-
Notifications
You must be signed in to change notification settings - Fork 5
/
post_process_multiProcess.py
968 lines (828 loc) · 52.4 KB
/
post_process_multiProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
from cmath import nan
import numpy as np
import pandas as pd
import cv2
import sys
from pathlib import Path
import os
import argparse
import math
from matplotlib import pyplot as plt
import warnings
from torch import det
warnings.filterwarnings("ignore") # To ignore certain warnings from Pandas
from tqdm.auto import tqdm
from visualizer import Visualizer, Minimap
from calibration import Calibration, Calibration_LatLong
from collections import namedtuple, defaultdict
from heading_angle import Angle
from kalmanfilter import KalmanFilter
import subprocess as sp
import multiprocessing as mp
from os import remove
import time
import shutil
import yaml
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))
class PostProcess():
def __init__(self, data_file, input_video, output_video, enable_minimap, enable_trj_mode, trajectory_update_rate, save_class_frames):
# Main config
main_config_path = 'configs/main_param.yaml'
with open(main_config_path) as file_stream:
try:
self.main_config_dict = yaml.safe_load(file_stream)
except yaml.YAMLError as exc:
print(f'[Error] Failed to load main .yaml file. {exc}\n Quitting')
exit()
self.detections_dataframe = pd.read_csv(data_file, index_col=[0])
__output_video_original_path = Path(output_video)
self.file_name = __output_video_original_path.stem
self.parent_directory = __output_video_original_path.parents[0]
self.output_directory = self.parent_directory / self.file_name
if not os.path.exists(self.output_directory):
os.makedirs(self.output_directory)
if not os.path.exists(self.output_directory/"Save-frames"):
os.makedirs(self.output_directory/"Save-frames")
else:
shutil.rmtree(self.output_directory/"Save-frames") # Removes all the subdirectories!
os.makedirs(self.output_directory/"Save-frames")
self.detections_dataframe = self.removeErrorTimers(self.detections_dataframe)
self.input_video = input_video
self.outputfile_name = self.output_directory / __output_video_original_path.name
self.video_fps = self.main_config_dict['fps']
self.num_processes = int(mp.cpu_count() * self.main_config_dict['percentage_cpu_processes'])
self.trajectory_retain_duration = self.main_config_dict['trajectory_retain_duration']
self.Visualize = Visualizer(enable_minimap, enable_trj_mode, trajectory_update_rate, self.trajectory_retain_duration, save_class_frames)
self.trackDict = defaultdict(list)
self.angleDict = defaultdict(list)
self.kf = KalmanFilter()
self.angle = Angle()
self.camera_calib = Calibration_LatLong()
def removeErrorTimers(self, df):
# At the end of .csv file, some erroneous data from tracker has been found with Video_Internal_Timer = 0. The following code snippet would remove them from the dataframe
last_row_df = df.shape[0] - 1
if df.iloc[last_row_df]['Video_Internal_Timer'] == 0:
last_index_drop = last_row_df + 1
df_rev = df[::-1]
start_index_drop = -1
for row, col in df_rev.iterrows():
if col['Video_Internal_Timer'] != 0:
start_index_drop = row + 1
break
df.drop(df.index[start_index_drop:last_index_drop], 0, inplace=True)
return df
def group_by_internalTimer(self, df):
vid_timer_gb = df.groupby(by=['Video_Internal_Timer'])
unique_vid_timer = df.Video_Internal_Timer.unique()
list_grouped_by_frametimes = []
for vid_timer in unique_vid_timer:
g = vid_timer_gb.get_group(vid_timer)
ls = []
for index, row in g.iterrows():
ls.append(row)
list_grouped_by_frametimes.append(ls)
print("[INFO] Finished grouping the pandas dataframe by frametime")
return list_grouped_by_frametimes
def group_by_internalTimer_with_index(self, df):
vid_timer_gb = df.groupby(by=['Video_Internal_Timer'])
unique_vid_timer = df.Video_Internal_Timer.unique()
list_grouped_by_frametimes = []
for vid_timer in unique_vid_timer:
g = vid_timer_gb.get_group(vid_timer)
ls = []
for index, row in g.iterrows():
ls.append([index, row])
list_grouped_by_frametimes.append(ls)
return list_grouped_by_frametimes
def groupedData_toVideoWriter(self, num_processes):
framecounter = 0
self.video_cap = cv2.VideoCapture(self.input_video)
self.frame_width = int(self.video_cap.get(3))
self.frame_height = int(self.video_cap.get(4))
self.video_writer = cv2.VideoWriter()
min_vid_timer = int(self.final_df['Video_Internal_Timer'].min())
max_vid_timer = int(self.final_df['Video_Internal_Timer'].max())
total_frames = int((max_vid_timer - min_vid_timer)/(1000/self.video_fps)) + 1
frame_jump_unit = total_frames// self.num_processes
self.video_cap.set(cv2.CAP_PROP_POS_MSEC, min_vid_timer)
self.video_cap.set(cv2.CAP_PROP_POS_FRAMES, frame_jump_unit * num_processes)
self.video_writer.open("output_{}.mp4".format(num_processes), cv2.VideoWriter_fourcc(*'mp4v'), 30, (self.frame_width,self.frame_height), True)
pbar = tqdm(total=frame_jump_unit, leave=False, bar_format='{l_bar}{bar:20}{r_bar}{bar:-10b}')
try:
while framecounter < frame_jump_unit:
ret, frame = self.video_cap.read()
if ret:
vid_timer = int(self.video_cap.get(cv2.CAP_PROP_POS_MSEC))
if vid_timer > max_vid_timer:
break
pbar.update(1)
for data in self.groupedByFrametime:
df_frametime = data[0]['Video_Internal_Timer']
# Checking for interal_timer from .csv file and matching it with the internal timer from video file (For syncing frames)
if df_frametime == vid_timer:
framecounter += 1
#print(f"[INFO] Saving frame {framecounter}")
outer_array = []
for detection in data:
if not pd.isna(detection['Speed']):
# Drawing Trackers
detection_array = []
x1 = detection['BBOX_TopLeft_x']
y1 = detection['BBOX_TopLeft_y']
x2 = detection['BBOX_BottomRight_x']
y2 = detection['BBOX_BottomRight_y']
center_x = int((int(x1)+int(x2))/2)
if detection['Class_ID'] in [0,1,2]:
_, center_y = sorted((int(y1),int(y2)))
elif detection['Class_ID'] in [3,4,5,6]:
center_y = (int(y1) + int(y2))/2
trk_id = int(detection['Tracker_ID'])
self.trackDict[trk_id].append((int(center_x),int(center_y)))
detection_array.append(int(x1))
detection_array.append(int(y1))
detection_array.append(int(x2))
detection_array.append(int(y2))
if not pd.isna(detection['Conf_Score']):
detection_array.append(detection['Conf_Score']/100)
else:
detection_array.append(-1)
detection_array.append(detection['Class_ID'])
detection_array.extend([0, 0, 0]) # Placeholder values. The visualizer function doesn't need these but kept in places to align with the indices.
detection_array.append(detection['Tracker_ID'])
detection_array.append(detection['Speed'])
detection_array.append(detection['Arrow_points'][0])
detection_array.append(detection['Arrow_points'][1])
if len(self.trackDict[trk_id])>10:
detection_array.append(self.trackDict)
del self.trackDict[trk_id][0]
outer_array.append(detection_array)
elif not pd.isna(detection['Tracker_ID']):
# Drawing Trackers
detection_array = []
x1 = detection['BBOX_TopLeft_x']
y1 = detection['BBOX_TopLeft_y']
x2 = detection['BBOX_BottomRight_x']
y2 = detection['BBOX_BottomRight_y']
detection_array.append(int(x1))
detection_array.append(int(y1))
detection_array.append(int(x2))
detection_array.append(int(y2))
if not pd.isna(detection['Conf_Score']):
detection_array.append(detection['Conf_Score']/100)
else:
detection_array.append(-1)
detection_array.append(detection['Class_ID'])
detection_array.extend([0, 0, 0]) # Placeholder values. The visualizer function doesn't need these but kept in places to align with the indices.
detection_array.append(detection['Tracker_ID'])
detection_array.extend([0.0])
detection_array.extend([0, 0, 0])
outer_array.append(detection_array)
elif not pd.isna(detection['Class_ID']):
# Drawing just BBOXes
detection_array = []
x1 = detection['BBOX_TopLeft_x']
y1 = detection['BBOX_TopLeft_y']
x2 = detection['BBOX_BottomRight_x']
y2 = detection['BBOX_BottomRight_y']
detection_array.append(int(x1))
detection_array.append(int(y1))
detection_array.append(int(x2))
detection_array.append(int(y2))
detection_array.append(detection['Conf_Score']/100)
detection_array.append(detection['Class_ID'])
outer_array.append(detection_array)
else:
# No Detections/Trackers. Just drawing the minimap (if enabled)
image = self.Visualize.drawEmpty(frame, framecounter)
image = self.Visualize.drawAll(outer_array, frame, framecounter, self.output_directory)
self.video_writer.write(image)
else:
break
except:
# Release resources
self.video_cap.release()
self.video_writer.release()
# Release resources
pbar.close()
self.video_cap.release()
self.video_writer.release()
def Save_angle_to_csv(self, df_with_index, final_df):
"""
gives an angle of movement for each moving object. (between 0° and 360°)
"""
last_df = final_df.copy()
outer_array_2 = []
for data in df_with_index:
outer_array = []
for detection in data:
if not pd.isna(detection[1]['Speed']):
detection_array = []
index = detection[0]
frame_time = detection[1]['Video_Internal_Timer']
x1 = detection[1]['BBOX_TopLeft_x']
y1 = detection[1]['BBOX_TopLeft_y']
x2 = detection[1]['BBOX_BottomRight_x']
y2 = detection[1]['BBOX_BottomRight_y']
center_x = int((int(x1)+int(x2))/2)
if detection[1]['Class_ID'] in [0,1,2]:
_, center_y = sorted((int(y1),int(y2)))
elif detection[1]['Class_ID'] in [3,4,5,6]:
center_y = (int(y1) + int(y2))/2
else:
center_y = sorted((int(y1),int(y2)))
trk_id = int(detection[1]['Tracker_ID'])
self.angleDict[trk_id].append((int(center_x),int(center_y)))
detection_array.append(index)
detection_array.append(int(x1))
detection_array.append(int(y1))
detection_array.append(int(x2))
detection_array.append(int(y2))
if not pd.isna(detection[1]['Conf_Score']):
detection_array.append(detection[1]['Conf_Score']/100)
else:
detection_array.append(-1)
detection_array.append(detection[1]['Class_ID'])
detection_array.extend([0, 0, 0]) # Placeholder values. The visualizer function doesn't need these but kept in places to align with the indices.
detection_array.append(detection[1]['Tracker_ID'])
detection_array.append(detection[1]['Speed'])
detection_array.append(detection[1]['Arrow_points'][0])
detection_array.append(detection[1]['Arrow_points'][1])
if len(self.angleDict[trk_id])>10:
detection_array.append(self.angleDict)
del self.angleDict[trk_id][0]
outer_array.append(detection_array)
for detection in outer_array:
index = detection[0]
x1, y1, x2, y2 = detection[1:5]
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
tracker_id = int(detection[10])
speed = detection[11]
# variables for heading arrow
cx1, cy1 = int(detection[-3]), int(detection[-2]) # previous frame points
track_pts = detection[-1]
if type(track_pts)==defaultdict:
for pt in track_pts[tracker_id]:
predicted = self.kf.predict(pt[0], pt[1])
pred = self.kf.predict(predicted[0], predicted[1])
pred2 = self.kf.predict(pred[0], pred[1])
points = [[cx1, cy1], [int(pred2[0]), int(pred2[1])], [1920, cy1]]
if speed>3:
angle = self.angle.findangle(points=points)
new_row = {
'Index': index,
'Video_Internal_Timer': int(frame_time),
'Heading_angle': angle
}
outer_array_2.append(new_row)
df_angle = pd.DataFrame(outer_array_2)
df_angle.to_csv('try_direct.csv')
# Copy Angle values to the original dataframe by matching index values
for i in df_angle['Index']:
last_df.loc[i, 'Heading_angle'] = df_angle.loc[df_angle['Index']==i, 'Heading_angle'].values[0]
return last_df
def combine_output_files(self, num_processes):
# Create a list of output files and store the file names in a txt file
list_of_output_files = ["output_{}.mp4".format(i) for i in range(num_processes)]
with open("list_of_output_files.txt", "w") as f:
for t in list_of_output_files:
f.write("file {} \n".format(t))
# use ffmpeg to combine the video output files
# ffmpeg_cmd = "ffmpeg -y -loglevel error -f concat -safe 0 -i list_of_output_files.txt -vcodec nvenc_hevc " + str(self.outputfile_name)
ffmpeg_cmd = "ffmpeg -y -loglevel error -f concat -safe 0 -i list_of_output_files.txt -vcodec copy " + str(self.outputfile_name)
sp.Popen(ffmpeg_cmd, shell=True).wait()
# Remove the temperory output files
for f in list_of_output_files:
remove(f)
remove("list_of_output_files.txt")
def get_video_frame_details(self, file_name):
cap = cv2.VideoCapture(file_name)
# get height, width and frame count of the video
width, height = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
return width, height, frame_count
def multi_process(self):
width, height, frame_count = self.get_video_frame_details(self.input_video)
print("[INFO] Video processing using {} processes...".format(self.num_processes))
start_time = time.time()
# Parallel execution of a function across multiple input values
p = mp.Pool(self.num_processes)
p.map(self.groupedData_toVideoWriter, range(self.num_processes))
self.combine_output_files(self.num_processes)
end_time = time.time()
total_processing_time = end_time - start_time
print("\n[INFO] Finished saving post-processed video !!")
print("[INFO] Elasped time: {:.2f}s".format(total_processing_time))
print("[INFO] Approx. FPS: {:.2f}".format(frame_count/total_processing_time))
# Helper functions for step 1: tracker removal
def get_tracker_IDs(self, dataframe):
""" This function helps to get available tracker IDs in the dataframe
returns the List of Tracker IDs
"""
tracker_ids = dataframe.loc[pd.isna(dataframe['Tracker_ID'])==False, 'Tracker_ID']
tracker_ids = pd.unique(tracker_ids)
tracker_ids = sorted(tracker_ids)
return tracker_ids
def get_arranged_IDs(self, dataframe, tracker_ids):
""" This function helps to rearrange available tracker IDs in the dataframe in correct oreder of numbers(e.g. 1,2,3,4,..etc)
returns the arranged dataframe and the List of arranged Tracker IDs
Args:-
tracker_ids = List of tracker IDs got from the 'get_tracker_IDs()' function.
"""
ls = [i+1 for i in range(len(tracker_ids))]
for i in range(len(dataframe['Tracker_ID'])):
for j in range(len(tracker_ids)):
if dataframe.loc[i, 'Tracker_ID'] == tracker_ids[j]:
dataframe.loc[i, 'Tracker_ID'] = ls[j]
return dataframe, ls
def get_tracker_Id_counts(self, dataframe, tracker_ids, arranged_ids):
""" This function helps to get the dictionary which contains Tracker_IDs as a key and it's total counts in the dataframe as a value
returns Dictionary of total counts of each Tracker_IDs
Args:-
tracker_ids = List of tracker IDs got from the 'get_tracker_IDs()' function.
arranged_ids = List of arranged tracker IDs got from the 'get_arranged_IDs()' function.
"""
var_id={}
for i in range(len(tracker_ids)):
var_id[i+1] = dataframe.loc[dataframe['Tracker_ID'] == arranged_ids[i], 'Tracker_ID']
id_len = {}
count = 0
for key, values in list(var_id.items()):
id_len[int(arranged_ids[count])] = len(var_id[key])
count += 1
return id_len
def get_ids_to_delete(self, id_len, minimum_id_count):
""" This function helps to the List of tracker_ids which are going to be deleted from the dataframe
returns the List of tracker_ids to be deleted
Args:-
id_len = Dictionay of total count got from the 'get_tracker_Id_counts()' function.
minimum_id_count = a minimum number of ID_counts to decide the tracker_id to delete.
"""
id_to_delete = [float(k) for k,v in id_len.items() if v < minimum_id_count]
return id_to_delete
def get_index_to_delete(self, dataframe, id_to_delete):
""" This function helps to the List of indexes of the daraframe which are going to be deleted.
returns the List of indexes to be deleted
Args:-
id_to_delete = List of tracker_ids to be deleted got from the 'get_ids_to_delete()' function.
"""
list_to_delete = []
for i in range(len(dataframe['Tracker_ID'])):
if dataframe.loc[i, 'Tracker_ID'] in id_to_delete:
list_to_delete.append(i)
return list_to_delete
def set_index_nan(self, dataframe, list_to_delete):
""" This function helps to delete the selected rows from the dataframe
returns the new datataframe after droping the selected rows.
Args:-
list_to_delete = the list of indexes which are used to delete the rows from the dataframe
"""
for i in range(len(dataframe['Tracker_ID'])):
if i in list_to_delete:
dataframe.iloc[i, 4:] = np.nan
return dataframe
# Helper function for step 2: interpolation
def find_missing_vidTimer(self, df_duplicate, vidTimer_present_in_interpolated_df):
"""
There could also by some frames where no trackers are present, but these frames cannot be omitted from the Dataframe, as our implementation of VideoWriter requires a value for each frame.
In the following code snippet, the interpolated_df is searched for such missing frames and these missing frames are filled back into the Dataframe with empty values.
Args:
df_duplicate (pd.Dataframe): Duplicate of the original .csv Dataframe
vidTimer_present_in_interpolated_df (List): Video_Internal_Timer present in interpolated data
Returns:
missing_vidTimer (pd.Dataframe): Dataframe containing all rows from the original .csv which are not present in the interpolated data
"""
video_timer_df = df_duplicate['Video_Internal_Timer'].unique()
missing_vidTimer_list = []
for video_actual_timer in video_timer_df:
if video_actual_timer not in vidTimer_present_in_interpolated_df:
idx = df_duplicate.index[df_duplicate['Video_Internal_Timer'] == video_actual_timer][0]
row = df_duplicate.iloc[idx]
new_row = {
'Video_Internal_Timer': video_actual_timer,
'Date': row['Date'], 'Time': row['Time'], 'Millisec': row['Millisec'], 'Tracker_ID': np.nan,
'Class_ID': np.nan, 'Conf_Score': np.nan, 'BBOX_TopLeft_x': np.nan, 'BBOX_TopLeft_y': np.nan,
'BBOX_BottomRight_x': np.nan, 'BBOX_BottomRight_y': np.nan
}
missing_vidTimer_list.append(new_row)
missing_vidTimer = pd.DataFrame(missing_vidTimer_list)
return missing_vidTimer
# Main Post-processing functions
def remove_tracker(self, dataframe):
tracker_ids = self.get_tracker_IDs(dataframe)
dataframe, arranged_ids = self.get_arranged_IDs(dataframe, tracker_ids)
id_counts = self.get_tracker_Id_counts(dataframe, tracker_ids, arranged_ids)
id_to_delete = self.get_ids_to_delete(id_counts, self.main_config_dict['min_trackerID_instances_remove_threshold'])
list_to_delete = self.get_index_to_delete(dataframe, id_to_delete)
new_dataframe = self.set_index_nan(dataframe, list_to_delete)
ids_after_set_nan = self.get_tracker_IDs(new_dataframe)
final_dataframe, id_latest = self.get_arranged_IDs(new_dataframe, ids_after_set_nan)
return final_dataframe
def interpolate_data(self, dataframe):
"""
During the entire duration of each tracker_id, there could be frames inbetween where they are not present. In this function, we are grouping the .csv by Tracker_ID and interpolating the missing values
for the BBOX Coordinates. Date/Time for each missing row is copied from the originial Dataframe and the Class_ID / Conf_Thres are just left empty. Quadratic Interpolation is used by default and if the tracker has only two rows of BBOX
Coordinates available, then Linear Interpolation is used. Also the rows where no tracker is present are also accordingly handled.
Args:
dataframe (pd.Dataframe): Dataframe object without all the unwanted trackers removed
Returns:
interpolated_final_df (pd.Dataframe): Dataframe object with all the missing tracker coordinates interpolated
"""
unique_trackers = dataframe.Tracker_ID.unique()
tracker_group = dataframe.groupby('Tracker_ID')
video_timer_df = dataframe['Video_Internal_Timer'].unique()
interpolated_df_final_list = []
vidTimer_present_in_interpolated_df = []
for unique_tracker_id in unique_trackers: # Looping for each unique Tracker_ID
if not pd.isna(unique_tracker_id):
single_tracker_group = tracker_group.get_group(unique_tracker_id).reset_index(drop=True)
# Getting minimum and maximum 'Video_Internal_Timer' during which the Tracker_ID is present.
min_vid_timer = single_tracker_group['Video_Internal_Timer'].min()
max_vid_timer = single_tracker_group['Video_Internal_Timer'].max()
final_list_tracker_id = []
for index in range(np.where(video_timer_df == min_vid_timer)[0][0], np.where(video_timer_df == max_vid_timer)[0][0] + 1):
if video_timer_df[index] not in single_tracker_group['Video_Internal_Timer'].values:
# If Tracker_ID is not present in this specific Video_Internal_Timer, creating a new row by having default values as None
# These missing Tracker_ID are later interpolated
idx = dataframe.index[dataframe['Video_Internal_Timer'] == video_timer_df[index]][0]
row_tracker_id = dataframe.iloc[idx]
new_row = {
'Video_Internal_Timer': video_timer_df[index],
'Date': row_tracker_id['Date'], 'Time': row_tracker_id['Time'], 'Millisec': row_tracker_id['Millisec'], 'Tracker_ID': unique_tracker_id,
'Class_ID': np.nan, 'Conf_Score': np.nan, 'BBOX_TopLeft_x': np.nan, 'BBOX_TopLeft_y': np.nan,
'BBOX_BottomRight_x': np.nan, 'BBOX_BottomRight_y': np.nan
}
final_list_tracker_id.append(new_row)
else:
# If Tracker_ID is present, just copying the row.
idx = single_tracker_group.index[single_tracker_group['Video_Internal_Timer'] == video_timer_df[index]][0]
row_tracker_id = single_tracker_group.iloc[idx]
x1, y1 = row_tracker_id['BBOX_TopLeft'][1:-1].split(',')
x2, y2 = row_tracker_id['BBOX_BottomRight'][1:-1].split(',')
try:
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
except ValueError:
print(f'{x1}, {y1}, {x2}, {y2}')
print(row_tracker_id['BBOX_TopLeft'])
print(row_tracker_id['BBOX_BottomRight'])
print(row_tracker_id['BBOX_TopLeft'][1:-1].split(','))
print(row_tracker_id['BBOX_BottomRight'][1:-1].split(','))
raise ValueError
new_row = {
'Video_Internal_Timer': video_timer_df[index],
'Date': row_tracker_id['Date'], 'Time': row_tracker_id['Time'], 'Millisec': row_tracker_id['Millisec'], 'Tracker_ID': unique_tracker_id,
'Class_ID': row_tracker_id['Class_ID'], 'Conf_Score': row_tracker_id['Conf_Score'], 'BBOX_TopLeft_x': x1, 'BBOX_TopLeft_y': y1,
'BBOX_BottomRight_x': x2, 'BBOX_BottomRight_y': y2
}
final_list_tracker_id.append(new_row)
vidTimer_present_in_interpolated_df.append(video_timer_df[index])
# Converting the list of rows to Dataframe and interpolating the missing BBOX_Values.
df_new_tracker = pd.DataFrame(final_list_tracker_id)
df_new_tracker = df_new_tracker.sort_values(by=['Video_Internal_Timer']).reset_index(drop=True)
try:
# Using Quadratic Interpolation by default. Works only if more than two BBOX coordinates are associated with the tracker
bbox_position = df_new_tracker[['BBOX_TopLeft_x', 'BBOX_TopLeft_y', 'BBOX_BottomRight_x', 'BBOX_BottomRight_y']].interpolate(method='quadratic', axis=0)
except ValueError:
# If just two points are present, then using linear interpolation
bbox_position = df_new_tracker[['BBOX_TopLeft_x', 'BBOX_TopLeft_y', 'BBOX_BottomRight_x', 'BBOX_BottomRight_y']].interpolate(method='linear', axis=0)
df_new_tracker[['BBOX_TopLeft_x', 'BBOX_TopLeft_y', 'BBOX_BottomRight_x', 'BBOX_BottomRight_y']] = bbox_position
interpolated_df_final_list.append(df_new_tracker)
interpolated_df = pd.concat(interpolated_df_final_list, ignore_index=True)
missing_vidTimer_df = self.find_missing_vidTimer(dataframe, vidTimer_present_in_interpolated_df)
interpolated_final_df = pd.concat([interpolated_df, missing_vidTimer_df], ignore_index=True).sort_values(by=['Video_Internal_Timer']).reset_index(drop=True)
return interpolated_final_df
def velocity_estimation(self, interpolated_df):
"""Groups the entire .csv by tracker_id and rolling average on each of the BBOX Coordinates to remove noise from detections.
Then calculating the center point of the base of each bbox and finding their correspoding world coordinates using homography matrix
Calculating the distance between points in consecutive frames and converting them into km/h.
Args:
interpolated_df (pd.Dataframe): Dataframe after interpolation
video_fps (int, optional): Data sample rate of the dataframe. Defaults to 30.
Returns:
df_interpolated_dup (pd.Dataframe): Dataframe containing the speed of each tracker in a separate column 'Speed'
"""
rolling_window_size = self.main_config_dict['velocity_estimation_rolling_window_size']
df_interpolated_dup = interpolated_df.copy()
unique_trackers = df_interpolated_dup.Tracker_ID.unique()
tracker_group = df_interpolated_dup.groupby('Tracker_ID')
final_tracker_list = []
for unique_tracker_id in unique_trackers: # Looping for each unique Tracker_ID
if not pd.isna(unique_tracker_id):
single_tracker_group = tracker_group.get_group(unique_tracker_id)
bbox_positions = single_tracker_group[['Video_Internal_Timer', 'BBOX_TopLeft_x', 'BBOX_TopLeft_y', 'BBOX_BottomRight_x', 'BBOX_BottomRight_y', 'Class_ID']]
bbox_positions['BBOX_TopLeft_x'] = bbox_positions['BBOX_TopLeft_x'].rolling(window=rolling_window_size).mean()
bbox_positions['BBOX_TopLeft_y'] = bbox_positions['BBOX_TopLeft_y'].rolling(window=rolling_window_size).mean()
bbox_positions['BBOX_BottomRight_x'] = bbox_positions['BBOX_BottomRight_x'].rolling(window=rolling_window_size).mean()
bbox_positions['BBOX_BottomRight_y'] = bbox_positions['BBOX_BottomRight_y'].rolling(window=rolling_window_size).mean()
bbox_positions = list(bbox_positions.to_records(index=False))
previous_point = -1
velocity_estimation = []
for vid_timer, x1, y1, x2, y2, class_id in bbox_positions:
center_x = (x1 + x2)/2
if str(class_id)!='nan':
if class_id in (0, 1, 2):
_, max_y = sorted((y1, y2))
elif class_id in (3, 4, 5, 6):
max_y = (y1 + y2)/2
else:
_, max_y = sorted((y1, y2))
# Calculating the center of point of the bottom edge of BBOX and calculating it's world coordinates with homography
# base_coordinate = camera_calib.getDistance() # camera_calib.projection_pixel_to_world((center_x, max_y))
# base_coordinate = (base_coordinate[0],base_coordinate[1])
current_point = (center_x, max_y)
if previous_point == -1:
new_row_withSpeed = {
'Video_Internal_Timer': vid_timer, 'Speed': 0, 'Arrow_points': list([0,0])
}
else:
# distance_metres = float(math.sqrt(math.pow(prev_point[0] - base_coordinate[0], 2) + math.pow(prev_point[1] - base_coordinate[1], 2))) # Finding the euclidean distance between current and previous point
distance_metres = self.camera_calib.getDistance(previous_point, current_point)
speed_kmH = float(distance_metres * self.video_fps * 3.6) # Converting meters/s to km/h and update rate is equal to video's fps (default 30, this is also the rate at which data is sampled in the .csv files)
# previous_point = previous_point
if speed_kmH < 1:
speed_kmH = 0 # To prevent small movements in the BBOX_Positions when the VRU's are standing
new_row_withSpeed = {
'Video_Internal_Timer': vid_timer, 'Speed': speed_kmH, 'Arrow_points': [previous_point[0], previous_point[1]]
}
velocity_estimation.append(new_row_withSpeed)
#prev_point = base_coordinate
previous_point = current_point
ve_df = pd.DataFrame(velocity_estimation)
ve_df['Speed'] = ve_df['Speed'].round(1)
# Inserting the 'Speed' Values back into the tracker group
single_tracker_group['Speed'] = single_tracker_group['Video_Internal_Timer'].map(ve_df.set_index('Video_Internal_Timer')['Speed'])
single_tracker_group['Arrow_points'] = single_tracker_group['Video_Internal_Timer'].map(ve_df.set_index('Video_Internal_Timer')['Arrow_points'])
final_tracker_list.append(single_tracker_group)
# Inserting all the modified tracker values back into the originial dataframe
final_ve_tracker_df = pd.concat(final_tracker_list)
df_interpolated_dup = df_interpolated_dup.join(final_ve_tracker_df['Speed'])
df_interpolated_dup = df_interpolated_dup.join(final_ve_tracker_df['Arrow_points'])
return df_interpolated_dup
def conf_score_based_class_id_matching(self, df_speed):
df_speed_dup = df_speed.copy()
unique_trk = df_speed_dup.Tracker_ID.unique()
tracker_group = df_speed_dup.groupby('Tracker_ID')
cleanlist_trackers = [x for x in unique_trk if str(x) != 'nan']
for unique_trk_id in cleanlist_trackers:
single_trk_group = tracker_group.get_group(unique_trk_id)
# group of different class_ids occuring for the same tracker_id
class_ids_in_single_traker = single_trk_group.Class_ID.unique()
class_id_grp = single_trk_group.groupby('Class_ID')
sum_dict = {}
for class_id in class_ids_in_single_traker:
if str(class_id)!='nan':
single_class_grp = class_id_grp.get_group(class_id)
sum = single_class_grp.Conf_Score.sum()
sum_dict[class_id]= sum
for key,v in sum_dict.items():
if v == max(sum_dict.values()):
corrected_class_id = key
# correct the class_id based on maximum confidence_theshold among certain classes for a single tracker_id.
df_speed_dup.loc[df_speed_dup['Tracker_ID']==unique_trk_id, 'Class_ID'] = corrected_class_id
return df_speed_dup
def class_id_matching(self, df):
"""
Eliminates switching class_id and allocates the one class_id for each tracker
Processing steps:
1. Groups the entire dataframe by unique tracker id and calculates the standard deviation of Class_ID for each tracker
2. If standard deviation is less than 0.35, we are simply allocating the most frequently occurring Class_ID (calculated using pd.Mode()) to the entire tracker
3. If standard deviation is more than 0.35
3.1 Considering only non-zero speeds for each tracker (Considering speeds only when they are actually moving)
3.2 Ignoring rows of data if the bbox_coordinates lie within the specified ignorance regions
3.3 If mean speed of the tracker is more than 9 km/h, we are excluding the class_id 1 (pedestrian) and assigning the tracker with the most common occurring between escooter and cyclist
3.4 If 95-percentile of max speed of the tracker is equal to or more than 23 km/h, we are assigning simply class_id 2 (cyclist)
3.5 If both of the above conditions are not met, we are simply allocating the most frequently occurring Class_ID to the entire tracker (just like in step 2 but now with considerations of 3.1 and 3.2)
Args:
df (pd.Dataframe): Dataframe with speed data for each tracker
Returns:
final_df (pd.Dataframe): Dataframe with corrected class_id_matching
"""
df_speed = df.copy()
df_speed_dup = df.copy()
# Consider only Escooter, Pedestrian, Cyclist classes and empty frames
df_speed_dup = df_speed_dup.loc[pd.isna(df_speed_dup['Class_ID']) | df_speed_dup['Class_ID']<3]
unique_trackers = df_speed_dup.Tracker_ID.unique()
tracker_group = df_speed_dup.groupby('Tracker_ID')
cleanlist_trackers = [x for x in unique_trackers if str(x) != 'nan']
for unique_tracker_id in cleanlist_trackers:
single_tracker_group = tracker_group.get_group(unique_tracker_id)
std_class_ID = df_speed_dup.loc[df_speed_dup['Tracker_ID'] == unique_tracker_id, 'Class_ID'].std()
freq_occuring_class_id = df_speed_dup.loc[df_speed_dup['Tracker_ID'] == unique_tracker_id, 'Class_ID'].mode()[0]
if std_class_ID < self.main_config_dict['class_id_matching_std_dev_threshold']:
# Allocating the most frequently occurring class_id
df_speed_dup.loc[df_speed_dup['Tracker_ID'] == unique_tracker_id, 'Class_ID'] = freq_occuring_class_id
else:
df_speed_second_dup = df_speed_dup.copy()
df_speed_second_dup.loc[((df_speed_second_dup['Tracker_ID'] == unique_tracker_id) & (df_speed_second_dup['Speed'] == 0)), ['Class_ID', 'Speed']] = np.nan
# Ignorance Regions - BBOX Coordinates within these regions are ignored
top_left_corner = np.array(self.main_config_dict['top_left_ignorance_regions']) #np.array([[495,118], [590,173], [625,221], [673,225], [641,162], [680,145], [588,92]])
right_section = np.array(self.main_config_dict['right_ignorance_regions'])
for index, row in single_tracker_group.iterrows():
x1, y1, x2, y2 = row['BBOX_TopLeft_x'], row['BBOX_TopLeft_y'], row['BBOX_BottomRight_x'], row['BBOX_BottomRight_y']
center_x = (x1+x2)/2
if freq_occuring_class_id in [0, 1, 2]:
_, y = sorted((y1, y2))
else:
y = (y1+y2)/2
is_bbox_present_right = cv2.pointPolygonTest(right_section, (center_x, y), False)
is_bbox_present_Topleft = cv2.pointPolygonTest(top_left_corner, (center_x, y), False)
if (is_bbox_present_right == 1 or is_bbox_present_Topleft == 1): # Ignoring bbox coordinates present inside the ignorance regions
df_speed_second_dup.iloc[index, [df_speed_second_dup.columns.get_loc(c) for c in ['Class_ID', 'Speed']]] = np.nan
corrected_speed_mean = df_speed_second_dup.loc[df_speed_second_dup['Tracker_ID'] == unique_tracker_id, 'Speed'].mean()
corrected_speed_95percentile = df_speed_second_dup.loc[df_speed_second_dup['Tracker_ID'] == unique_tracker_id, 'Speed'].quantile(0.95)
if freq_occuring_class_id in [0, 1, 2]:
if corrected_speed_95percentile >= self.main_config_dict['cyclists_speed_threshold']:
df_speed_dup.loc[df_speed_dup['Tracker_ID'] == unique_tracker_id, 'Class_ID'] = 2
elif corrected_speed_mean > self.main_config_dict['pedestrian_speed_threshold']:
keys = df_speed_second_dup.loc[df_speed_second_dup['Tracker_ID'] == unique_tracker_id, 'Class_ID'].value_counts().keys().tolist()
counts = df_speed_second_dup.loc[df_speed_second_dup['Tracker_ID'] == unique_tracker_id, 'Class_ID'].value_counts().tolist()
for freq in zip(keys, counts):# Ignoring Class_ID = 1 (pedestrian) and assigning the first value (since the counts is already in descending order, the first elements are obviously the more frequently occurring ;)
if keys != 1:
df_speed_dup.loc[df_speed_dup['Tracker_ID'] == unique_tracker_id, 'Class_ID'] = freq[0]
break
else:
# If trackers are empty after removing ignorance regions, then use before-ignorance-region tracker data to get the most frequently occurring Class_ID
df_speed_dup = self.conf_score_based_class_id_matching(df_speed_dup)
# Copy only changed indexes to the original dataframe
for i in df_speed_dup.index:
df_speed.loc[i, :] = df_speed_dup.loc[i, :]
return df_speed
def Save_VRU_count(self, df, path):
"""
Gives:
1. the counts for each class (e.g. no. of pedestrians, no. of cycliste, etc.)
2. the direction sequence for each unique class object.
- Angle in 10° to 80° (NE), Angle in 80° to 100° (N), Angle in 100° to 170° (NW),
Angle in 170° to 190° (W), Angle in 190° to 260° (SW), Angle in 260° to 280° (S),
Angle in 280° to 350° (SE), Angle in 350° to 360° (E), Angle in 0° to 10° (E)
(90°)
N
|
(NW) | (NE)
|
(180°) W <-------------------> E (0° or 360°)
|
(SW) | (SE)
|
S
(270°)
"""
df = df.copy()
df_group = df.groupby(by=['Class_ID'])
unique_class = df['Class_ID'].unique()
d = defaultdict(list)
VRU_count = {}
VRU_direction = defaultdict(list)
for cls in unique_class:
if str(cls)!="nan":
g = df_group.get_group(cls)
for i in g['Tracker_ID'].unique():
d[cls].append(i)
VRU_count[int(cls)] = len(d[cls])
unique_trk = g.Tracker_ID.unique()
tracker_group = g.groupby('Tracker_ID')
for trk_id in unique_trk:
p = g.loc[g['Tracker_ID']==trk_id,['Heading_angle']]
p = p.reset_index(drop=True)
for j in range(len(p['Heading_angle'])):
if str(p['Heading_angle'][j]) != "nan":
angle = p['Heading_angle'][j]
if angle>10 and angle<=80:
direction = "NE"
elif angle>80 and angle<=100:
direction = "N"
elif angle>100 and angle<=170:
direction = "NW"
elif angle>170 and angle<=190:
direction = "W"
elif angle>190 and angle<=260:
direction = "SW"
elif angle>260 and angle<=280:
direction = "S"
elif angle>280 and angle<=350:
direction = "SE"
elif angle>350 and angle<=360:
direction = "E"
elif angle>=0 and angle<=10:
direction = "E"
VRU_direction[(cls,trk_id)].append(direction)
with open(f"{path}/VRU_count.txt", "w") as f:
for k, v in VRU_count.items():
if k == 0:
f.writelines(f"Escooter: {v}\n")
elif k == 1:
f.writelines(f"Pedestrians: {v}\n")
elif k == 2:
f.writelines(f"Cyclists: {v}\n")
elif k == 3:
f.writelines(f"Motorcycle: {v}\n")
elif k == 4:
f.writelines(f"Car: {v}\n")
elif k == 5:
f.writelines(f"Truck: {v}\n")
elif k == 6:
f.writelines(f"Bus: {v}\n")
f.writelines("\n")
for k,v in VRU_direction.items():
seen = set()
if k[0] == 0:
l = [x for x in v if not (x in seen or seen.add(x))]
f.writelines(f"Escooter_trk_id-{int(k[1])}: {' --> '.join(map(str, l))}\n")
elif k[0] == 1:
l = [x for x in v if not (x in seen or seen.add(x))]
f.writelines(f"Pedestrian_trk_id-{int(k[1])}: {' --> '.join(map(str, l))}\n")
elif k[0] == 2:
l = [x for x in v if not (x in seen or seen.add(x))]
f.writelines(f"Cyclist_trk_id-{int(k[1])}: {' --> '.join(map(str, l))}\n")
elif k[0] == 3:
l = [x for x in v if not (x in seen or seen.add(x))]
f.writelines(f"Motorcycle_trk_id-{int(k[1])}: {' --> '.join(map(str, l))}\n")
elif k[0] == 4:
l = [x for x in v if not (x in seen or seen.add(x))]
f.writelines(f"Car_trk_id-{int(k[1])}: {' --> '.join(map(str, l))}\n")
elif k[0] == 5:
l = [x for x in v if not (x in seen or seen.add(x))]
f.writelines(f"Truck_trk_id-{int(k[1])}: {' --> '.join(map(str, l))}\n")
elif k[0] == 6:
l = [x for x in v if not (x in seen or seen.add(x))]
f.writelines(f"Bus_trk_id-{int(k[1])}: {' --> '.join(map(str, l))}\n")
f.close()
def convert2LatLong(self, final_df):
"""
Converts image coordinates to Latitude-Longitude
Steps overview:
1. Estimate the footpoint for bbox
- For Class_IDs < 3, that are VRUs, (x_midpoint, y_max) is taken as footpoint
- For other classes, (x_midpoint, y_midpoint) is taken as footprint
2. Multiply img_coordinates with precalculated homography matrices to get Lat, Long values
Args:
final_df (pd.Dataframe): Dataframe after post-processing
Returns:
df_final (pd.Dataframe): Dataframe containing lat, long values
"""
df_final = final_df.copy()
df_final["BBOX_ground_x_img"] = (df_final["BBOX_TopLeft_x"] + df_final["BBOX_BottomRight_x"]) / 2
df_final["BBOX_ground_y_img"] = 0.0
df_final["BBOX_ground_y_img"][df_final["Class_ID"] < 3] = df_final["BBOX_BottomRight_y"]
df_final["BBOX_ground_y_img"][df_final["Class_ID"] >= 3] = (df_final["BBOX_TopLeft_y"] + df_final["BBOX_BottomRight_y"]) / 2
x_img = df_final["BBOX_ground_x_img"].to_numpy()
y_img = df_final["BBOX_ground_y_img"].to_numpy()
lat, long = self.camera_calib.getLatLong_batchTransform(x_img, y_img)
df_final = df_final.drop(columns=["BBOX_ground_x_img", "BBOX_ground_y_img"])
df_final["latitude"] = lat
df_final["longitude"] = long
return df_final
def run(self): # Main function of the class which runs all the post-processing and saves the video
df_duplicate = self.detections_dataframe.copy()
removed_df = self.remove_tracker(df_duplicate)
print('\n-> Finished cleaning trackers')
#removed_df.to_csv(f'{self.output_directory}/{self.file_name}_cleaned.csv')
interpolated_df = self.interpolate_data(removed_df)
#interpolated_df.to_csv(f'{self.output_directory}/{self.file_name}_interpolated.csv')
print('-> Finished interpolating missing tracker coordinates')
speed_df = self.velocity_estimation(interpolated_df)
#speed_df.to_csv(f'{self.output_directory}/{self.file_name}_speed.csv')
print('-> Finished calculating the velocities')
self.final_df = self.class_id_matching(speed_df)
#self.final_df.to_csv(f'{self.output_directory}/{self.file_name}_classID.csv')
print('-> Finished Class_ID Matching')
df_with_index = self.group_by_internalTimer_with_index(self.final_df)
df_latest = self.Save_angle_to_csv(df_with_index, self.final_df)
#df_latest.to_csv(f'{self.output_directory}/{self.file_name}_heading.csv')
print('-> Finished procesing heading_angle')
df_latest = self.convert2LatLong(df_latest)
df_latest.to_csv(f'{self.output_directory}/{self.file_name}_final.csv')
print('-> Finished converting bbox coordinates to Latitude-Longitude')
print('\nNow, saving the video ...')
self.Save_VRU_count(df_latest, self.output_directory)
# Save video
self.groupedByFrametime = self.group_by_internalTimer(self.final_df)
self.multi_process()
def parser_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--data_file', type=str, default=None, help=['path to .csv data'])
parser.add_argument('--input_video', type=str, default=None, help=['input video file, should be the same one used in .csv'])
parser.add_argument('--output_video', type=str, default=None, help=['path to save result(s)'])
parser.add_argument('--enable_minimap', default=False, action='store_true', help='provied option for showing the minimap in result -- True (or) False')
parser.add_argument('--enable_trj_mode', default=False, action='store_true', help='provied option to turn on or off the trjectory recording -- True (or) False')
parser.add_argument('--trajectory_update_rate', type=int, default=1, help='provide a number to update a trajectory after certain frames')
parser.add_argument('--save_class_frames', type=int, default=0, help='Save frames of requied class from 0 to 6 classes\
(0-Escooter, 1-Pedestrian, 2-Cyclist, 3-Motorcycle, 4-Car, 5-Truck, 6-Bus)')
opt = parser.parse_args()
print("---- Traffic Camera Tracking (CARISSMA) ----")
print("---- Post-Processing ----")
return opt
if __name__ == '__main__':
opt = parser_opt()
obj = PostProcess(**vars(opt))
obj.run()