diff --git a/Documentation/index.rst b/Documentation/index.rst index c858c2e66e361d..63864826dcd667 100644 --- a/Documentation/index.rst +++ b/Documentation/index.rst @@ -101,6 +101,7 @@ implementation. :maxdepth: 2 sh/index + x86/index Filesystem Documentation ------------------------ diff --git a/Documentation/x86/conf.py b/Documentation/x86/conf.py new file mode 100644 index 00000000000000..33c5c3142e2019 --- /dev/null +++ b/Documentation/x86/conf.py @@ -0,0 +1,10 @@ +# -*- coding: utf-8; mode: python -*- + +project = "X86 architecture specific documentation" + +tags.add("subproject") + +latex_documents = [ + ('index', 'x86.tex', project, + 'The kernel development community', 'manual'), +] diff --git a/Documentation/x86/index.rst b/Documentation/x86/index.rst new file mode 100644 index 00000000000000..ef389dcf1b1d3c --- /dev/null +++ b/Documentation/x86/index.rst @@ -0,0 +1,8 @@ +========================== +x86 architecture specifics +========================== + +.. toctree:: + :maxdepth: 1 + + mds diff --git a/Documentation/x86/mds.rst b/Documentation/x86/mds.rst new file mode 100644 index 00000000000000..1096738d50f2a3 --- /dev/null +++ b/Documentation/x86/mds.rst @@ -0,0 +1,99 @@ +Microarchitectural Data Sampling (MDS) mitigation +================================================= + +.. _mds: + +Overview +-------- + +Microarchitectural Data Sampling (MDS) is a family of side channel attacks +on internal buffers in Intel CPUs. The variants are: + + - Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126) + - Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130) + - Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127) + +MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a +dependent load (store-to-load forwarding) as an optimization. The forward +can also happen to a faulting or assisting load operation for a different +memory address, which can be exploited under certain conditions. Store +buffers are partitioned between Hyper-Threads so cross thread forwarding is +not possible. But if a thread enters or exits a sleep state the store +buffer is repartitioned which can expose data from one thread to the other. + +MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage +L1 miss situations and to hold data which is returned or sent in response +to a memory or I/O operation. Fill buffers can forward data to a load +operation and also write data to the cache. When the fill buffer is +deallocated it can retain the stale data of the preceding operations which +can then be forwarded to a faulting or assisting load operation, which can +be exploited under certain conditions. Fill buffers are shared between +Hyper-Threads so cross thread leakage is possible. + +MLPDS leaks Load Port Data. Load ports are used to perform load operations +from memory or I/O. The received data is then forwarded to the register +file or a subsequent operation. In some implementations the Load Port can +contain stale data from a previous operation which can be forwarded to +faulting or assisting loads under certain conditions, which again can be +exploited eventually. Load ports are shared between Hyper-Threads so cross +thread leakage is possible. + + +Exposure assumptions +-------------------- + +It is assumed that attack code resides in user space or in a guest with one +exception. The rationale behind this assumption is that the code construct +needed for exploiting MDS requires: + + - to control the load to trigger a fault or assist + + - to have a disclosure gadget which exposes the speculatively accessed + data for consumption through a side channel. + + - to control the pointer through which the disclosure gadget exposes the + data + +The existence of such a construct in the kernel cannot be excluded with +100% certainty, but the complexity involved makes it extremly unlikely. + +There is one exception, which is untrusted BPF. The functionality of +untrusted BPF is limited, but it needs to be thoroughly investigated +whether it can be used to create such a construct. + + +Mitigation strategy +------------------- + +All variants have the same mitigation strategy at least for the single CPU +thread case (SMT off): Force the CPU to clear the affected buffers. + +This is achieved by using the otherwise unused and obsolete VERW +instruction in combination with a microcode update. The microcode clears +the affected CPU buffers when the VERW instruction is executed. + +For virtualization there are two ways to achieve CPU buffer +clearing. Either the modified VERW instruction or via the L1D Flush +command. The latter is issued when L1TF mitigation is enabled so the extra +VERW can be avoided. If the CPU is not affected by L1TF then VERW needs to +be issued. + +If the VERW instruction with the supplied segment selector argument is +executed on a CPU without the microcode update there is no side effect +other than a small number of pointlessly wasted CPU cycles. + +This does not protect against cross Hyper-Thread attacks except for MSBDS +which is only exploitable cross Hyper-thread when one of the Hyper-Threads +enters a C-state. + +The kernel provides a function to invoke the buffer clearing: + + mds_clear_cpu_buffers() + +The mitigation is invoked on kernel/userspace, hypervisor/guest and C-state +(idle) transitions. + +According to current knowledge additional mitigations inside the kernel +itself are not required because the necessary gadgets to expose the leaked +data cannot be controlled in a way which allows exploitation from malicious +user space or VM guests. diff --git a/arch/x86/include/asm/nospec-branch.h b/arch/x86/include/asm/nospec-branch.h index dad12b767ba069..67cb9b2082b1c0 100644 --- a/arch/x86/include/asm/nospec-branch.h +++ b/arch/x86/include/asm/nospec-branch.h @@ -318,6 +318,31 @@ DECLARE_STATIC_KEY_FALSE(switch_to_cond_stibp); DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb); +#include + +/** + * mds_clear_cpu_buffers - Mitigation for MDS vulnerability + * + * This uses the otherwise unused and obsolete VERW instruction in + * combination with microcode which triggers a CPU buffer flush when the + * instruction is executed. + */ +static inline void mds_clear_cpu_buffers(void) +{ + static const u16 ds = __KERNEL_DS; + + /* + * Has to be the memory-operand variant because only that + * guarantees the CPU buffer flush functionality according to + * documentation. The register-operand variant does not. + * Works with any segment selector, but a valid writable + * data segment is the fastest variant. + * + * "cc" clobber is required because VERW modifies ZF. + */ + asm volatile("verw %[ds]" : : [ds] "m" (ds) : "cc"); +} + #endif /* __ASSEMBLY__ */ /*