpected_after_dot();
base
}
_ => panic!("unexpected components in a float token: {:?}", components),
}
}
fn parse_tuple_field_access_expr(
&mut self,
lo: Span,
base: P<Expr>,
field: Symbol,
suffix: Option<Symbol>,
next_token: Option<Token>,
) -> P<Expr> {
match next_token {
Some(next_token) => self.bump_with(next_token),
None => self.bump(),
}
let span = self.prev_token.span;
let field = ExprKind::Field(base, Ident::new(field, span));
self.expect_no_suffix(span, "a tuple index", suffix);
self.mk_expr(lo.to(span), field, AttrVec::new())
}
/// Parse a function call expression, `expr(...)`.
fn parse_fn_call_expr(&mut self, lo: Span, fun: P<Expr>) -> P<Expr> {
let seq = self.parse_paren_expr_seq().map(|args| {
self.mk_expr(lo.to(self.prev_token.span), self.mk_call(fun, args), AttrVec::new())
});
self.recover_seq_parse_error(token::Paren, lo, seq)
}
/// Parse an indexing expression `expr[...]`.
fn parse_index_expr(&mut self, lo: Span, base: P<Expr>) -> PResult<'a, P<Expr>> {
self.bump(); // `[`
let index = self.parse_expr()?;
self.expect(&token::CloseDelim(token::Bracket))?;
Ok(self.mk_expr(lo.to(self.prev_token.span), self.mk_index(base, index), AttrVec::new()))
}
/// Assuming we have just parsed `.`, continue parsing into an expression.
fn parse_dot_suffix(&mut self, self_arg: P<Expr>, lo: Span) -> PResult<'a, P<Expr>> {
if self.token.uninterpolated_span().rust_2018() && self.eat_keyword(kw::Await) {
return self.mk_await_expr(self_arg, lo);
}
let fn_span_lo = self.token.span;
let mut segment = self.parse_path_segment(PathStyle::Expr)?;
self.check_trailing_angle_brackets(&segment, &[&token::OpenDelim(token::Paren)]);
self.check_turbofish_missing_angle_brackets(&mut segment);
if self.check(&token::OpenDelim(token::Paren)) {
// Method call `expr.f()`
let mut args = self.parse_paren_expr_seq()?;
args.insert(0, self_arg);
let fn_span = fn_span_lo.to(self.prev_token.span);
let span = lo.to(self.prev_token.span);
Ok(self.mk_expr(span, ExprKind::MethodCall(segment, args, fn_span), AttrVec::new()))
} else {
// Field access `expr.f`
if let Some(args) = segment.args {
self.struct_span_err(
args.span(),
"field expressions cannot have generic arguments",
)
.emit();
}
let span = lo.to(self.prev_token.span);
Ok(self.mk_expr(span, ExprKind::Field(self_arg, segment.ident), AttrVec::new()))
}
}
/// At the bottom (top?) of the precedence hierarchy,
/// Parses things like parenthesized exprs, macros, `return`, etc.
///
/// N.B., this does not parse outer attributes, and is private because it only works
/// correctly if called from `parse_dot_or_call_expr()`.
fn parse_bottom_expr(&mut self) -> PResult<'a, P<Expr>> {
maybe_recover_from_interpolated_ty_qpath!(self, true);
maybe_whole_expr!(self);
// Outer attributes are already parsed and will be
// added to the return value after the fact.
//
// Therefore, prevent sub-parser from parsing
// attributes by giving them a empty "already-parsed" list.
let attrs = AttrVec::new();
// Note: when adding new syntax here, don't forget to adjust `TokenKind::can_begin_expr()`.
let lo = self.token.span;
if let token::Literal(_) = self.token.kind {
// This match arm is a special-case of the `_` match arm below and
// could be removed without changing functionality, but it's faster
// to have it here, especially for programs with large constants.
self.parse_lit_expr(attrs)
} else if self.check(&token::OpenDelim(token::Paren)) {
self.parse_tuple_parens_expr(attrs)
} else if self.check(&token::OpenDelim(token::Brace)) {
self.parse_block_expr(None, lo, BlockCheckMode::Default, attrs)
} else if self.check(&token::BinOp(token::Or)) || self.check(&token::OrOr) {
self.parse_closure_expr(attrs)
} else if self.check(&token::OpenDelim(token::Bracket)) {
self.parse_array_or_repeat_expr(attrs)
} else if self.eat_lt() {