-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
104 lines (86 loc) · 2.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import json
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from nltk_utils import tokenize,stem,bag_of_words
from model import NeuralNet
with open('intents.json','r',encoding='utf-8') as f:
intents=json.load(f)
# print(intents)
all_words=[]
tags=[]
xy=[]
for intent in intents['intents']:
tag=intent['tag']
tags.append(tag)
for pattern in intent['patterns']:
w=tokenize(pattern)
all_words.extend(w)
xy.append((w,tag))
ignore_words=['?','!','.',',']
all_words=[stem(w) for w in all_words if w not in ignore_words]
all_words=sorted(set(all_words))
tags=sorted(set(tags))
# print(tags)
X_train=[]
y_train=[]
for (pattern_sentence,tag) in xy:
bag=bag_of_words(pattern_sentence,all_words)
X_train.append(bag)
label=tags.index(tag)
y_train.append(label) #cross entropy loss(no need of hot encoding)
X_train=np.array(X_train)
y_train=np.array(y_train)
class ChatDataset(Dataset):
def __init__(self):
self.n_samples=len(X_train)
self.x_data=X_train
self.y_data=y_train
#dataset[idx]
def __getitem__(self,index):
return self.x_data[index],self.y_data[index]
def __len__(self):
return self.n_samples
#Hyperparameters
batch_size=8
hidden_size=8
output_size=len(tags)
input_size=len(X_train[0])
learning_rate=0.001
num_epochs=1000
print(input_size,len(all_words))
print(output_size,tags)
dataset=ChatDataset()
train_loader=DataLoader(dataset=dataset,batch_size=batch_size,shuffle=True,num_workers=0)
device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model= NeuralNet(input_size,hidden_size,output_size)
#loss and optimizer
criterion=nn.CrossEntropyLoss()
optimizer=torch.optim.Adam(model.parameters(), lr=learning_rate)
#training loop
for epoch in range(num_epochs):
for (words,labels) in train_loader:
words=words.to(device)
labels= labels.to(device).long() # Convert labels to torch.LongTensor
#forward
outputs=model(words)
loss=criterion(outputs,labels)
#backward and optimizer
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch+1) % 100 ==0:
print(f'epoch {epoch+1}/{num_epochs}, loss={loss.item():.4f}')
print(f'final loss, loss={loss.item():.4f}')
data={
"model_state": model.state_dict(),
"input_size": input_size,
"output_size": output_size,
"hidden_size": hidden_size,
"all_words": all_words,
"tags": tags
}
FILE='data.pth'
torch.save(data,FILE)
print(f'training complete. file saved to {FILE}')