diff --git a/library/src-non-bootstrapped/scala/NamedTuple.scala b/library/src-non-bootstrapped/scala/NamedTuple.scala deleted file mode 100644 index f237d1d487fe..000000000000 --- a/library/src-non-bootstrapped/scala/NamedTuple.scala +++ /dev/null @@ -1,228 +0,0 @@ -package scala -import scala.language.experimental.clauseInterleaving -import annotation.experimental -import compiletime.ops.boolean.* - -@experimental -object NamedTuple: - - /** The type to which named tuples get mapped to. For instance, - * (name: String, age: Int) - * gets mapped to - * NamedTuple[("name", "age"), (String, Int)] - */ - opaque type NamedTuple[N <: Tuple, +V <: Tuple] >: V <: AnyNamedTuple = V - - /** A type which is a supertype of all named tuples */ - opaque type AnyNamedTuple = Any - - def apply[N <: Tuple, V <: Tuple](x: V): NamedTuple[N, V] = x - - def unapply[N <: Tuple, V <: Tuple](x: NamedTuple[N, V]): Some[V] = Some(x) - - /** A named tuple expression will desugar to a call to `build`. For instance, - * `(name = "Lyra", age = 23)` will desugar to `build[("name", "age")]()(("Lyra", 23))`. - */ - inline def build[N <: Tuple]()[V <: Tuple](x: V): NamedTuple[N, V] = x - - extension [V <: Tuple](x: V) - inline def withNames[N <: Tuple]: NamedTuple[N, V] = x - - export NamedTupleDecomposition.{ - Names, DropNames, - apply, size, init, head, last, tail, take, drop, splitAt, ++, map, reverse, zip, toList, toArray, toIArray - } - - extension [N <: Tuple, V <: Tuple](x: NamedTuple[N, V]) - - // ALL METHODS DEPENDING ON `toTuple` MUST BE EXPORTED FROM `NamedTupleDecomposition` - /** The underlying tuple without the names */ - inline def toTuple: V = x - - // This intentionally works for empty named tuples as well. I think NonEmptyTuple is a dead end - // and should be reverted, just like NonEmptyList is also appealing at first, but a bad idea - // in the end. - - // inline def :* [L] (x: L): NamedTuple[Append[N, ???], Append[V, L] = ??? - // inline def *: [H] (x: H): NamedTuple[??? *: N], H *: V] = ??? - - end extension - - /** The size of a named tuple, represented as a literal constant subtype of Int */ - type Size[X <: AnyNamedTuple] = Tuple.Size[DropNames[X]] - - /** The type of the element value at position N in the named tuple X */ - type Elem[X <: AnyNamedTuple, N <: Int] = Tuple.Elem[DropNames[X], N] - - /** The type of the first element value of a named tuple */ - type Head[X <: AnyNamedTuple] = Elem[X, 0] - - /** The type of the last element value of a named tuple */ - type Last[X <: AnyNamedTuple] = Tuple.Last[DropNames[X]] - - /** The type of a named tuple consisting of all elements of named tuple X except the first one */ - type Tail[X <: AnyNamedTuple] = Drop[X, 1] - - /** The type of the initial part of a named tuple without its last element */ - type Init[X <: AnyNamedTuple] = - NamedTuple[Tuple.Init[Names[X]], Tuple.Init[DropNames[X]]] - - /** The type of the named tuple consisting of the first `N` elements of `X`, - * or all elements if `N` exceeds `Size[X]`. - */ - type Take[X <: AnyNamedTuple, N <: Int] = - NamedTuple[Tuple.Take[Names[X], N], Tuple.Take[DropNames[X], N]] - - /** The type of the named tuple consisting of all elements of `X` except the first `N` ones, - * or no elements if `N` exceeds `Size[X]`. - */ - type Drop[X <: AnyNamedTuple, N <: Int] = - NamedTuple[Tuple.Drop[Names[X], N], Tuple.Drop[DropNames[X], N]] - - /** The pair type `(Take(X, N), Drop[X, N]). */ - type Split[X <: AnyNamedTuple, N <: Int] = (Take[X, N], Drop[X, N]) - - /** Type of the concatenation of two tuples `X` and `Y` */ - type Concat[X <: AnyNamedTuple, Y <: AnyNamedTuple] = - NamedTuple[Tuple.Concat[Names[X], Names[Y]], Tuple.Concat[DropNames[X], DropNames[Y]]] - - /** The type of the named tuple `X` mapped with the type-level function `F`. - * If `X = (n1 : T1, ..., ni : Ti)` then `Map[X, F] = `(n1 : F[T1], ..., ni : F[Ti])`. - */ - type Map[X <: AnyNamedTuple, F[_ <: Tuple.Union[DropNames[X]]]] = - NamedTuple[Names[X], Tuple.Map[DropNames[X], F]] - - /** A named tuple with the elements of tuple `X` in reversed order */ - type Reverse[X <: AnyNamedTuple] = - NamedTuple[Tuple.Reverse[Names[X]], Tuple.Reverse[DropNames[X]]] - - /** The type of the named tuple consisting of all element values of - * named tuple `X` zipped with corresponding element values of - * named tuple `Y`. If the two tuples have different sizes, - * the extra elements of the larger tuple will be disregarded. - * The names of `X` and `Y` at the same index must be the same. - * The result tuple keeps the same names as the operand tuples. - * For example, if - * ``` - * X = (n1 : S1, ..., ni : Si) - * Y = (n1 : T1, ..., nj : Tj) where j >= i - * ``` - * then - * ``` - * Zip[X, Y] = (n1 : (S1, T1), ..., ni: (Si, Ti)) - * ``` - * @syntax markdown - */ - type Zip[X <: AnyNamedTuple, Y <: AnyNamedTuple] = - Names[X] match - case Names[Y] => - NamedTuple[Names[X], Tuple.Zip[DropNames[X], DropNames[Y]]] - - /** A type specially treated by the compiler to represent all fields of a - * class argument `T` as a named tuple. Or, if `T` is already a named tuple, - * `From[T]` is the same as `T`. - */ - type From[T] <: AnyNamedTuple - - /** The type of the empty named tuple */ - type Empty = NamedTuple[EmptyTuple, EmptyTuple] - - /** The empty named tuple */ - val Empty: Empty = EmptyTuple - -end NamedTuple - -/** Separate from NamedTuple object so that we can match on the opaque type NamedTuple. */ -@experimental -object NamedTupleDecomposition: - import NamedTuple.* - extension [N <: Tuple, V <: Tuple](x: NamedTuple[N, V]) - /** The value (without the name) at index `n` of this tuple */ - inline def apply(n: Int): Tuple.Elem[V, n.type] = - inline x.toTuple match - case tup: NonEmptyTuple => tup(n).asInstanceOf[Tuple.Elem[V, n.type]] - case tup => tup.productElement(n).asInstanceOf[Tuple.Elem[V, n.type]] - - /** The number of elements in this tuple */ - inline def size: Tuple.Size[V] = x.toTuple.size - - /** The first element value of this tuple */ - inline def head: Tuple.Elem[V, 0] = apply(0) - - /** The last element value of this tuple */ - inline def last: Tuple.Last[V] = apply(size - 1).asInstanceOf[Tuple.Last[V]] - - /** The tuple consisting of all elements of this tuple except the last one */ - inline def init: NamedTuple[Tuple.Init[N], Tuple.Init[V]] = - x.toTuple.take(size - 1).asInstanceOf[NamedTuple[Tuple.Init[N], Tuple.Init[V]]] - - /** The tuple consisting of all elements of this tuple except the first one */ - inline def tail: NamedTuple[Tuple.Tail[N], Tuple.Tail[V]] = - x.toTuple.drop(1).asInstanceOf[NamedTuple[Tuple.Tail[N], Tuple.Tail[V]]] - - /** The tuple consisting of the first `n` elements of this tuple, or all - * elements if `n` exceeds `size`. - */ - inline def take(n: Int): NamedTuple[Tuple.Take[N, n.type], Tuple.Take[V, n.type]] = - x.toTuple.take(n) - - /** The tuple consisting of all elements of this tuple except the first `n` ones, - * or no elements if `n` exceeds `size`. - */ - inline def drop(n: Int): NamedTuple[Tuple.Drop[N, n.type], Tuple.Drop[V, n.type]] = - x.toTuple.drop(n) - - /** The tuple `(x.take(n), x.drop(n))` */ - inline def splitAt(n: Int): - (NamedTuple[Tuple.Take[N, n.type], Tuple.Take[V, n.type]], - NamedTuple[Tuple.Drop[N, n.type], Tuple.Drop[V, n.type]]) = - // would be nice if this could have type `Split[NamedTuple[N, V]]` instead, but - // we get a type error then. Similar for other methods here. - x.toTuple.splitAt(n) - - /** The tuple consisting of all elements of this tuple followed by all elements - * of tuple `that`. The names of the two tuples must be disjoint. - */ - inline def ++ [N2 <: Tuple, V2 <: Tuple](that: NamedTuple[N2, V2])(using Tuple.Disjoint[N, N2] =:= true) - : NamedTuple[Tuple.Concat[N, N2], Tuple.Concat[V, V2]] - = x.toTuple ++ that.toTuple - - /** The named tuple consisting of all element values of this tuple mapped by - * the polymorphic mapping function `f`. The names of elements are preserved. - * If `x = (n1 = v1, ..., ni = vi)` then `x.map(f) = `(n1 = f(v1), ..., ni = f(vi))`. - */ - inline def map[F[_]](f: [t] => t => F[t]): NamedTuple[N, Tuple.Map[V, F]] = - x.toTuple.map(f).asInstanceOf[NamedTuple[N, Tuple.Map[V, F]]] - - /** The named tuple consisting of all elements of this tuple in reverse */ - inline def reverse: NamedTuple[Tuple.Reverse[N], Tuple.Reverse[V]] = - x.toTuple.reverse - - /** The named tuple consisting of all elements values of this tuple zipped - * with corresponding element values in named tuple `that`. - * If the two tuples have different sizes, - * the extra elements of the larger tuple will be disregarded. - * The names of `x` and `that` at the same index must be the same. - * The result tuple keeps the same names as the operand tuples. - */ - inline def zip[V2 <: Tuple](that: NamedTuple[N, V2]): NamedTuple[N, Tuple.Zip[V, V2]] = - x.toTuple.zip(that.toTuple) - - /** A list consisting of all element values */ - inline def toList: List[Tuple.Union[V]] = x.toTuple.toList.asInstanceOf[List[Tuple.Union[V]]] - - /** An array consisting of all element values */ - inline def toArray: Array[Object] = x.toTuple.toArray - - /** An immutable array consisting of all element values */ - inline def toIArray: IArray[Object] = x.toTuple.toIArray - - end extension - - /** The names of a named tuple, represented as a tuple of literal string values. */ - type Names[X <: AnyNamedTuple] <: Tuple = X match - case NamedTuple[n, _] => n - - /** The value types of a named tuple represented as a regular tuple. */ - type DropNames[NT <: AnyNamedTuple] <: Tuple = NT match - case NamedTuple[_, x] => x