-
Notifications
You must be signed in to change notification settings - Fork 2k
/
GamerNishant_RadixSort.cpp.cpp
60 lines (55 loc) · 1.8 KB
/
GamerNishant_RadixSort.cpp.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/* Author - Rahul Pathak */
/* Given n d-digit numbers in which each digit can take on up to k possible values,
RADIX-SORT correctly sorts these numbers in O(d*(n+k)) time if the stable sort
it uses takes O(n+k) time.
Here, we use Counting sort as a subroutine.
*/
/* For each digit i where i varies from the least significant to the most significant digit,
sort the input array using counting sort according to the i'th digit. */
#include <iostream>
#include <vector>
using namespace std;
int findMaxElement(vector<int> A)
{
int maximum = A[0];
for (int i = 1; i < A.size(); i++)
{
maximum = max(maximum, A[i]);
}
return maximum;
}
void radixSort(vector<int> &A)
{
int power, i = findMaxElement(A);
// Count sort subroutine for each digit
// This loops iterates for number of times equal to the number of digits in the maximum element
for (power = 1; i / power != 0; power *= 10)
{
int result[A.size()], i, count[10] = {0};
// Store frequency
for (i = 0; i < A.size(); i++)
count[(A[i] / power) % 10]++;
// Store number of elements before the current element
// that should appear in the sorted array
for (i = 1; i < 10; i++)
count[i] += count[i - 1];
// placing each element at correct place in the array sorted according to
// the particular digit
for (i = A.size() - 1; i >= 0; i--)
{
result[count[(A[i] / power) % 10] - 1] = A[i];
count[(A[i] / power) % 10]--;
}
for (i = 0; i < A.size(); i++)
A[i] = result[i];
}
}
int main()
{
vector<int> A = {23, 2, 43, 32, 8, 13, 5, 16, 17, 1};
radixSort(A);
for (int i = 0; i < A.size(); i++)
cout << A[i] << ' ';
cout << endl;
return 0;
}