-
Notifications
You must be signed in to change notification settings - Fork 22
/
cubemap.c
535 lines (462 loc) · 17.3 KB
/
cubemap.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#include "common_shaders.h"
#include "example_base.h"
#include "meshes.h"
#include <string.h>
#include "../webgpu/imgui_overlay.h"
/* -------------------------------------------------------------------------- *
* WebGPU Example - Cubemap
*
* This example shows how to render and sample from a cubemap texture.
*
* Ref: https://github.com/austinEng/webgpu-samples/tree/main/src/sample/cubemap
* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- *
* WGSL Shaders
* -------------------------------------------------------------------------- */
static const char* sample_cubemap_fragment_shader_wgsl;
/* -------------------------------------------------------------------------- *
* Cubemap example
* -------------------------------------------------------------------------- */
// Cube mesh
static cube_mesh_t cube_mesh = {0};
// Cube struct
static struct {
WGPUBindGroup uniform_buffer_bind_group;
WGPUBindGroupLayout bind_group_layout;
struct {
mat4 model_view_projection;
} view_mtx;
} cube = {0};
// Vertex buffer
static wgpu_buffer_t vertices = {0};
// Uniform buffer block object
static wgpu_buffer_t uniform_buffer_vs = {0};
static struct {
mat4 projection;
mat4 model;
mat4 view;
mat4 tmp;
} view_matrices = {0};
// The pipeline layout
static WGPUPipelineLayout pipeline_layout = NULL;
// Pipeline
static WGPURenderPipeline pipeline = NULL;
// Render pass descriptor for frame buffer writes
static struct {
WGPURenderPassColorAttachment color_attachments[1];
WGPURenderPassDescriptor descriptor;
} render_pass = {0};
// Texture and sampler
static texture_t cubemap_texture = {0};
// Other variables
static const char* example_title = "Cubemap";
static bool prepared = false;
// Prepare the cube geometry
static void prepare_cube_mesh(void)
{
cube_mesh_init(&cube_mesh);
}
// Prepare vertex buffer
static void prepare_vertex_buffer(wgpu_context_t* wgpu_context)
{
// Create a vertex buffer from the cube data.
vertices = wgpu_create_buffer(
wgpu_context, &(wgpu_buffer_desc_t){
.label = "Cube vertex data",
.usage = WGPUBufferUsage_CopyDst | WGPUBufferUsage_Vertex,
.size = sizeof(cube_mesh.vertex_array),
.initial.data = cube_mesh.vertex_array,
});
}
static void setup_pipeline_layout(wgpu_context_t* wgpu_context)
{
WGPUBindGroupLayoutEntry bgl_entries[3] = {
[0] = (WGPUBindGroupLayoutEntry) {
/* Binding 0 : Transform */
.binding = 0,
.visibility = WGPUShaderStage_Vertex,
.buffer = (WGPUBufferBindingLayout) {
.type = WGPUBufferBindingType_Uniform,
.hasDynamicOffset = false,
.minBindingSize = sizeof(mat4), // 4x4 matrix
},
.sampler = {0},
},
[1] = (WGPUBindGroupLayoutEntry) {
/* Binding 1 : Sampler */
.binding = 1,
.visibility = WGPUShaderStage_Fragment,
.sampler = (WGPUSamplerBindingLayout){
.type = WGPUSamplerBindingType_Filtering,
},
.texture = {0},
},
[2] = (WGPUBindGroupLayoutEntry) {
/* Binding 2 : Texture view */
.binding = 2,
.visibility = WGPUShaderStage_Fragment,
.texture = (WGPUTextureBindingLayout) {
.sampleType = WGPUTextureSampleType_Float,
.viewDimension = WGPUTextureViewDimension_Cube,
.multisampled = false,
},
.storageTexture = {0},
}
};
cube.bind_group_layout = wgpuDeviceCreateBindGroupLayout(
wgpu_context->device, &(WGPUBindGroupLayoutDescriptor){
.label = "Cube bind group layout",
.entryCount = (uint32_t)ARRAY_SIZE(bgl_entries),
.entries = bgl_entries,
});
ASSERT(cube.bind_group_layout != NULL);
// Create the pipeline layout that is used to generate the rendering pipelines
// that are based on this bind group layout
pipeline_layout = wgpuDeviceCreatePipelineLayout(
wgpu_context->device, &(WGPUPipelineLayoutDescriptor){
.label = "Pipeline bind group layout",
.bindGroupLayoutCount = 1,
.bindGroupLayouts = &cube.bind_group_layout,
});
ASSERT(pipeline_layout != NULL);
}
// Fetch the 6 separate images for negative/positive x, y, z axis of a cubemap
// and upload it into a GPUTexture.
static void prepare_cubemap_texture(wgpu_context_t* wgpu_context)
{
// The order of the array layers is [+X, -X, +Y, -Y, +Z, -Z]
static const char* cubemap[6] = {
"textures/cubemaps/bridge2_px.jpg", /* Right */
"textures/cubemaps/bridge2_nx.jpg", /* Left */
"textures/cubemaps/bridge2_py.jpg", /* Top */
"textures/cubemaps/bridge2_ny.jpg", /* Bottom */
"textures/cubemaps/bridge2_pz.jpg", /* Back */
"textures/cubemaps/bridge2_nz.jpg", /* Front */
};
cubemap_texture = wgpu_create_texture_cubemap_from_files(
wgpu_context, cubemap,
&(struct wgpu_texture_load_options_t){
.flip_y = false,
});
}
static void setup_render_pass(wgpu_context_t* wgpu_context)
{
// Color attachment
render_pass.color_attachments[0] = (WGPURenderPassColorAttachment) {
.view = NULL, /* Assigned later */
.depthSlice = ~0,
.loadOp = WGPULoadOp_Clear,
.storeOp = WGPUStoreOp_Store,
.clearValue = (WGPUColor) {
.r = 0.1f,
.g = 0.2f,
.b = 0.3f,
.a = 1.0f,
},
};
// Depth attachment
wgpu_setup_deph_stencil(wgpu_context,
&(struct deph_stencil_texture_creation_options_t){
.format = WGPUTextureFormat_Depth24PlusStencil8,
});
// Render pass descriptor
render_pass.descriptor = (WGPURenderPassDescriptor){
.label = "Render pass descriptor",
.colorAttachmentCount = 1,
.colorAttachments = render_pass.color_attachments,
.depthStencilAttachment = &wgpu_context->depth_stencil.att_desc,
};
}
static void prepare_view_matrices(wgpu_context_t* wgpu_context)
{
const float aspect_ratio
= (float)wgpu_context->surface.width / (float)wgpu_context->surface.height;
// Projection matrix
glm_mat4_identity(view_matrices.projection);
glm_perspective(PI2 / 5.0f, aspect_ratio, 1.0f, 3000.0f,
view_matrices.projection);
// Model matrix
glm_mat4_identity(view_matrices.model);
glm_scale(view_matrices.model, (vec3){1000.0f, 1000.0f, 1000.0f});
// Model view projection matrix
glm_mat4_identity(cube.view_mtx.model_view_projection);
// Other matrices
glm_mat4_identity(view_matrices.view);
glm_mat4_identity(view_matrices.tmp);
}
static void prepare_uniform_buffers(wgpu_example_context_t* context)
{
// Setup the view matrices for the camera
prepare_view_matrices(context->wgpu_context);
/* Uniform buffer */
uniform_buffer_vs = wgpu_create_buffer(
context->wgpu_context,
&(wgpu_buffer_desc_t){
.label = "Uniform buffer",
.usage = WGPUBufferUsage_CopyDst | WGPUBufferUsage_Uniform,
.size = sizeof(mat4), // 4x4 matrix
});
ASSERT(uniform_buffer_vs.buffer != NULL);
}
// Compute camera movement:
// It rotates around Y axis with a slight pitch movement.
static void update_transformation_matrix(wgpu_example_context_t* context)
{
const float now = context->frame.timestamp_millis / 800.0f;
// View matrix
glm_mat4_copy(view_matrices.view, view_matrices.tmp);
glm_rotate(view_matrices.tmp, (PI / 10.f) * sin(now),
(vec3){1.0f, 0.0f, 0.0f});
glm_rotate(view_matrices.tmp, now * 0.2f, (vec3){0.f, 1.f, 0.f});
glm_mat4_mul(view_matrices.tmp, view_matrices.model,
cube.view_mtx.model_view_projection);
glm_mat4_mul(view_matrices.projection, cube.view_mtx.model_view_projection,
cube.view_mtx.model_view_projection);
}
static void update_uniform_buffers(wgpu_example_context_t* context)
{
// Update the model-view-projection matrix
update_transformation_matrix(context);
// Map uniform buffer and update it
wgpu_queue_write_buffer(context->wgpu_context, uniform_buffer_vs.buffer, 0,
&cube.view_mtx.model_view_projection,
uniform_buffer_vs.size);
}
static void setup_bind_groups(wgpu_context_t* wgpu_context)
{
WGPUBindGroupEntry bg_entries[3] = {
[0] = (WGPUBindGroupEntry) {
/* Binding 0 : Transform */
.binding = 0,
.buffer = uniform_buffer_vs.buffer,
.offset = 0,
.size = uniform_buffer_vs.size,
},
[1] = (WGPUBindGroupEntry) {
/* Binding 1 : Sampler */
.binding = 1,
.sampler = cubemap_texture.sampler,
},
[2] = (WGPUBindGroupEntry) {
/* Binding 2 : Texture view */
.binding = 2,
.textureView = cubemap_texture.view,
}
};
WGPUBindGroupDescriptor bg_desc = {
.label = "Cube uniform buffer bind group",
.layout = cube.bind_group_layout,
.entryCount = (uint32_t)ARRAY_SIZE(bg_entries),
.entries = bg_entries,
};
cube.uniform_buffer_bind_group
= wgpuDeviceCreateBindGroup(wgpu_context->device, &bg_desc);
ASSERT(cube.uniform_buffer_bind_group != NULL);
}
static void prepare_pipelines(wgpu_context_t* wgpu_context)
{
// Primitive state
WGPUPrimitiveState primitive_state = {
.topology = WGPUPrimitiveTopology_TriangleList,
.frontFace = WGPUFrontFace_CCW,
// Since we are seeing from inside of the cube and we are using the regular
// cube geomtry data with outward-facing normals, the cullMode should be
// 'front' or 'none'.
.cullMode = WGPUCullMode_None,
};
// Color target state
WGPUBlendState blend_state = wgpu_create_blend_state(true);
WGPUColorTargetState color_target_state = (WGPUColorTargetState){
.format = wgpu_context->swap_chain.format,
.blend = &blend_state,
.writeMask = WGPUColorWriteMask_All,
};
// Depth stencil state
// Enable depth testing so that the fragment closest to the camera
// is rendered in front.
WGPUDepthStencilState depth_stencil_state
= wgpu_create_depth_stencil_state(&(create_depth_stencil_state_desc_t){
.format = WGPUTextureFormat_Depth24PlusStencil8,
.depth_write_enabled = true,
});
depth_stencil_state.depthCompare = WGPUCompareFunction_Less;
// Vertex buffer layout
WGPU_VERTEX_BUFFER_LAYOUT(
textured_cube, cube_mesh.vertex_size,
// Attribute location 0: Position
WGPU_VERTATTR_DESC(0, WGPUVertexFormat_Float32x4,
cube_mesh.position_offset),
// Attribute location 1: UV
WGPU_VERTATTR_DESC(1, WGPUVertexFormat_Float32x2, cube_mesh.uv_offset))
// Vertex state
WGPUVertexState vertex_state = wgpu_create_vertex_state(
wgpu_context, &(wgpu_vertex_state_t){
.shader_desc = (wgpu_shader_desc_t){
// Vertex shader WGSL
.label = "Cubemap vertex shader WGSL",
.wgsl_code.source = basic_vertex_shader_wgsl,
.entry = "main",
},
.buffer_count = 1,
.buffers = &textured_cube_vertex_buffer_layout,
});
// Fragment state
WGPUFragmentState fragment_state = wgpu_create_fragment_state(
wgpu_context, &(wgpu_fragment_state_t){
.shader_desc = (wgpu_shader_desc_t){
// Fragment shader WGSL
.label = "Cubemap fragment shader WGSL",
.wgsl_code.source = sample_cubemap_fragment_shader_wgsl,
.entry = "main",
},
.target_count = 1,
.targets = &color_target_state,
});
// Multisample state
WGPUMultisampleState multisample_state
= wgpu_create_multisample_state_descriptor(
&(create_multisample_state_desc_t){
.sample_count = 1,
});
// Create rendering pipeline using the specified states
pipeline = wgpuDeviceCreateRenderPipeline(
wgpu_context->device, &(WGPURenderPipelineDescriptor){
.label = "Cubemap render pipeline",
.layout = pipeline_layout,
.primitive = primitive_state,
.vertex = vertex_state,
.fragment = &fragment_state,
.depthStencil = &depth_stencil_state,
.multisample = multisample_state,
});
ASSERT(pipeline != NULL);
// Shader modules are no longer needed once the graphics pipeline has been
// created
WGPU_RELEASE_RESOURCE(ShaderModule, vertex_state.module);
WGPU_RELEASE_RESOURCE(ShaderModule, fragment_state.module);
}
static int example_initialize(wgpu_example_context_t* context)
{
if (context) {
prepare_cube_mesh();
prepare_vertex_buffer(context->wgpu_context);
setup_pipeline_layout(context->wgpu_context);
prepare_cubemap_texture(context->wgpu_context);
prepare_uniform_buffers(context);
setup_bind_groups(context->wgpu_context);
prepare_pipelines(context->wgpu_context);
setup_render_pass(context->wgpu_context);
prepared = true;
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
static void example_on_update_ui_overlay(wgpu_example_context_t* context)
{
if (imgui_overlay_header("Settings")) {
imgui_overlay_checkBox(context->imgui_overlay, "Paused", &context->paused);
}
}
static WGPUCommandBuffer build_command_buffer(wgpu_context_t* wgpu_context)
{
render_pass.color_attachments[0].view = wgpu_context->swap_chain.frame_buffer;
/* Create command encoder */
wgpu_context->cmd_enc
= wgpuDeviceCreateCommandEncoder(wgpu_context->device, NULL);
/* Create render pass */
wgpu_context->rpass_enc = wgpuCommandEncoderBeginRenderPass(
wgpu_context->cmd_enc, &render_pass.descriptor);
/* Bind the rendering pipeline */
wgpuRenderPassEncoderSetPipeline(wgpu_context->rpass_enc, pipeline);
/* Bind cube vertex buffer (contains position and colors) */
wgpuRenderPassEncoderSetVertexBuffer(wgpu_context->rpass_enc, 0,
vertices.buffer, 0, WGPU_WHOLE_SIZE);
/* Set the bind group */
wgpuRenderPassEncoderSetBindGroup(wgpu_context->rpass_enc, 0,
cube.uniform_buffer_bind_group, 0, 0);
/* Draw textured cube */
wgpuRenderPassEncoderDraw(wgpu_context->rpass_enc, cube_mesh.vertex_count, 1,
0, 0);
/* End render pass */
wgpuRenderPassEncoderEnd(wgpu_context->rpass_enc);
WGPU_RELEASE_RESOURCE(RenderPassEncoder, wgpu_context->rpass_enc)
/* Draw ui overlay */
draw_ui(wgpu_context->context, example_on_update_ui_overlay);
/* Get command buffer */
WGPUCommandBuffer command_buffer
= wgpu_get_command_buffer(wgpu_context->cmd_enc);
WGPU_RELEASE_RESOURCE(CommandEncoder, wgpu_context->cmd_enc)
return command_buffer;
}
static int example_draw(wgpu_example_context_t* context)
{
// Prepare frame
prepare_frame(context);
// Command buffer to be submitted to the queue
wgpu_context_t* wgpu_context = context->wgpu_context;
wgpu_context->submit_info.command_buffer_count = 1;
wgpu_context->submit_info.command_buffers[0]
= build_command_buffer(context->wgpu_context);
// Submit command buffer to queue
submit_command_buffers(context);
// Submit frame
submit_frame(context);
return EXIT_SUCCESS;
}
static int example_render(wgpu_example_context_t* context)
{
if (!prepared) {
return EXIT_FAILURE;
}
if (!context->paused) {
update_uniform_buffers(context);
}
return example_draw(context);
}
// Clean up used resources
static void example_destroy(wgpu_example_context_t* context)
{
UNUSED_VAR(context);
wgpu_destroy_texture(&cubemap_texture);
WGPU_RELEASE_RESOURCE(BindGroupLayout, cube.bind_group_layout)
WGPU_RELEASE_RESOURCE(PipelineLayout, pipeline_layout)
WGPU_RELEASE_RESOURCE(BindGroup, cube.uniform_buffer_bind_group)
WGPU_RELEASE_RESOURCE(Buffer, uniform_buffer_vs.buffer)
WGPU_RELEASE_RESOURCE(Buffer, vertices.buffer)
WGPU_RELEASE_RESOURCE(RenderPipeline, pipeline)
}
void example_cubemap(int argc, char* argv[])
{
// clang-format off
example_run(argc, argv, &(refexport_t){
.example_settings = (wgpu_example_settings_t){
.title = example_title,
.overlay = true,
.vsync = true,
},
.example_initialize_func = &example_initialize,
.example_render_func = &example_render,
.example_destroy_func = &example_destroy,
});
// clang-format on
}
/* -------------------------------------------------------------------------- *
* WGSL Shaders
* -------------------------------------------------------------------------- */
// clang-format off
static const char* sample_cubemap_fragment_shader_wgsl = CODE(
@group(0) @binding(1) var mySampler: sampler;
@group(0) @binding(2) var myTexture: texture_cube<f32>;
@fragment
fn main(
@location(0) fragUV: vec2<f32>,
@location(1) fragPosition: vec4<f32>
) -> @location(0) vec4<f32> {
// Our camera and the skybox cube are both centered at (0, 0, 0) so we can
// use the cube geomtry position to get viewing vector to sample the cube
// texture. The magnitude of the vector doesn't matter.
var cubemapVec = fragPosition.xyz - vec3(0.5);
return textureSample(myTexture, mySampler, cubemapVec);
}
);
// clang-format on