forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
knet_head.py
461 lines (402 loc) · 18.7 KB
/
knet_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer
from mmcv.cnn.bricks.transformer import (FFN, MultiheadAttention,
build_transformer_layer)
from mmengine.logging import print_log
from torch import Tensor
from mmseg.models.decode_heads.decode_head import BaseDecodeHead
from mmseg.registry import MODELS
from mmseg.utils import SampleList
@MODELS.register_module()
class KernelUpdator(nn.Module):
"""Dynamic Kernel Updator in Kernel Update Head.
Args:
in_channels (int): The number of channels of input feature map.
Default: 256.
feat_channels (int): The number of middle-stage channels in
the kernel updator. Default: 64.
out_channels (int): The number of output channels.
gate_sigmoid (bool): Whether use sigmoid function in gate
mechanism. Default: True.
gate_norm_act (bool): Whether add normalization and activation
layer in gate mechanism. Default: False.
activate_out: Whether add activation after gate mechanism.
Default: False.
norm_cfg (dict | None): Config of norm layers.
Default: dict(type='LN').
act_cfg (dict): Config of activation layers.
Default: dict(type='ReLU').
"""
def __init__(
self,
in_channels=256,
feat_channels=64,
out_channels=None,
gate_sigmoid=True,
gate_norm_act=False,
activate_out=False,
norm_cfg=dict(type='LN'),
act_cfg=dict(type='ReLU', inplace=True),
):
super().__init__()
self.in_channels = in_channels
self.feat_channels = feat_channels
self.out_channels_raw = out_channels
self.gate_sigmoid = gate_sigmoid
self.gate_norm_act = gate_norm_act
self.activate_out = activate_out
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.out_channels = out_channels if out_channels else in_channels
self.num_params_in = self.feat_channels
self.num_params_out = self.feat_channels
self.dynamic_layer = nn.Linear(
self.in_channels, self.num_params_in + self.num_params_out)
self.input_layer = nn.Linear(self.in_channels,
self.num_params_in + self.num_params_out,
1)
self.input_gate = nn.Linear(self.in_channels, self.feat_channels, 1)
self.update_gate = nn.Linear(self.in_channels, self.feat_channels, 1)
if self.gate_norm_act:
self.gate_norm = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_out = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.input_norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.input_norm_out = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.activation = build_activation_layer(act_cfg)
self.fc_layer = nn.Linear(self.feat_channels, self.out_channels, 1)
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]
def forward(self, update_feature, input_feature):
"""Forward function of KernelUpdator.
Args:
update_feature (torch.Tensor): Feature map assembled from
each group. It would be reshaped with last dimension
shape: `self.in_channels`.
input_feature (torch.Tensor): Intermediate feature
with shape: (N, num_classes, conv_kernel_size**2, channels).
Returns:
Tensor: The output tensor of shape (N*C1/C2, K*K, C2), where N is
the number of classes, C1 and C2 are the feature map channels of
KernelUpdateHead and KernelUpdator, respectively.
"""
update_feature = update_feature.reshape(-1, self.in_channels)
num_proposals = update_feature.size(0)
# dynamic_layer works for
# phi_1 and psi_3 in Eq.(4) and (5) of K-Net paper
parameters = self.dynamic_layer(update_feature)
param_in = parameters[:, :self.num_params_in].view(
-1, self.feat_channels)
param_out = parameters[:, -self.num_params_out:].view(
-1, self.feat_channels)
# input_layer works for
# phi_2 and psi_4 in Eq.(4) and (5) of K-Net paper
input_feats = self.input_layer(
input_feature.reshape(num_proposals, -1, self.feat_channels))
input_in = input_feats[..., :self.num_params_in]
input_out = input_feats[..., -self.num_params_out:]
# `gate_feats` is F^G in K-Net paper
gate_feats = input_in * param_in.unsqueeze(-2)
if self.gate_norm_act:
gate_feats = self.activation(self.gate_norm(gate_feats))
input_gate = self.input_norm_in(self.input_gate(gate_feats))
update_gate = self.norm_in(self.update_gate(gate_feats))
if self.gate_sigmoid:
input_gate = input_gate.sigmoid()
update_gate = update_gate.sigmoid()
param_out = self.norm_out(param_out)
input_out = self.input_norm_out(input_out)
if self.activate_out:
param_out = self.activation(param_out)
input_out = self.activation(input_out)
# Gate mechanism. Eq.(5) in original paper.
# param_out has shape (batch_size, feat_channels, out_channels)
features = update_gate * param_out.unsqueeze(
-2) + input_gate * input_out
features = self.fc_layer(features)
features = self.fc_norm(features)
features = self.activation(features)
return features
@MODELS.register_module()
class KernelUpdateHead(nn.Module):
"""Kernel Update Head in K-Net.
Args:
num_classes (int): Number of classes. Default: 150.
num_ffn_fcs (int): The number of fully-connected layers in
FFNs. Default: 2.
num_heads (int): The number of parallel attention heads.
Default: 8.
num_mask_fcs (int): The number of fully connected layers for
mask prediction. Default: 3.
feedforward_channels (int): The hidden dimension of FFNs.
Defaults: 2048.
in_channels (int): The number of channels of input feature map.
Default: 256.
out_channels (int): The number of output channels.
Default: 256.
dropout (float): The Probability of an element to be
zeroed in MultiheadAttention and FFN. Default 0.0.
act_cfg (dict): Config of activation layers.
Default: dict(type='ReLU').
ffn_act_cfg (dict): Config of activation layers in FFN.
Default: dict(type='ReLU').
conv_kernel_size (int): The kernel size of convolution in
Kernel Update Head for dynamic kernel updation.
Default: 1.
feat_transform_cfg (dict | None): Config of feature transform.
Default: None.
kernel_init (bool): Whether initiate mask kernel in mask head.
Default: False.
with_ffn (bool): Whether add FFN in kernel update head.
Default: True.
feat_gather_stride (int): Stride of convolution in feature transform.
Default: 1.
mask_transform_stride (int): Stride of mask transform.
Default: 1.
kernel_updator_cfg (dict): Config of kernel updator.
Default: dict(
type='DynamicConv',
in_channels=256,
feat_channels=64,
out_channels=256,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')).
"""
def __init__(self,
num_classes=150,
num_ffn_fcs=2,
num_heads=8,
num_mask_fcs=3,
feedforward_channels=2048,
in_channels=256,
out_channels=256,
dropout=0.0,
act_cfg=dict(type='ReLU', inplace=True),
ffn_act_cfg=dict(type='ReLU', inplace=True),
conv_kernel_size=1,
feat_transform_cfg=None,
kernel_init=False,
with_ffn=True,
feat_gather_stride=1,
mask_transform_stride=1,
kernel_updator_cfg=dict(
type='DynamicConv',
in_channels=256,
feat_channels=64,
out_channels=256,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN'))):
super().__init__()
self.num_classes = num_classes
self.in_channels = in_channels
self.out_channels = out_channels
self.fp16_enabled = False
self.dropout = dropout
self.num_heads = num_heads
self.kernel_init = kernel_init
self.with_ffn = with_ffn
self.conv_kernel_size = conv_kernel_size
self.feat_gather_stride = feat_gather_stride
self.mask_transform_stride = mask_transform_stride
self.attention = MultiheadAttention(in_channels * conv_kernel_size**2,
num_heads, dropout)
self.attention_norm = build_norm_layer(
dict(type='LN'), in_channels * conv_kernel_size**2)[1]
self.kernel_update_conv = build_transformer_layer(kernel_updator_cfg)
if feat_transform_cfg is not None:
kernel_size = feat_transform_cfg.pop('kernel_size', 1)
transform_channels = in_channels
self.feat_transform = ConvModule(
transform_channels,
in_channels,
kernel_size,
stride=feat_gather_stride,
padding=int(feat_gather_stride // 2),
**feat_transform_cfg)
else:
self.feat_transform = None
if self.with_ffn:
self.ffn = FFN(
in_channels,
feedforward_channels,
num_ffn_fcs,
act_cfg=ffn_act_cfg,
dropout=dropout)
self.ffn_norm = build_norm_layer(dict(type='LN'), in_channels)[1]
self.mask_fcs = nn.ModuleList()
for _ in range(num_mask_fcs):
self.mask_fcs.append(
nn.Linear(in_channels, in_channels, bias=False))
self.mask_fcs.append(
build_norm_layer(dict(type='LN'), in_channels)[1])
self.mask_fcs.append(build_activation_layer(act_cfg))
self.fc_mask = nn.Linear(in_channels, out_channels)
def init_weights(self):
"""Use xavier initialization for all weight parameter and set
classification head bias as a specific value when use focal loss."""
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
else:
# adopt the default initialization for
# the weight and bias of the layer norm
pass
if self.kernel_init:
print_log(
'mask kernel in mask head is normal initialized by std 0.01')
nn.init.normal_(self.fc_mask.weight, mean=0, std=0.01)
def forward(self, x, proposal_feat, mask_preds, mask_shape=None):
"""Forward function of Dynamic Instance Interactive Head.
Args:
x (Tensor): Feature map from FPN with shape
(batch_size, feature_dimensions, H , W).
proposal_feat (Tensor): Intermediate feature get from
diihead in last stage, has shape
(batch_size, num_proposals, feature_dimensions)
mask_preds (Tensor): mask prediction from the former stage in shape
(batch_size, num_proposals, H, W).
Returns:
Tuple: The first tensor is predicted mask with shape
(N, num_classes, H, W), the second tensor is dynamic kernel
with shape (N, num_classes, channels, K, K).
"""
N, num_proposals = proposal_feat.shape[:2]
if self.feat_transform is not None:
x = self.feat_transform(x)
C, H, W = x.shape[-3:]
mask_h, mask_w = mask_preds.shape[-2:]
if mask_h != H or mask_w != W:
gather_mask = F.interpolate(
mask_preds, (H, W), align_corners=False, mode='bilinear')
else:
gather_mask = mask_preds
sigmoid_masks = gather_mask.softmax(dim=1)
# Group Feature Assembling. Eq.(3) in original paper.
# einsum is faster than bmm by 30%
x_feat = torch.einsum('bnhw,bchw->bnc', sigmoid_masks, x)
# obj_feat in shape [B, N, C, K, K] -> [B, N, C, K*K] -> [B, N, K*K, C]
proposal_feat = proposal_feat.reshape(N, num_proposals,
self.in_channels,
-1).permute(0, 1, 3, 2)
obj_feat = self.kernel_update_conv(x_feat, proposal_feat)
# [B, N, K*K, C] -> [B, N, K*K*C] -> [N, B, K*K*C]
obj_feat = obj_feat.reshape(N, num_proposals, -1).permute(1, 0, 2)
obj_feat = self.attention_norm(self.attention(obj_feat))
# [N, B, K*K*C] -> [B, N, K*K*C]
obj_feat = obj_feat.permute(1, 0, 2)
# obj_feat in shape [B, N, K*K*C] -> [B, N, K*K, C]
obj_feat = obj_feat.reshape(N, num_proposals, -1, self.in_channels)
# FFN
if self.with_ffn:
obj_feat = self.ffn_norm(self.ffn(obj_feat))
mask_feat = obj_feat
for reg_layer in self.mask_fcs:
mask_feat = reg_layer(mask_feat)
# [B, N, K*K, C] -> [B, N, C, K*K]
mask_feat = self.fc_mask(mask_feat).permute(0, 1, 3, 2)
if (self.mask_transform_stride == 2 and self.feat_gather_stride == 1):
mask_x = F.interpolate(
x, scale_factor=0.5, mode='bilinear', align_corners=False)
H, W = mask_x.shape[-2:]
else:
mask_x = x
# group conv is 5x faster than unfold and uses about 1/5 memory
# Group conv vs. unfold vs. concat batch, 2.9ms :13.5ms :3.8ms
# Group conv vs. unfold vs. concat batch, 278 : 1420 : 369
# but in real training group conv is slower than concat batch
# so we keep using concat batch.
# fold_x = F.unfold(
# mask_x,
# self.conv_kernel_size,
# padding=int(self.conv_kernel_size // 2))
# mask_feat = mask_feat.reshape(N, num_proposals, -1)
# new_mask_preds = torch.einsum('bnc,bcl->bnl', mask_feat, fold_x)
# [B, N, C, K*K] -> [B*N, C, K, K]
mask_feat = mask_feat.reshape(N, num_proposals, C,
self.conv_kernel_size,
self.conv_kernel_size)
# [B, C, H, W] -> [1, B*C, H, W]
new_mask_preds = []
for i in range(N):
new_mask_preds.append(
F.conv2d(
mask_x[i:i + 1],
mask_feat[i],
padding=int(self.conv_kernel_size // 2)))
new_mask_preds = torch.cat(new_mask_preds, dim=0)
new_mask_preds = new_mask_preds.reshape(N, num_proposals, H, W)
if self.mask_transform_stride == 2:
new_mask_preds = F.interpolate(
new_mask_preds,
scale_factor=2,
mode='bilinear',
align_corners=False)
if mask_shape is not None and mask_shape[0] != H:
new_mask_preds = F.interpolate(
new_mask_preds,
mask_shape,
align_corners=False,
mode='bilinear')
return new_mask_preds, obj_feat.permute(0, 1, 3, 2).reshape(
N, num_proposals, self.in_channels, self.conv_kernel_size,
self.conv_kernel_size)
@MODELS.register_module()
class IterativeDecodeHead(BaseDecodeHead):
"""K-Net: Towards Unified Image Segmentation.
This head is the implementation of
`K-Net: <https://arxiv.org/abs/2106.14855>`_.
Args:
num_stages (int): The number of stages (kernel update heads)
in IterativeDecodeHead. Default: 3.
kernel_generate_head:(dict): Config of kernel generate head which
generate mask predictions, dynamic kernels and class predictions
for next kernel update heads.
kernel_update_head (dict): Config of kernel update head which refine
dynamic kernels and class predictions iteratively.
"""
def __init__(self, num_stages, kernel_generate_head, kernel_update_head,
**kwargs):
# ``IterativeDecodeHead`` would skip initialization of
# ``BaseDecodeHead`` which would be called when building
# ``self.kernel_generate_head``.
super(BaseDecodeHead, self).__init__(**kwargs)
assert num_stages == len(kernel_update_head)
self.num_stages = num_stages
self.kernel_generate_head = MODELS.build(kernel_generate_head)
self.kernel_update_head = nn.ModuleList()
self.align_corners = self.kernel_generate_head.align_corners
self.num_classes = self.kernel_generate_head.num_classes
self.input_transform = self.kernel_generate_head.input_transform
self.ignore_index = self.kernel_generate_head.ignore_index
self.out_channels = self.num_classes
for head_cfg in kernel_update_head:
self.kernel_update_head.append(MODELS.build(head_cfg))
def forward(self, inputs):
"""Forward function."""
feats = self.kernel_generate_head._forward_feature(inputs)
sem_seg = self.kernel_generate_head.cls_seg(feats)
seg_kernels = self.kernel_generate_head.conv_seg.weight.clone()
seg_kernels = seg_kernels[None].expand(
feats.size(0), *seg_kernels.size())
stage_segs = [sem_seg]
for i in range(self.num_stages):
sem_seg, seg_kernels = self.kernel_update_head[i](feats,
seg_kernels,
sem_seg)
stage_segs.append(sem_seg)
if self.training:
return stage_segs
# only return the prediction of the last stage during testing
return stage_segs[-1]
def loss_by_feat(self, seg_logits: List[Tensor],
batch_data_samples: SampleList, **kwargs) -> dict:
losses = dict()
for i, logit in enumerate(seg_logits):
loss = self.kernel_generate_head.loss_by_feat(
logit, batch_data_samples)
for k, v in loss.items():
losses[f'{k}.s{i}'] = v
return losses