forked from google/gemmlowp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
unpack.h
280 lines (260 loc) · 12.3 KB
/
unpack.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
// Copyright 2015 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// unpack.h: unpacking the result blocks computed by compute.h,
// storing them into the destination matrix.
#ifndef GEMMLOWP_INTERNAL_UNPACK_H_
#define GEMMLOWP_INTERNAL_UNPACK_H_
#include "allocator.h"
#include "block_params.h"
#include "output.h"
#include "pack.h"
#include <cmath>
namespace gemmlowp {
class PackedResult {
public:
PackedResult(Allocator* _allocator, const BlockParams& _block_params)
: allocator_(_allocator), block_params_(_block_params) {
matrix_handle_ = allocator_->Reserve<std::int32_t>(block_params_.l2_rows *
block_params_.l2_cols);
}
~PackedResult() {}
MatrixMap<std::int32_t, MapOrder::ColMajor> Map() {
return MatrixMap<std::int32_t, MapOrder::ColMajor>(
allocator_->GetPointer<std::int32_t>(matrix_handle_),
block_params_.l2_rows, block_params_.l2_cols, block_params_.l2_rows);
}
MatrixMap<const std::int32_t, MapOrder::ColMajor> Map() const {
return MatrixMap<const std::int32_t, MapOrder::ColMajor>(
allocator_->GetPointer<const std::int32_t>(matrix_handle_),
block_params_.l2_rows, block_params_.l2_cols, block_params_.l2_rows);
}
private:
Allocator* allocator_;
Allocator::Handle matrix_handle_;
const BlockParams& block_params_;
};
struct MatrixBlockBounds {
int start_row;
int start_col;
int rows;
int cols;
MatrixBlockBounds(int start_row_, int start_col_, int rows_, int cols_)
: start_row(start_row_),
start_col(start_col_),
rows(rows_),
cols(cols_) {}
};
template <int Rows, int Cols, typename SrcMapType>
void PrefetchResultBlock(const SrcMapType& src,
const VectorMap<const std::int32_t, VectorShape::Col>&
lhs_sums_of_each_slice,
int src_row, int src_col) {
const std::int32_t* src_data = src.data(src_row, src_col);
const int src_stride = src.stride();
const std::int32_t* lhs_sums_data = lhs_sums_of_each_slice.data(src_row);
for (int r = 0; r < Rows; r += 4) {
Prefetch(lhs_sums_data + r);
}
for (int c = 0; c < Cols; c++) {
for (int r = 0; r < Rows; r += 4) {
Prefetch(src_data + r + c * src_stride);
}
}
}
template <typename KernelFormat, typename RegisterBlockType,
typename SrcMapType, typename LhsOffset, typename RhsOffset,
typename OutputPipelineExecutorType, typename DstType>
void UnpackResultBlock(const SrcMapType& src,
const OutputPipelineExecutorType& executor, DstType* dst,
const VectorMap<const std::int32_t, VectorShape::Col>&
lhs_sums_of_each_slice,
const VectorMap<const std::int32_t, VectorShape::Row>&
rhs_sums_of_each_slice,
const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
int depth, int src_row, int src_col, int src_global_row,
int src_global_col, int dst_row, int dst_col) {
using KernelLhsInputScalar = typename KernelFormat::Lhs::InputScalar;
using KernelLhsScalar = typename KernelFormat::Lhs::Scalar;
using KernelRhsInputScalar = typename KernelFormat::Rhs::InputScalar;
using KernelRhsScalar = typename KernelFormat::Rhs::Scalar;
static constexpr int KernelLhsZeroPointInput =
ZeroPointInputValue<KernelLhsInputScalar, KernelLhsScalar>::kValue;
static constexpr int KernelRhsZeroPointInput =
ZeroPointInputValue<KernelRhsInputScalar, KernelRhsScalar>::kValue;
auto acc = Load<RegisterBlockType>(src, src_row, src_col);
const auto& lhs_sums_of_each_slice_block =
LoadForBroadcasting<RegisterBlockType>(lhs_sums_of_each_slice, src_row);
const auto& rhs_sums_of_each_slice_block =
LoadForBroadcasting<RegisterBlockType>(rhs_sums_of_each_slice, src_col);
auto lhs_offset_block =
LoadForBroadcasting<RegisterBlockType>(lhs_offset, src_row);
auto rhs_offset_block =
LoadForBroadcasting<RegisterBlockType>(rhs_offset, src_col);
AddConstant<KernelLhsZeroPointInput>(&lhs_offset_block);
AddConstant<KernelRhsZeroPointInput>(&rhs_offset_block);
BroadcastMulAdd(lhs_sums_of_each_slice_block, rhs_offset_block, &acc);
for (int i = 0; i < decltype(rhs_offset_block)::kRegisterCount; i++) {
rhs_offset_block.buf.reg[i] = Mul(rhs_offset_block.buf.reg[i], depth);
}
BroadcastMulAdd(BroadcastAdd(rhs_sums_of_each_slice_block, rhs_offset_block),
lhs_offset_block, &acc);
executor.Execute(acc, dst, src_global_row, src_global_col, dst_row, dst_col);
}
template <typename KernelFormat, typename ResultBlockType,
typename PackedResultType, typename LhsOffset, typename RhsOffset,
typename OutputPipelineType>
void UnpackResult(ResultBlockType* dst, const MatrixBlockBounds& dst_block,
const PackedResultType& src, int depth,
const std::int32_t* lhs_sums_of_each_slice_ptr,
const std::int32_t* rhs_sums_of_each_slice_ptr,
const LhsOffset& lhs_offset, const RhsOffset& rhs_offset,
const OutputPipelineType& output_pipeline) {
ScopedProfilingLabel label(ResultBlockType::kOrder == MapOrder::ColMajor
? "unpack to column-major"
: "unpack to row-major");
assert(dst_block.start_row >= 0);
assert(dst_block.start_row + dst_block.rows <= dst->rows());
assert(dst_block.start_col >= 0);
assert(dst_block.start_col + dst_block.cols <= dst->cols());
const auto src_map = src.Map();
const VectorMap<const std::int32_t, VectorShape::Col> lhs_sums_of_each_slice(
lhs_sums_of_each_slice_ptr, dst_block.rows);
const VectorMap<const std::int32_t, VectorShape::Row> rhs_sums_of_each_slice(
rhs_sums_of_each_slice_ptr, dst_block.cols);
using Int32x1x1 = RegisterBlock<std::int32_t, 1, 1>;
using Int32x4x1 = RegisterBlock<std::int32_t, 4, 1>;
using Int32x8x1 = RegisterBlock<std::int32_t, 8, 1>;
using Int32x1x4 = RegisterBlock<std::int32_t, 1, 4>;
using Int32x4x4 = RegisterBlock<std::int32_t, 4, 4>;
using Int32x8x4 = RegisterBlock<std::int32_t, 8, 4>;
using DstScalarType = typename ResultBlockType::Scalar;
using DstScalarx8x8 = RegisterBlock<DstScalarType, 8, 8>;
OutputPipelineExecutor<OutputPipelineType, Int32x1x1>
output_pipeline_executor_1x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x4x1>
output_pipeline_executor_4x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x8x1>
output_pipeline_executor_8x1(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x1x4>
output_pipeline_executor_1x4(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x4x4>
output_pipeline_executor_4x4(output_pipeline);
OutputPipelineExecutor<OutputPipelineType, Int32x8x4>
output_pipeline_executor_8x4(output_pipeline);
int c8 = 0;
if (ResultBlockType::kOrder == MapOrder::RowMajor) {
for (; c8 <= dst_block.cols - 8; c8 += 8) {
PrefetchResultBlock<8, 8>(src_map, lhs_sums_of_each_slice, 0, c8);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 8>(src_map, lhs_sums_of_each_slice, r + 8, c8);
DstScalarType dst_colmajor_buf[64];
MatrixMap<DstScalarType, MapOrder::ColMajor> dst_colmajor_map(
dst_colmajor_buf, 8, 8);
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x8x4>(
src_map, output_pipeline_executor_8x4, &dst_colmajor_map,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, 0, cx);
}
StoreFinalOutput(LoadContiguous<DstScalarx8x8>(dst_colmajor_buf), dst,
r + dst_block.start_row, c8 + dst_block.start_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x4x4>(
src_map, output_pipeline_executor_4x4, dst,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, global_row,
global_col);
}
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
for (int cx = 0; cx < 8; cx += 4) {
const int c = c8 + cx;
const int global_col = c + dst_block.start_col;
UnpackResultBlock<KernelFormat, Int32x1x4>(
src_map, output_pipeline_executor_1x4, dst,
lhs_sums_of_each_slice, rhs_sums_of_each_slice, lhs_offset,
rhs_offset, depth, r, c, global_row, global_col, global_row,
global_col);
}
}
}
}
int c = c8;
for (; c <= dst_block.cols - 4; c += 4) {
const int global_col = c + dst_block.start_col;
PrefetchResultBlock<8, 4>(src_map, lhs_sums_of_each_slice, 0, c);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 4>(src_map, lhs_sums_of_each_slice, r + 8, c);
UnpackResultBlock<KernelFormat, Int32x8x4>(
src_map, output_pipeline_executor_8x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x4x4>(
src_map, output_pipeline_executor_4x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x1x4>(
src_map, output_pipeline_executor_1x4, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
}
for (; c < dst_block.cols; c++) {
const int global_col = c + dst_block.start_col;
PrefetchResultBlock<8, 1>(src_map, lhs_sums_of_each_slice, 0, c);
int r = 0;
for (; r <= dst_block.rows - 8; r += 8) {
const int global_row = r + dst_block.start_row;
PrefetchResultBlock<8, 1>(src_map, lhs_sums_of_each_slice, r + 8, c);
UnpackResultBlock<KernelFormat, Int32x8x1>(
src_map, output_pipeline_executor_8x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r <= dst_block.rows - 4; r += 4) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x4x1>(
src_map, output_pipeline_executor_4x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
for (; r < dst_block.rows; r++) {
const int global_row = r + dst_block.start_row;
UnpackResultBlock<KernelFormat, Int32x1x1>(
src_map, output_pipeline_executor_1x1, dst, lhs_sums_of_each_slice,
rhs_sums_of_each_slice, lhs_offset, rhs_offset, depth, r, c,
global_row, global_col, global_row, global_col);
}
}
}
} // end namespace gemmlowp
#endif // GEMMLOWP_INTERNAL_UNPACK_H_