-
Notifications
You must be signed in to change notification settings - Fork 12.7k
/
resolve_bound_vars.rs
2101 lines (1927 loc) · 86.5 KB
/
resolve_bound_vars.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Resolution of early vs late bound lifetimes.
//!
//! Name resolution for lifetimes is performed on the AST and embedded into HIR. From this
//! information, typechecking needs to transform the lifetime parameters into bound lifetimes.
//! Lifetimes can be early-bound or late-bound. Construction of typechecking terms needs to visit
//! the types in HIR to identify late-bound lifetimes and assign their Debruijn indices. This file
//! is also responsible for assigning their semantics to implicit lifetimes in trait objects.
use rustc_ast::walk_list;
use rustc_data_structures::fx::{FxHashSet, FxIndexMap, FxIndexSet};
use rustc_errors::struct_span_err;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::LocalDefId;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{GenericArg, GenericParam, GenericParamKind, HirIdMap, LifetimeName, Node};
use rustc_middle::bug;
use rustc_middle::hir::nested_filter;
use rustc_middle::middle::resolve_bound_vars::*;
use rustc_middle::query::Providers;
use rustc_middle::ty::{self, TyCtxt, TypeSuperVisitable, TypeVisitor};
use rustc_session::lint;
use rustc_span::def_id::DefId;
use rustc_span::symbol::{sym, Ident};
use rustc_span::{Span, DUMMY_SP};
use std::fmt;
use crate::errors;
trait RegionExt {
fn early(param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg);
fn late(index: u32, param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg);
fn id(&self) -> Option<DefId>;
fn shifted(self, amount: u32) -> ResolvedArg;
}
impl RegionExt for ResolvedArg {
fn early(param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg) {
debug!("ResolvedArg::early: def_id={:?}", param.def_id);
(param.def_id, ResolvedArg::EarlyBound(param.def_id.to_def_id()))
}
fn late(idx: u32, param: &GenericParam<'_>) -> (LocalDefId, ResolvedArg) {
let depth = ty::INNERMOST;
debug!(
"ResolvedArg::late: idx={:?}, param={:?} depth={:?} def_id={:?}",
idx, param, depth, param.def_id,
);
(param.def_id, ResolvedArg::LateBound(depth, idx, param.def_id.to_def_id()))
}
fn id(&self) -> Option<DefId> {
match *self {
ResolvedArg::StaticLifetime | ResolvedArg::Error(_) => None,
ResolvedArg::EarlyBound(id)
| ResolvedArg::LateBound(_, _, id)
| ResolvedArg::Free(_, id) => Some(id),
}
}
fn shifted(self, amount: u32) -> ResolvedArg {
match self {
ResolvedArg::LateBound(debruijn, idx, id) => {
ResolvedArg::LateBound(debruijn.shifted_in(amount), idx, id)
}
_ => self,
}
}
}
/// Maps the id of each bound variable reference to the variable decl
/// that it corresponds to.
///
/// FIXME. This struct gets converted to a `ResolveBoundVars` for
/// actual use. It has the same data, but indexed by `LocalDefId`. This
/// is silly.
#[derive(Debug, Default)]
struct NamedVarMap {
// maps from every use of a named (not anonymous) bound var to a
// `ResolvedArg` describing how that variable is bound
defs: HirIdMap<ResolvedArg>,
// Maps relevant hir items to the bound vars on them. These include:
// - function defs
// - function pointers
// - closures
// - trait refs
// - bound types (like `T` in `for<'a> T<'a>: Foo`)
late_bound_vars: HirIdMap<Vec<ty::BoundVariableKind>>,
}
struct BoundVarContext<'a, 'tcx> {
tcx: TyCtxt<'tcx>,
map: &'a mut NamedVarMap,
scope: ScopeRef<'a>,
}
#[derive(Debug)]
enum Scope<'a> {
/// Declares lifetimes, and each can be early-bound or late-bound.
/// The `DebruijnIndex` of late-bound lifetimes starts at `1` and
/// it should be shifted by the number of `Binder`s in between the
/// declaration `Binder` and the location it's referenced from.
Binder {
/// We use an IndexMap here because we want these lifetimes in order
/// for diagnostics.
bound_vars: FxIndexMap<LocalDefId, ResolvedArg>,
scope_type: BinderScopeType,
/// The late bound vars for a given item are stored by `HirId` to be
/// queried later. However, if we enter an elision scope, we have to
/// later append the elided bound vars to the list and need to know what
/// to append to.
hir_id: hir::HirId,
s: ScopeRef<'a>,
/// If this binder comes from a where clause, specify how it was created.
/// This is used to diagnose inaccessible lifetimes in APIT:
/// ```ignore (illustrative)
/// fn foo(x: impl for<'a> Trait<'a, Assoc = impl Copy + 'a>) {}
/// ```
where_bound_origin: Option<hir::PredicateOrigin>,
},
/// Lifetimes introduced by a fn are scoped to the call-site for that fn,
/// if this is a fn body, otherwise the original definitions are used.
/// Unspecified lifetimes are inferred, unless an elision scope is nested,
/// e.g., `(&T, fn(&T) -> &T);` becomes `(&'_ T, for<'a> fn(&'a T) -> &'a T)`.
Body {
id: hir::BodyId,
s: ScopeRef<'a>,
},
/// Use a specific lifetime (if `Some`) or leave it unset (to be
/// inferred in a function body or potentially error outside one),
/// for the default choice of lifetime in a trait object type.
ObjectLifetimeDefault {
lifetime: Option<ResolvedArg>,
s: ScopeRef<'a>,
},
/// When we have nested trait refs, we concatenate late bound vars for inner
/// trait refs from outer ones. But we also need to include any HRTB
/// lifetimes encountered when identifying the trait that an associated type
/// is declared on.
Supertrait {
bound_vars: Vec<ty::BoundVariableKind>,
s: ScopeRef<'a>,
},
TraitRefBoundary {
s: ScopeRef<'a>,
},
/// Disallows capturing non-lifetime binders from parent scopes.
///
/// This is necessary for something like `for<T> [(); { /* references T */ }]:`,
/// since we don't do something more correct like replacing any captured
/// late-bound vars with early-bound params in the const's own generics.
AnonConstBoundary {
s: ScopeRef<'a>,
},
Root {
opt_parent_item: Option<LocalDefId>,
},
}
#[derive(Copy, Clone, Debug)]
enum BinderScopeType {
/// Any non-concatenating binder scopes.
Normal,
/// Within a syntactic trait ref, there may be multiple poly trait refs that
/// are nested (under the `associated_type_bounds` feature). The binders of
/// the inner poly trait refs are extended from the outer poly trait refs
/// and don't increase the late bound depth. If you had
/// `T: for<'a> Foo<Bar: for<'b> Baz<'a, 'b>>`, then the `for<'b>` scope
/// would be `Concatenating`. This also used in trait refs in where clauses
/// where we have two binders `for<> T: for<> Foo` (I've intentionally left
/// out any lifetimes because they aren't needed to show the two scopes).
/// The inner `for<>` has a scope of `Concatenating`.
Concatenating,
}
// A helper struct for debugging scopes without printing parent scopes
struct TruncatedScopeDebug<'a>(&'a Scope<'a>);
impl<'a> fmt::Debug for TruncatedScopeDebug<'a> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self.0 {
Scope::Binder { bound_vars, scope_type, hir_id, where_bound_origin, s: _ } => f
.debug_struct("Binder")
.field("bound_vars", bound_vars)
.field("scope_type", scope_type)
.field("hir_id", hir_id)
.field("where_bound_origin", where_bound_origin)
.field("s", &"..")
.finish(),
Scope::Body { id, s: _ } => {
f.debug_struct("Body").field("id", id).field("s", &"..").finish()
}
Scope::ObjectLifetimeDefault { lifetime, s: _ } => f
.debug_struct("ObjectLifetimeDefault")
.field("lifetime", lifetime)
.field("s", &"..")
.finish(),
Scope::Supertrait { bound_vars, s: _ } => f
.debug_struct("Supertrait")
.field("bound_vars", bound_vars)
.field("s", &"..")
.finish(),
Scope::TraitRefBoundary { s: _ } => f.debug_struct("TraitRefBoundary").finish(),
Scope::AnonConstBoundary { s: _ } => f.debug_struct("AnonConstBoundary").finish(),
Scope::Root { opt_parent_item } => {
f.debug_struct("Root").field("opt_parent_item", &opt_parent_item).finish()
}
}
}
}
type ScopeRef<'a> = &'a Scope<'a>;
pub(crate) fn provide(providers: &mut Providers) {
*providers = Providers {
resolve_bound_vars,
named_variable_map: |tcx, id| tcx.resolve_bound_vars(id).defs.get(&id),
is_late_bound_map,
object_lifetime_default,
late_bound_vars_map: |tcx, id| tcx.resolve_bound_vars(id).late_bound_vars.get(&id),
..*providers
};
}
/// Computes the `ResolveBoundVars` map that contains data for an entire `Item`.
/// You should not read the result of this query directly, but rather use
/// `named_variable_map`, `is_late_bound_map`, etc.
#[instrument(level = "debug", skip(tcx))]
fn resolve_bound_vars(tcx: TyCtxt<'_>, local_def_id: hir::OwnerId) -> ResolveBoundVars {
let mut named_variable_map =
NamedVarMap { defs: Default::default(), late_bound_vars: Default::default() };
let mut visitor = BoundVarContext {
tcx,
map: &mut named_variable_map,
scope: &Scope::Root { opt_parent_item: None },
};
match tcx.hir().owner(local_def_id) {
hir::OwnerNode::Item(item) => visitor.visit_item(item),
hir::OwnerNode::ForeignItem(item) => visitor.visit_foreign_item(item),
hir::OwnerNode::TraitItem(item) => {
let scope =
Scope::Root { opt_parent_item: Some(tcx.local_parent(item.owner_id.def_id)) };
visitor.scope = &scope;
visitor.visit_trait_item(item)
}
hir::OwnerNode::ImplItem(item) => {
let scope =
Scope::Root { opt_parent_item: Some(tcx.local_parent(item.owner_id.def_id)) };
visitor.scope = &scope;
visitor.visit_impl_item(item)
}
hir::OwnerNode::Crate(_) => {}
}
let mut rl = ResolveBoundVars::default();
for (hir_id, v) in named_variable_map.defs {
let map = rl.defs.entry(hir_id.owner).or_default();
map.insert(hir_id.local_id, v);
}
for (hir_id, v) in named_variable_map.late_bound_vars {
let map = rl.late_bound_vars.entry(hir_id.owner).or_default();
map.insert(hir_id.local_id, v);
}
debug!(?rl.defs);
debug!(?rl.late_bound_vars);
rl
}
fn late_arg_as_bound_arg<'tcx>(
tcx: TyCtxt<'tcx>,
arg: &ResolvedArg,
param: &GenericParam<'tcx>,
) -> ty::BoundVariableKind {
match arg {
ResolvedArg::LateBound(_, _, def_id) => {
let name = tcx.hir().name(tcx.hir().local_def_id_to_hir_id(def_id.expect_local()));
match param.kind {
GenericParamKind::Lifetime { .. } => {
ty::BoundVariableKind::Region(ty::BrNamed(*def_id, name))
}
GenericParamKind::Type { .. } => {
ty::BoundVariableKind::Ty(ty::BoundTyKind::Param(*def_id, name))
}
GenericParamKind::Const { .. } => ty::BoundVariableKind::Const,
}
}
_ => bug!("{:?} is not a late argument", arg),
}
}
impl<'a, 'tcx> BoundVarContext<'a, 'tcx> {
/// Returns the binders in scope and the type of `Binder` that should be created for a poly trait ref.
fn poly_trait_ref_binder_info(&mut self) -> (Vec<ty::BoundVariableKind>, BinderScopeType) {
let mut scope = self.scope;
let mut supertrait_bound_vars = vec![];
loop {
match scope {
Scope::Body { .. } | Scope::Root { .. } => {
break (vec![], BinderScopeType::Normal);
}
Scope::ObjectLifetimeDefault { s, .. } | Scope::AnonConstBoundary { s } => {
scope = s;
}
Scope::Supertrait { s, bound_vars } => {
supertrait_bound_vars = bound_vars.clone();
scope = s;
}
Scope::TraitRefBoundary { .. } => {
// We should only see super trait lifetimes if there is a `Binder` above
// though this may happen when we call `poly_trait_ref_binder_info` with
// an (erroneous, #113423) associated return type bound in an impl header.
if !supertrait_bound_vars.is_empty() {
self.tcx.sess.delay_span_bug(
DUMMY_SP,
format!(
"found supertrait lifetimes without a binder to append \
them to: {supertrait_bound_vars:?}"
),
);
}
break (vec![], BinderScopeType::Normal);
}
Scope::Binder { hir_id, .. } => {
// Nested poly trait refs have the binders concatenated
let mut full_binders =
self.map.late_bound_vars.entry(*hir_id).or_default().clone();
full_binders.extend(supertrait_bound_vars.into_iter());
break (full_binders, BinderScopeType::Concatenating);
}
}
}
}
fn visit_poly_trait_ref_inner(
&mut self,
trait_ref: &'tcx hir::PolyTraitRef<'tcx>,
non_lifetime_binder_allowed: NonLifetimeBinderAllowed,
) {
debug!("visit_poly_trait_ref(trait_ref={:?})", trait_ref);
let (mut binders, scope_type) = self.poly_trait_ref_binder_info();
let initial_bound_vars = binders.len() as u32;
let mut bound_vars: FxIndexMap<LocalDefId, ResolvedArg> = FxIndexMap::default();
let binders_iter =
trait_ref.bound_generic_params.iter().enumerate().map(|(late_bound_idx, param)| {
let pair = ResolvedArg::late(initial_bound_vars + late_bound_idx as u32, param);
let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
bound_vars.insert(pair.0, pair.1);
r
});
binders.extend(binders_iter);
if let NonLifetimeBinderAllowed::Deny(where_) = non_lifetime_binder_allowed {
deny_non_region_late_bound(self.tcx, &mut bound_vars, where_);
}
debug!(?binders);
self.record_late_bound_vars(trait_ref.trait_ref.hir_ref_id, binders);
// Always introduce a scope here, even if this is in a where clause and
// we introduced the binders around the bounded Ty. In that case, we
// just reuse the concatenation functionality also present in nested trait
// refs.
let scope = Scope::Binder {
hir_id: trait_ref.trait_ref.hir_ref_id,
bound_vars,
s: self.scope,
scope_type,
where_bound_origin: None,
};
self.with(scope, |this| {
walk_list!(this, visit_generic_param, trait_ref.bound_generic_params);
this.visit_trait_ref(&trait_ref.trait_ref);
});
}
}
enum NonLifetimeBinderAllowed {
Deny(&'static str),
Allow,
}
impl<'a, 'tcx> Visitor<'tcx> for BoundVarContext<'a, 'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_nested_body(&mut self, body: hir::BodyId) {
let body = self.tcx.hir().body(body);
self.with(Scope::Body { id: body.id(), s: self.scope }, |this| {
this.visit_body(body);
});
}
fn visit_expr(&mut self, e: &'tcx hir::Expr<'tcx>) {
if let hir::ExprKind::Closure(hir::Closure {
binder, bound_generic_params, fn_decl, ..
}) = e.kind
{
if let &hir::ClosureBinder::For { span: for_sp, .. } = binder {
fn span_of_infer(ty: &hir::Ty<'_>) -> Option<Span> {
struct V(Option<Span>);
impl<'v> Visitor<'v> for V {
fn visit_ty(&mut self, t: &'v hir::Ty<'v>) {
match t.kind {
_ if self.0.is_some() => (),
hir::TyKind::Infer => {
self.0 = Some(t.span);
}
_ => intravisit::walk_ty(self, t),
}
}
}
let mut v = V(None);
v.visit_ty(ty);
v.0
}
let infer_in_rt_sp = match fn_decl.output {
hir::FnRetTy::DefaultReturn(sp) => Some(sp),
hir::FnRetTy::Return(ty) => span_of_infer(ty),
};
let infer_spans = fn_decl
.inputs
.into_iter()
.filter_map(span_of_infer)
.chain(infer_in_rt_sp)
.collect::<Vec<_>>();
if !infer_spans.is_empty() {
self.tcx
.sess
.emit_err(errors::ClosureImplicitHrtb { spans: infer_spans, for_sp });
}
}
let (mut bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) =
bound_generic_params
.iter()
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = ResolvedArg::late(late_bound_idx as u32, param);
let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
(pair, r)
})
.unzip();
deny_non_region_late_bound(self.tcx, &mut bound_vars, "closures");
self.record_late_bound_vars(e.hir_id, binders);
let scope = Scope::Binder {
hir_id: e.hir_id,
bound_vars,
s: self.scope,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
self.with(scope, |this| {
// a closure has no bounds, so everything
// contained within is scoped within its binder.
intravisit::walk_expr(this, e)
});
} else {
intravisit::walk_expr(self, e)
}
}
#[instrument(level = "debug", skip(self))]
fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) {
match &item.kind {
hir::ItemKind::Impl(hir::Impl { of_trait, .. }) => {
if let Some(of_trait) = of_trait {
self.record_late_bound_vars(of_trait.hir_ref_id, Vec::default());
}
}
_ => {}
}
match item.kind {
hir::ItemKind::Fn(_, generics, _) => {
self.visit_early_late(item.hir_id(), generics, |this| {
intravisit::walk_item(this, item);
});
}
hir::ItemKind::ExternCrate(_)
| hir::ItemKind::Use(..)
| hir::ItemKind::Macro(..)
| hir::ItemKind::Mod(..)
| hir::ItemKind::ForeignMod { .. }
| hir::ItemKind::Static(..)
| hir::ItemKind::GlobalAsm(..) => {
// These sorts of items have no lifetime parameters at all.
intravisit::walk_item(self, item);
}
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::TyAlias { .. },
..
}) => {
// Opaque types are visited when we visit the
// `TyKind::OpaqueDef`, so that they have the lifetimes from
// their parent opaque_ty in scope.
//
// The core idea here is that since OpaqueTys are generated with the impl Trait as
// their owner, we can keep going until we find the Item that owns that. We then
// conservatively add all resolved lifetimes. Otherwise we run into problems in
// cases like `type Foo<'a> = impl Bar<As = impl Baz + 'a>`.
let parent_item = self.tcx.hir().get_parent_item(item.hir_id());
let resolved_lifetimes: &ResolveBoundVars =
self.tcx.resolve_bound_vars(parent_item);
// We need to add *all* deps, since opaque tys may want them from *us*
for (&owner, defs) in resolved_lifetimes.defs.iter() {
defs.iter().for_each(|(&local_id, region)| {
self.map.defs.insert(hir::HirId { owner, local_id }, *region);
});
}
for (&owner, late_bound_vars) in resolved_lifetimes.late_bound_vars.iter() {
late_bound_vars.iter().for_each(|(&local_id, late_bound_vars)| {
self.record_late_bound_vars(
hir::HirId { owner, local_id },
late_bound_vars.clone(),
);
});
}
}
hir::ItemKind::OpaqueTy(&hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::FnReturn(parent) | hir::OpaqueTyOrigin::AsyncFn(parent),
generics,
..
}) => {
// We want to start our early-bound indices at the end of the parent scope,
// not including any parent `impl Trait`s.
let mut bound_vars = FxIndexMap::default();
debug!(?generics.params);
for param in generics.params {
let (def_id, reg) = ResolvedArg::early(¶m);
bound_vars.insert(def_id, reg);
}
let scope = Scope::Root { opt_parent_item: Some(parent) };
self.with(scope, |this| {
let scope = Scope::Binder {
hir_id: item.hir_id(),
bound_vars,
s: this.scope,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
this.with(scope, |this| {
let scope = Scope::TraitRefBoundary { s: this.scope };
this.with(scope, |this| intravisit::walk_item(this, item))
});
})
}
hir::ItemKind::TyAlias(_, generics)
| hir::ItemKind::Const(_, generics, _)
| hir::ItemKind::Enum(_, generics)
| hir::ItemKind::Struct(_, generics)
| hir::ItemKind::Union(_, generics)
| hir::ItemKind::Trait(_, _, generics, ..)
| hir::ItemKind::TraitAlias(generics, ..)
| hir::ItemKind::Impl(&hir::Impl { generics, .. }) => {
// These kinds of items have only early-bound lifetime parameters.
self.visit_early(item.hir_id(), generics, |this| intravisit::walk_item(this, item));
}
}
}
fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) {
match item.kind {
hir::ForeignItemKind::Fn(_, _, generics) => {
self.visit_early_late(item.hir_id(), generics, |this| {
intravisit::walk_foreign_item(this, item);
})
}
hir::ForeignItemKind::Static(..) => {
intravisit::walk_foreign_item(self, item);
}
hir::ForeignItemKind::Type => {
intravisit::walk_foreign_item(self, item);
}
}
}
#[instrument(level = "debug", skip(self))]
fn visit_ty(&mut self, ty: &'tcx hir::Ty<'tcx>) {
match ty.kind {
hir::TyKind::BareFn(c) => {
let (mut bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) = c
.generic_params
.iter()
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = ResolvedArg::late(late_bound_idx as u32, param);
let r = late_arg_as_bound_arg(self.tcx, &pair.1, param);
(pair, r)
})
.unzip();
deny_non_region_late_bound(self.tcx, &mut bound_vars, "function pointer types");
self.record_late_bound_vars(ty.hir_id, binders);
let scope = Scope::Binder {
hir_id: ty.hir_id,
bound_vars,
s: self.scope,
scope_type: BinderScopeType::Normal,
where_bound_origin: None,
};
self.with(scope, |this| {
// a bare fn has no bounds, so everything
// contained within is scoped within its binder.
intravisit::walk_ty(this, ty);
});
}
hir::TyKind::TraitObject(bounds, lifetime, _) => {
debug!(?bounds, ?lifetime, "TraitObject");
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |this| {
for bound in bounds {
this.visit_poly_trait_ref_inner(
bound,
NonLifetimeBinderAllowed::Deny("trait object types"),
);
}
});
match lifetime.res {
LifetimeName::ImplicitObjectLifetimeDefault => {
// If the user does not write *anything*, we
// use the object lifetime defaulting
// rules. So e.g., `Box<dyn Debug>` becomes
// `Box<dyn Debug + 'static>`.
self.resolve_object_lifetime_default(lifetime)
}
LifetimeName::Infer => {
// If the user writes `'_`, we use the *ordinary* elision
// rules. So the `'_` in e.g., `Box<dyn Debug + '_>` will be
// resolved the same as the `'_` in `&'_ Foo`.
//
// cc #48468
}
LifetimeName::Param(..) | LifetimeName::Static => {
// If the user wrote an explicit name, use that.
self.visit_lifetime(lifetime);
}
LifetimeName::Error => {}
}
}
hir::TyKind::Ref(lifetime_ref, ref mt) => {
self.visit_lifetime(lifetime_ref);
let scope = Scope::ObjectLifetimeDefault {
lifetime: self.map.defs.get(&lifetime_ref.hir_id).cloned(),
s: self.scope,
};
self.with(scope, |this| this.visit_ty(&mt.ty));
}
hir::TyKind::OpaqueDef(item_id, lifetimes, _in_trait) => {
// Resolve the lifetimes in the bounds to the lifetime defs in the generics.
// `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
// `type MyAnonTy<'b> = impl MyTrait<'b>;`
// ^ ^ this gets resolved in the scope of
// the opaque_ty generics
let opaque_ty = self.tcx.hir().item(item_id);
match &opaque_ty.kind {
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::TyAlias { .. },
..
}) => {
intravisit::walk_ty(self, ty);
// Elided lifetimes are not allowed in non-return
// position impl Trait
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |this| intravisit::walk_item(this, opaque_ty));
return;
}
hir::ItemKind::OpaqueTy(hir::OpaqueTy {
origin: hir::OpaqueTyOrigin::FnReturn(..) | hir::OpaqueTyOrigin::AsyncFn(..),
..
}) => {}
i => bug!("`impl Trait` pointed to non-opaque type?? {:#?}", i),
};
// Resolve the lifetimes that are applied to the opaque type.
// These are resolved in the current scope.
// `fn foo<'a>() -> impl MyTrait<'a> { ... }` desugars to
// `fn foo<'a>() -> MyAnonTy<'a> { ... }`
// ^ ^this gets resolved in the current scope
for lifetime in lifetimes {
let hir::GenericArg::Lifetime(lifetime) = lifetime else { continue };
self.visit_lifetime(lifetime);
// Check for predicates like `impl for<'a> Trait<impl OtherTrait<'a>>`
// and ban them. Type variables instantiated inside binders aren't
// well-supported at the moment, so this doesn't work.
// In the future, this should be fixed and this error should be removed.
let def = self.map.defs.get(&lifetime.hir_id).cloned();
let Some(ResolvedArg::LateBound(_, _, def_id)) = def else { continue };
let Some(def_id) = def_id.as_local() else { continue };
let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id);
// Ensure that the parent of the def is an item, not HRTB
let parent_id = self.tcx.hir().parent_id(hir_id);
if !parent_id.is_owner() {
struct_span_err!(
self.tcx.sess,
lifetime.ident.span,
E0657,
"`impl Trait` can only capture lifetimes bound at the fn or impl level"
)
.emit();
self.uninsert_lifetime_on_error(lifetime, def.unwrap());
}
if let hir::Node::Item(hir::Item {
kind: hir::ItemKind::OpaqueTy { .. }, ..
}) = self.tcx.hir().get(parent_id)
{
let mut err = self.tcx.sess.struct_span_err(
lifetime.ident.span,
"higher kinded lifetime bounds on nested opaque types are not supported yet",
);
err.span_note(self.tcx.def_span(def_id), "lifetime declared here");
err.emit();
self.uninsert_lifetime_on_error(lifetime, def.unwrap());
}
}
}
_ => intravisit::walk_ty(self, ty),
}
}
#[instrument(level = "debug", skip(self))]
fn visit_trait_item(&mut self, trait_item: &'tcx hir::TraitItem<'tcx>) {
use self::hir::TraitItemKind::*;
match trait_item.kind {
Fn(_, _) => {
self.visit_early_late(trait_item.hir_id(), trait_item.generics, |this| {
intravisit::walk_trait_item(this, trait_item)
});
}
Type(bounds, ty) => {
self.visit_early(trait_item.hir_id(), trait_item.generics, |this| {
this.visit_generics(&trait_item.generics);
for bound in bounds {
this.visit_param_bound(bound);
}
if let Some(ty) = ty {
this.visit_ty(ty);
}
})
}
Const(_, _) => self.visit_early(trait_item.hir_id(), trait_item.generics, |this| {
intravisit::walk_trait_item(this, trait_item)
}),
}
}
#[instrument(level = "debug", skip(self))]
fn visit_impl_item(&mut self, impl_item: &'tcx hir::ImplItem<'tcx>) {
use self::hir::ImplItemKind::*;
match impl_item.kind {
Fn(..) => self.visit_early_late(impl_item.hir_id(), impl_item.generics, |this| {
intravisit::walk_impl_item(this, impl_item)
}),
Type(ty) => self.visit_early(impl_item.hir_id(), impl_item.generics, |this| {
this.visit_generics(impl_item.generics);
this.visit_ty(ty);
}),
Const(_, _) => self.visit_early(impl_item.hir_id(), impl_item.generics, |this| {
intravisit::walk_impl_item(this, impl_item)
}),
}
}
#[instrument(level = "debug", skip(self))]
fn visit_lifetime(&mut self, lifetime_ref: &'tcx hir::Lifetime) {
match lifetime_ref.res {
hir::LifetimeName::Static => {
self.insert_lifetime(lifetime_ref, ResolvedArg::StaticLifetime)
}
hir::LifetimeName::Param(param_def_id) => {
self.resolve_lifetime_ref(param_def_id, lifetime_ref)
}
// If we've already reported an error, just ignore `lifetime_ref`.
hir::LifetimeName::Error => {}
// Those will be resolved by typechecking.
hir::LifetimeName::ImplicitObjectLifetimeDefault | hir::LifetimeName::Infer => {}
}
}
fn visit_path(&mut self, path: &hir::Path<'tcx>, hir_id: hir::HirId) {
for (i, segment) in path.segments.iter().enumerate() {
let depth = path.segments.len() - i - 1;
if let Some(args) = segment.args {
self.visit_segment_args(path.res, depth, args);
}
}
if let Res::Def(DefKind::TyParam | DefKind::ConstParam, param_def_id) = path.res {
self.resolve_type_ref(param_def_id.expect_local(), hir_id);
}
}
fn visit_fn(
&mut self,
fk: intravisit::FnKind<'tcx>,
fd: &'tcx hir::FnDecl<'tcx>,
body_id: hir::BodyId,
_: Span,
_: LocalDefId,
) {
let output = match fd.output {
hir::FnRetTy::DefaultReturn(_) => None,
hir::FnRetTy::Return(ty) => Some(ty),
};
self.visit_fn_like_elision(&fd.inputs, output, matches!(fk, intravisit::FnKind::Closure));
intravisit::walk_fn_kind(self, fk);
self.visit_nested_body(body_id)
}
fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) {
let scope = Scope::TraitRefBoundary { s: self.scope };
self.with(scope, |this| {
for param in generics.params {
match param.kind {
GenericParamKind::Lifetime { .. } => {}
GenericParamKind::Type { default, .. } => {
if let Some(ty) = default {
this.visit_ty(ty);
}
}
GenericParamKind::Const { ty, default } => {
this.visit_ty(ty);
if let Some(default) = default {
this.visit_body(this.tcx.hir().body(default.body));
}
}
}
}
for predicate in generics.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(hir::WhereBoundPredicate {
hir_id,
bounded_ty,
bounds,
bound_generic_params,
origin,
..
}) => {
let (bound_vars, binders): (FxIndexMap<LocalDefId, ResolvedArg>, Vec<_>) =
bound_generic_params
.iter()
.enumerate()
.map(|(late_bound_idx, param)| {
let pair = ResolvedArg::late(late_bound_idx as u32, param);
let r = late_arg_as_bound_arg(this.tcx, &pair.1, param);
(pair, r)
})
.unzip();
this.record_late_bound_vars(hir_id, binders.clone());
// Even if there are no lifetimes defined here, we still wrap it in a binder
// scope. If there happens to be a nested poly trait ref (an error), that
// will be `Concatenating` anyways, so we don't have to worry about the depth
// being wrong.
let scope = Scope::Binder {
hir_id,
bound_vars,
s: this.scope,
scope_type: BinderScopeType::Normal,
where_bound_origin: Some(origin),
};
this.with(scope, |this| {
this.visit_ty(&bounded_ty);
walk_list!(this, visit_param_bound, bounds);
})
}
&hir::WherePredicate::RegionPredicate(hir::WhereRegionPredicate {
lifetime,
bounds,
..
}) => {
this.visit_lifetime(lifetime);
walk_list!(this, visit_param_bound, bounds);
if lifetime.res != hir::LifetimeName::Static {
for bound in bounds {
let hir::GenericBound::Outlives(lt) = bound else {
continue;
};
if lt.res != hir::LifetimeName::Static {
continue;
}
this.insert_lifetime(lt, ResolvedArg::StaticLifetime);
this.tcx.struct_span_lint_hir(
lint::builtin::UNUSED_LIFETIMES,
lifetime.hir_id,
lifetime.ident.span,
format!(
"unnecessary lifetime parameter `{}`",
lifetime.ident
),
|lint| {
let help = format!(
"you can use the `'static` lifetime directly, in place of `{}`",
lifetime.ident,
);
lint.help(help)
},
);
}
}
}
&hir::WherePredicate::EqPredicate(hir::WhereEqPredicate {
lhs_ty,
rhs_ty,
..
}) => {
this.visit_ty(lhs_ty);
this.visit_ty(rhs_ty);
}
}
}
})
}
fn visit_param_bound(&mut self, bound: &'tcx hir::GenericBound<'tcx>) {
match bound {
hir::GenericBound::LangItemTrait(_, _, hir_id, _) => {
// FIXME(jackh726): This is pretty weird. `LangItemTrait` doesn't go
// through the regular poly trait ref code, so we don't get another
// chance to introduce a binder. For now, I'm keeping the existing logic
// of "if there isn't a Binder scope above us, add one", but I
// imagine there's a better way to go about this.
let (binders, scope_type) = self.poly_trait_ref_binder_info();
self.record_late_bound_vars(*hir_id, binders);
let scope = Scope::Binder {
hir_id: *hir_id,
bound_vars: FxIndexMap::default(),
s: self.scope,
scope_type,
where_bound_origin: None,
};
self.with(scope, |this| {
intravisit::walk_param_bound(this, bound);
});
}
_ => intravisit::walk_param_bound(self, bound),
}
}
fn visit_poly_trait_ref(&mut self, trait_ref: &'tcx hir::PolyTraitRef<'tcx>) {
self.visit_poly_trait_ref_inner(trait_ref, NonLifetimeBinderAllowed::Allow);
}
fn visit_anon_const(&mut self, c: &'tcx hir::AnonConst) {
self.with(Scope::AnonConstBoundary { s: self.scope }, |this| {
intravisit::walk_anon_const(this, c);
});
}
}
fn object_lifetime_default(tcx: TyCtxt<'_>, param_def_id: LocalDefId) -> ObjectLifetimeDefault {
debug_assert_eq!(tcx.def_kind(param_def_id), DefKind::TyParam);
let hir::Node::GenericParam(param) = tcx.hir().get_by_def_id(param_def_id) else {
bug!("expected GenericParam for object_lifetime_default");
};
match param.source {
hir::GenericParamSource::Generics => {
let parent_def_id = tcx.local_parent(param_def_id);
let generics = tcx.hir().get_generics(parent_def_id).unwrap();
let param_hir_id = tcx.local_def_id_to_hir_id(param_def_id);