-
Notifications
You must be signed in to change notification settings - Fork 16
/
smZNodes.py
730 lines (656 loc) · 31.2 KB
/
smZNodes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
from __future__ import annotations
import re
import torch
import inspect
import contextlib
import logging
import comfy
import math
import ctypes
from decimal import Decimal
from functools import partial
from random import getrandbits
import comfy.sdxl_clip
import comfy.sd1_clip
import comfy.sample
import comfy.utils
import comfy.samplers
from comfy.sd1_clip import unescape_important, escape_important, token_weights
from .modules.shared import SimpleNamespaceFast, Options, logger, join_args
from .modules.text_processing import prompt_parser
from .modules.text_processing.past_classic_engine import process_texts_past
from .modules.text_processing.textual_inversion import EmbbeddingRegex
from .modules.text_processing.classic_engine import ClassicTextProcessingEngine
from .modules.text_processing.t5_engine import T5TextProcessingEngine
class Store(SimpleNamespaceFast): ...
store = Store()
def register_hooks():
from .modules.rng import prepare_noise
patches = [
(comfy.samplers, 'get_area_and_mult', get_area_and_mult),
(comfy.samplers.KSampler, 'sample', KSampler_sample),
(comfy.samplers.KSAMPLER, 'sample', KSAMPLER_sample),
(comfy.samplers, 'sample', sample),
(comfy.samplers.Sampler, 'max_denoise', max_denoise),
(comfy.samplers, 'sampling_function', sampling_function),
(comfy.sample, 'prepare_noise', prepare_noise),
]
for parent, fn_name, fn_patch in patches:
if not hasattr(parent, f"_{fn_name}"):
setattr(store, f"_{fn_name}", getattr(parent, fn_name))
setattr(store, fn_patch.__name__, getattr(parent, fn_name))
setattr(parent, fn_name, fn_patch)
def iter_items(d):
for key, value in d.items():
yield key, value
if isinstance(value, dict):
yield from iter_items(value)
def find_nearest(a,b):
# Calculate the absolute differences.
diff = (a - b).abs()
# Find the indices of the nearest elements
nearest_indices = diff.argmin()
# Get the nearest elements from b
return b[nearest_indices]
def get_area_and_mult(*args, **kwargs):
conds = args[0]
if 'start_perc' in conds and 'end_perc' in conds and "init_steps" in conds:
timestep_in = args[2]
sigmas = store.sigmas
if conds['init_steps'] == sigmas.shape[0] - 1:
total = Decimal(sigmas.shape[0] - 1)
else:
sigmas_ = store.sigmas.unique(sorted=True).sort(descending=True)[0]
if len(sigmas) == len(sigmas_):
# Sampler Custom with sigmas: no change
total = Decimal(sigmas.shape[0] - 1)
else:
# Sampler with restarts: dedup the sigmas and add one
sigmas = sigmas_
total = Decimal(sigmas.shape[0] + 1)
ts_in = find_nearest(timestep_in, sigmas)
cur_i = ss[0].item() if (ss:=(sigmas == ts_in).nonzero()).shape[0] != 0 else 0
cur = Decimal(cur_i) / total
start = conds['start_perc']
end = conds['end_perc']
if not (cur >= start and cur < end):
return None
return store.get_area_and_mult(*args, **kwargs)
def KSAMPLER_sample(*args, **kwargs):
orig_fn = store.KSAMPLER_sample
extra_args = None
model_options = None
try:
extra_args = kwargs['extra_args'] if 'extra_args' in kwargs else args[3]
model_options = extra_args['model_options']
except Exception: ...
if model_options is not None and extra_args is not None:
sigmas_ = kwargs['sigmas'] if 'sigmas' in kwargs else args[2]
sigmas_all = model_options.pop('sigmas', None)
sigmas = sigmas_all if sigmas_all is not None else sigmas_
store.sigmas = sigmas
return orig_fn(*args, **kwargs)
def KSampler_sample(*args, **kwargs):
orig_fn = store.KSampler_sample
self = args[0]
model_patcher = getattr(self, 'model', None)
model_options = getattr(model_patcher, 'model_options', None)
if model_options is not None:
sigmas = None
try: sigmas = kwargs['sigmas'] if 'sigmas' in kwargs else args[10]
except Exception: ...
if sigmas is None:
sigmas = getattr(self, 'sigmas', None)
if sigmas is not None:
model_options = model_options.copy()
model_options['sigmas'] = sigmas
self.model.model_options = model_options
return orig_fn(*args, **kwargs)
def sample(*args, **kwargs):
orig_fn = store.sample
model_patcher = args[0]
model_options = getattr(model_patcher, 'model_options', None)
sampler = kwargs['sampler'] if 'sampler' in kwargs else args[6]
if model_options is not None and Options.KEY in model_options:
if hasattr(sampler, 'sampler_function'):
opts = model_options[Options.KEY]
if not hasattr(sampler, f'_sampler_function'):
sampler._sampler_function = sampler.sampler_function
sampler_function_sig_params = inspect.signature(sampler._sampler_function).parameters
params = {x: getattr(opts, x) for x in ['eta', 's_churn', 's_tmin', 's_tmax', 's_noise'] if x in sampler_function_sig_params}
sampler.sampler_function = lambda *a, **kw: sampler._sampler_function(*a, **{**kw, **params})
else:
if hasattr(sampler, '_sampler_function'):
sampler.sampler_function = sampler._sampler_function
return orig_fn(*args, **kwargs)
def max_denoise(*args, **kwargs):
orig_fn = store.max_denoise
model_wrap = kwargs['model_wrap'] if 'model_wrap' in kwargs else args[1]
base_model = getattr(model_wrap, 'inner_model', None)
model_options = getattr(model_wrap, 'model_options', getattr(base_model, 'model_options', None))
return orig_fn(*args, **kwargs) if getattr(model_options.get(Options.KEY, True), 'sgm_noise_multiplier', True) else False
def sampling_function(*args, **kwargs):
orig_fn = store.sampling_function
model_options = kwargs['model_options'] if 'model_options' in kwargs else args[6]
model_options=model_options.copy()
kwargs['model_options'] = model_options
if Options.KEY in model_options:
opts = model_options[Options.KEY]
if opts.s_min_uncond_all or opts.s_min_uncond > 0 or opts.skip_early_cond > 0:
cond_scale = _cond_scale = kwargs['cond_scale'] if 'cond_scale' in kwargs else args[5]
sigmas = store.sigmas
sigma = kwargs['timestep'] if 'timestep' in kwargs else args[2]
ts_in = find_nearest(sigma, sigmas)
step = ss[0].item() if (ss:=(sigmas == ts_in).nonzero()).shape[0] != 0 else 0
total_steps = sigmas.shape[0] - 1
if opts.skip_early_cond > 0 and step / total_steps <= opts.skip_early_cond:
cond_scale = 1.0
elif (step % 2 or opts.s_min_uncond_all) and opts.s_min_uncond > 0 and sigma[0] < opts.s_min_uncond:
cond_scale = 1.0
if cond_scale != _cond_scale:
if 'cond_scale' not in kwargs:
args = args[:5]
kwargs['cond_scale'] = cond_scale
cond = kwargs['cond'] if 'cond' in kwargs else args[4]
weights = [x.get('weight', None) for x in cond]
has_some = any(item is not None for item in weights) and len(weights) > 1
if has_some:
out = CFGDenoiser(orig_fn).sampling_function(*args, **kwargs)
else:
out = orig_fn(*args, **kwargs)
return out
@contextlib.contextmanager
def HijackClip(clip, opts):
a1 = 'tokenizer', 'tokenize_with_weights'
a2 = 'cond_stage_model', 'encode_token_weights'
ls = [a1, a2]
store = {}
store_orig = {}
try:
for obj, attr in ls:
for clip_name, v in iter_items(getattr(clip, obj).__dict__):
if hasattr(v, attr):
logger.debug(join_args(attr, obj, clip_name, type(v).__qualname__, getattr(v, attr).__qualname__))
if clip_name not in store_orig:
store_orig[clip_name] = {}
store_orig[clip_name][obj] = v
for clip_name, inner_store in store_orig.items():
text_encoder = inner_store['cond_stage_model']
tokenizer = inner_store['tokenizer']
emphasis_name = 'Original' if opts.prompt_mean_norm else "No norm"
if 't5' in clip_name:
text_processing_engine = T5TextProcessingEngine(
text_encoder=text_encoder,
tokenizer=tokenizer,
emphasis_name=emphasis_name,
)
else:
text_processing_engine = ClassicTextProcessingEngine(
text_encoder=text_encoder,
tokenizer=tokenizer,
emphasis_name=emphasis_name,
)
text_processing_engine.opts = opts
text_processing_engine.process_texts_past = partial(process_texts_past, text_processing_engine)
store[clip_name] = text_processing_engine
for obj, attr in ls:
setattr(inner_store[obj], attr, getattr(store[clip_name], attr))
yield clip
finally:
for clip_name, inner_store in store_orig.items():
getattr(inner_store[a2[0]], a2[1]).__self__.unhook()
for obj, attr in ls:
try: delattr(inner_store[obj], attr)
except Exception: ...
del store
del store_orig
@contextlib.contextmanager
def HijackClipComfy(clip):
a1 = 'tokenizer', 'tokenize_with_weights'
ls = [a1]
store_orig = {}
try:
for obj, attr in ls:
for clip_name, v in iter_items(getattr(clip, obj).__dict__):
if hasattr(v, attr):
logger.debug(join_args(attr, obj, clip_name, type(v).__qualname__, getattr(v, attr).__qualname__))
if clip_name not in store_orig:
store_orig[clip_name] = {}
store_orig[clip_name][obj] = v
setattr(v, attr, partial(tokenize_with_weights_custom, v))
yield clip
finally:
for clip_name, inner_store in store_orig.items():
for obj, attr in ls:
try: delattr(inner_store[obj], attr)
except Exception: ...
del store_orig
def transform_schedules(steps, schedules, weight=None, with_weight=False):
end_steps = [schedule.end_at_step for schedule in schedules]
start_end_pairs = list(zip([0] + end_steps[:-1], end_steps))
with_prompt_editing = len(schedules) > 1
def process(schedule, start_step, end_step):
nonlocal with_prompt_editing
d = schedule.cond.copy()
d.pop('cond', None)
if with_prompt_editing:
d |= {"start_perc": Decimal(start_step) / Decimal(steps), "end_perc": Decimal(end_step) / Decimal(steps), "init_steps": steps}
if weight is not None and with_weight:
d['weight'] = weight
return d
return [
[
schedule.cond.get("cond", None),
process(schedule, start_step, end_step)
]
for schedule, (start_step, end_step) in zip(schedules, start_end_pairs)
]
def flatten(nested_list):
return [item for sublist in nested_list for item in sublist]
def convert_schedules_to_comfy(schedules, steps, multi=False):
if multi:
out = [[transform_schedules(steps, x.schedules, x.weight, len(batch)>1) for x in batch] for batch in schedules.batch]
out = flatten(out)
else:
out = [transform_schedules(steps, sublist) for sublist in schedules]
return flatten(out)
def get_learned_conditioning(model, prompts, steps, multi=False, *args, **kwargs):
if multi:
schedules = prompt_parser.get_multicond_learned_conditioning(model, prompts, steps, *args, **kwargs)
else:
schedules = prompt_parser.get_learned_conditioning(model, prompts, steps, *args, **kwargs)
schedules_c = convert_schedules_to_comfy(schedules, steps, multi)
return schedules_c
class CustomList(list):
def __init__(self, *args):
super().__init__(*args)
def __setattr__(self, name: str, value: re.Any):
super().__setattr__(name, value)
return self
def modify_locals_values(frame, fn):
# https://stackoverflow.com/a/34671307
try: ctypes.pythonapi.PyFrame_LocalsToFast(ctypes.py_object(frame), ctypes.c_int(1))
except Exception: ...
fn(frame)
try: ctypes.pythonapi.PyFrame_LocalsToFast(ctypes.py_object(frame), ctypes.c_int(1))
except Exception: ...
def update_locals(frame,k,v,list_app=False):
if not list_app:
modify_locals_values(frame, lambda _frame: _frame.f_locals.__setitem__(k, v))
else:
if not isinstance(frame.f_locals[k], CustomList):
out_conds_store = CustomList([])
out_conds_store.outputs=[]
modify_locals_values(frame, lambda _frame: _frame.f_locals.__setitem__(k, out_conds_store))
v.area = frame.f_locals['area']
v.mult = frame.f_locals['mult']
frame.f_locals[k].outputs.append(v)
frame.f_locals[k].out_conds = frame.f_locals['out_conds']
frame.f_locals[k].out_counts = frame.f_locals['out_counts']
modify_locals_values(frame, lambda _frame: _frame.f_locals.__setitem__('batch_chunks', 0))
def model_function_wrapper_cd(model, args, id, model_options={}):
input_x = args['input']
timestep_ = args['timestep']
c = args['c']
cond_or_uncond = args['cond_or_uncond']
batch_chunks = len(cond_or_uncond)
if f'model_function_wrapper_{id}' in model_options:
output = model_options[f'model_function_wrapper_{id}'](model, args)
else:
output = model(input_x, timestep_, **c)
output.cond_or_uncond = cond_or_uncond
output.batch_chunks = batch_chunks
output.output_chunks = output.chunk(batch_chunks)
output.chunk = lambda *aa, **kw: output
get_parent_variable('out_conds', list, lambda frame: update_locals(frame, 'out_conds', output, list_app=True))
return output
def get_parent_variable(vname, vtype, fn):
frame = inspect.currentframe().f_back # Get the current frame's parent
while frame:
if vname in frame.f_locals:
val = frame.f_locals[vname]
if isinstance(val, vtype):
if fn is not None:
fn(frame)
return frame.f_locals[vname]
frame = frame.f_back
return None
def cd_cfg_function(kwargs, id):
model_options = kwargs['model_options']
if f"sampler_cfg_function_{id}" in model_options:
return model_options[f'sampler_cfg_function_{id}'](kwargs)
x = kwargs['input']
cond_pred = kwargs['cond_denoised']
uncond_pred = kwargs['uncond_denoised']
cond_scale = kwargs['cond_scale']
cfg_result = model_options['cfg_result']
cfg_result += (cond_pred - uncond_pred) * cond_scale
return x - cfg_result
class CFGDenoiser:
def __init__(self, orig_fn) -> None:
self.orig_fn = orig_fn
def sampling_function(self, model, x, timestep, uncond, cond, cond_scale, model_options, *args0, **kwargs0):
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
uncond_ = None
else:
uncond_ = uncond
conds = [cond, uncond_]
if uncond_ is None:
return self.orig_fn(model, x, timestep, uncond, cond, cond_scale, model_options, *args0, **kwargs0)
id = getrandbits(7)
if 'model_function_wrapper' in model_options:
model_options[f'model_function_wrapper_{id}'] = model_options.pop('model_function_wrapper')
model_options['model_function_wrapper'] = partial(model_function_wrapper_cd, id=id, model_options=model_options)
out = comfy.samplers.calc_cond_batch(model, conds, x, timestep, model_options)
model_options.pop('model_function_wrapper', None)
if f'model_function_wrapper_{id}' in model_options:
model_options['model_function_wrapper'] = model_options.pop(f'model_function_wrapper_{id}')
outputs = out.outputs
out_conds = out.out_conds
out_counts= out.out_counts
if len(out_conds) < len(out_counts):
for _ in out_counts:
out_conds.append(torch.zeros_like(outputs[0].output_chunks[0]))
oconds=[]
for _output in outputs:
cond_or_uncond=_output.cond_or_uncond
batch_chunks=_output.batch_chunks
output=_output.output_chunks
area=_output.area
mult=_output.mult
for o in range(batch_chunks):
cond_index = cond_or_uncond[o]
a = area[o]
if a is None:
if cond_index == 0:
oconds.append(output[o] * mult[o])
else:
out_conds[cond_index] += output[o] * mult[o]
out_counts[cond_index] += mult[o]
else:
out_c = out_conds[cond_index] if cond_index != 0 else torch.zeros_like(out_conds[cond_index])
out_cts = out_counts[cond_index]
dims = len(a) // 2
for i in range(dims):
out_c = out_c.narrow(i + 2, a[i + dims], a[i])
out_cts = out_cts.narrow(i + 2, a[i + dims], a[i])
out_c += output[o] * mult[o]
out_cts += mult[o]
if cond_index == 0:
oconds.append(out_c)
for i in range(len(out_conds)):
if i != 0:
out_conds[i] /= out_counts[i]
del out
out = out_conds
for fn in model_options.get("sampler_pre_cfg_function", []):
out[0] = torch.cat(oconds).to(oconds[0])
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
out = fn(args)
# ComfyUI: last prompt -> first
# conds were reversed in calc_cond_batch, so do the same for weights
weights = [x.get('weight', None) for x in cond]
weights.reverse()
out_uncond = out[1]
cfg_result = out_uncond.clone()
cond_scale = cond_scale / max(len(oconds), 1)
if "sampler_cfg_function" in model_options:
model_options[f'sampler_cfg_function_{id}'] = model_options.pop('sampler_cfg_function')
model_options['sampler_cfg_function'] = partial(cd_cfg_function, id=id)
model_options['cfg_result'] = cfg_result
# ComfyUI: computes the average -> do cfg
# A1111: (cond - uncond) / total_len_of_conds -> in-place addition for each cond -> results in cfg
for ix, ocond in enumerate(oconds):
weight = (weights[ix:ix+1] or [1.0])[0] or 1.0
# cfg_result += (ocond - out_uncond) * (weight * cond_scale) # all this code just to do this
if f"sampler_cfg_function_{id}" in model_options:
# case when there's another cfg_fn. subtract out_uncond and in-place add the result. feed result back in.
cfg_result += comfy.samplers.cfg_function(model, ocond, out_uncond, weight * cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_) - out_uncond
else: # calls cd_cfg_function and does an in-place addition
if model_options.get("sampler_post_cfg_function", []):
# feed the result back in.
cfg_result = comfy.samplers.cfg_function(model, ocond, out_uncond, weight * cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
else:
# default case. discards the output.
comfy.samplers.cfg_function(model, ocond, out_uncond, weight * cond_scale, x, timestep, model_options=model_options, cond=cond, uncond=uncond_)
model_options['cfg_result'] = cfg_result
return cfg_result
def tokenize_with_weights_custom(self, text:str, return_word_ids=False):
'''
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP
'''
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
embr = EmbbeddingRegex(self.embedding_directory)
#tokenize words
tokens = []
for weighted_segment, weight in parsed_weights:
to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
to_tokenize = [x for x in to_tokenize if x != ""]
for word in to_tokenize:
matches = embr.pattern.finditer(word)
last_end = 0
leftovers=[]
for _, match in enumerate(matches, start=1):
start=match.start()
end=match.end()
if (fragment:=word[last_end:start]):
leftovers.append(fragment)
ext = (match.group(4) or (match.group(3) or ''))
embedding_sname = (match.group(2) or '').removesuffix(ext)
embedding_name = embedding_sname + ext
if embedding_name:
embed, leftover = self._try_get_embedding(embedding_name)
if embed is None:
logging.warning(f"warning, embedding:{embedding_name} does not exist, ignoring")
else:
logger.debug(f'using embedding:{embedding_name}')
if len(embed.shape) == 1:
tokens.append([(embed, weight)])
else:
tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
last_end = end
if (fragment:=word[last_end:]):
leftovers.append(fragment)
word_new = ''.join(leftovers)
tokens.append([(t, weight) for t in self.tokenizer(word_new)["input_ids"][self.tokens_start:-1]])
#reshape token array to CLIP input size
batched_tokens = []
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
for i, t_group in enumerate(tokens):
#determine if we're going to try and keep the tokens in a single batch
is_large = len(t_group) >= self.max_word_length
while len(t_group) > 0:
if len(t_group) + len(batch) > self.max_length - 1:
remaining_length = self.max_length - len(batch) - 1
#break word in two and add end token
if is_large:
batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
batch.append((self.end_token, 1.0, 0))
t_group = t_group[remaining_length:]
#add end token and pad
else:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
#start new batch
batch = []
if self.start_token is not None:
batch.append((self.start_token, 1.0, 0))
batched_tokens.append(batch)
else:
batch.extend([(t,w,i+1) for t,w in t_group])
t_group = []
#fill last batch
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if self.min_length is not None and len(batch) < self.min_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
return batched_tokens
# ========================================================================
from server import PromptServer
def is_prompt_editing(schedules):
if schedules == None: return False
if not isinstance(schedules, dict):
schedules = {'g': schedules}
ret = False
for k,v in schedules.items():
if type(v) is dict and 'schedules' in v:
v=v['schedules']
if type(v) == list:
for vb in v:
if len(vb) != 1: ret = True
else:
if v:
for vb in v.batch:
for cs in vb:
if len(cs.schedules) != 1: ret = True
return ret
def prompt_handler(json_data):
data=json_data['prompt']
steps_validator = lambda x: isinstance(x, (int, float, str))
text_validator = lambda x: isinstance(x, str)
def find_nearest_ksampler(clip_id):
"""Find the nearest KSampler node that references the given CLIPTextEncode id."""
nonlocal data, steps_validator
for ksampler_id, node in data.items():
if "class_type" in node and ("Sampler" in node["class_type"] or "sampler" in node["class_type"]):
# Check if this KSampler node directly or indirectly references the given CLIPTextEncode node
if check_link_to_clip(ksampler_id, clip_id):
return get_val(data, ksampler_id, steps_validator, 'steps')
return None
def get_val(graph, node_id, validator, val):
node = graph.get(str(node_id), {})
if val == 'steps':
steps_input_value = node.get("inputs", {}).get("steps", None)
if steps_input_value is None:
steps_input_value = node.get("inputs", {}).get("sigmas", None)
else:
steps_input_value = node.get("inputs", {}).get(val, None)
while(True):
# Base case: it's a direct value
if not isinstance(steps_input_value, list) and validator(steps_input_value):
if val == 'steps':
s = 1
try: s = min(max(1, int(steps_input_value)), 10000)
except Exception as e:
logging.warning(f"\033[33mWarning:\033[0m [smZNodes] Skipping prompt editing. Try recreating the node. {e}")
return s
else:
return steps_input_value
# Loop case: it's a reference to another node
elif isinstance(steps_input_value, list):
ref_node_id, ref_input_index = steps_input_value
ref_node = graph.get(str(ref_node_id), {})
steps_input_value = ref_node.get("inputs", {}).get(val, None)
if steps_input_value is None:
keys = list(ref_node.get("inputs", {}).keys())
ref_input_key = keys[ref_input_index % len(keys)]
steps_input_value = ref_node.get("inputs", {}).get(ref_input_key)
else:
return None
def check_link_to_clip(node_id, clip_id, visited=None):
"""Check if a given node links directly or indirectly to a CLIPTextEncode node."""
nonlocal data
if visited is None:
visited = set()
node = data[node_id]
if node_id in visited:
return False
visited.add(node_id)
for input_value in node["inputs"].values():
if isinstance(input_value, list) and input_value[0] == clip_id:
return True
if isinstance(input_value, list) and check_link_to_clip(input_value[0], clip_id, visited):
return True
return False
# Update each CLIPTextEncode node's steps with the steps from its nearest referencing KSampler node
for clip_id, node in data.items():
if "class_type" in node and node["class_type"] == "smZ CLIPTextEncode":
check_str = prompt_editing = False
if check_str:
if (fast_search:=True):
with_SDXL = get_val(data, clip_id, lambda x: isinstance(x, (bool, int, float)), 'with_SDXL')
if with_SDXL:
ls = is_prompt_editing_str(get_val(data, clip_id, text_validator, 'text_l'))
gs = is_prompt_editing_str(get_val(data, clip_id, text_validator, 'text_g'))
prompt_editing = ls or gs
else:
text = get_val(data, clip_id, text_validator, 'text')
prompt_editing = is_prompt_editing_str(text)
else:
text = get_val(data, clip_id, text_validator, 'text')
prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules([text], steps, None, False)
prompt_editing = sum([len(ps) for ps in prompt_schedules]) != 1
if check_str and not prompt_editing: continue
steps = find_nearest_ksampler(clip_id)
if steps is not None:
node["inputs"]["smZ_steps"] = steps
# logger.debug(f'id: {clip_id} | steps: {steps}')
return json_data
def is_prompt_editing_str(t: str):
"""
Determine if a string includes prompt editing.
This won't cover every case, but it does the job for most.
"""
if t is None: return True
if (openb:=t.find('[')) != -1:
if (colon:=t.find(':', openb)) != -1 and t.find(']', colon) != -1:
return True
elif (pipe:=t.find('|', openb)) != -1 and t.find(']', pipe) != -1:
return True
return False
if hasattr(PromptServer.instance, 'add_on_prompt_handler'):
PromptServer.instance.add_on_prompt_handler(prompt_handler)
# ========================================================================
# DPM++ 2M alt
from tqdm.auto import trange
@torch.no_grad()
def sample_dpmpp_2m_alt(model, x, sigmas, extra_args=None, callback=None, disable=None):
"""DPM-Solver++(2M)."""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
old_denoised = None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
if old_denoised is None or sigmas[i + 1] == 0:
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised
else:
h_last = t - t_fn(sigmas[i - 1])
r = h_last / h
denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised
x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d
sigma_progress = i / len(sigmas)
adjustment_factor = 1 + (0.15 * (sigma_progress * sigma_progress))
old_denoised = denoised * adjustment_factor
return x
def add_sample_dpmpp_2m_alt():
from comfy.samplers import KSampler, k_diffusion_sampling
if "dpmpp_2m_alt" not in KSampler.SAMPLERS:
try:
idx = KSampler.SAMPLERS.index("dpmpp_2m")
KSampler.SAMPLERS.insert(idx+1, "dpmpp_2m_alt")
setattr(k_diffusion_sampling, 'sample_dpmpp_2m_alt', sample_dpmpp_2m_alt)
except Exception: ...
def add_custom_samplers():
samplers = [
add_sample_dpmpp_2m_alt,
]
for add_sampler in samplers:
add_sampler()