-
Notifications
You must be signed in to change notification settings - Fork 9
/
nyu_transform.py
467 lines (321 loc) · 13.1 KB
/
nyu_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import torch
from numpy import clip
import numpy as np
from PIL import Image, ImageOps
import collections
try:
import accimage
except ImportError:
accimage = None
import random
import scipy.ndimage as ndimage
import pdb
def _is_pil_image(img):
if accimage is not None:
return isinstance(img, (Image.Image, accimage.Image))
else:
return isinstance(img, Image.Image)
def _is_numpy_image(img):
return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
class rotate_right(object):
def __init__(self, diff_angle=0, order=2, reshape=False):
self.angle = 90
self.reshape = reshape
self.order = order
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
#applied_angle = random.uniform(-self.angle, self.angle)
#angle1 = applied_angle
angle1 = self.angle * np.pi / 180
image = ndimage.interpolation.rotate(
image, angle1, reshape=self.reshape, order=self.order)
depth = ndimage.interpolation.rotate(
depth, angle1, reshape=self.reshape, order=self.order)
image = Image.fromarray(image)
depth = Image.fromarray(depth)
return {'image': image, 'depth': depth}
class rotate_left(object):
def __init__(self, diff_angle=0, order=2, reshape=False):
self.angle = -90
self.reshape = reshape
self.order = order
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
#applied_angle = random.uniform(-self.angle, self.angle)
#angle1 = applied_angle
angle1 = self.angle * np.pi / 180
image = ndimage.interpolation.rotate(
image, angle1, reshape=self.reshape, order=self.order)
depth = ndimage.interpolation.rotate(
depth, angle1, reshape=self.reshape, order=self.order)
image = Image.fromarray(image)
depth = Image.fromarray(depth)
return {'image': image, 'depth': depth}
class rotate_up_down(object):
def __init__(self, diff_angle=0, order=2, reshape=False):
self.angle = 180
self.reshape = reshape
self.order = order
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
#applied_angle = random.uniform(-self.angle, self.angle)
#angle1 = applied_angle
angle1 = self.angle * np.pi / 180
image = ndimage.interpolation.rotate(
image, angle1, reshape=self.reshape, order=self.order)
depth = ndimage.interpolation.rotate(
depth, angle1, reshape=self.reshape, order=self.order)
image = Image.fromarray(image)
depth = Image.fromarray(depth)
return {'image': image, 'depth': depth}
class RandomRotate(object):
"""Random rotation of the image from -angle to angle (in degrees)
This is useful for dataAugmentation, especially for geometric problems such as FlowEstimation
angle: max angle of the rotation
interpolation order: Default: 2 (bilinear)
reshape: Default: false. If set to true, image size will be set to keep every pixel in the image.
diff_angle: Default: 0. Must stay less than 10 degrees, or linear approximation of flowmap will be off.
"""
def __init__(self, angle, diff_angle=0, order=2, reshape=False):
self.angle = angle
self.reshape = reshape
self.order = order
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
applied_angle = random.uniform(-self.angle, self.angle)
angle1 = applied_angle
angle1_rad = angle1 * np.pi / 180
image = ndimage.interpolation.rotate(
image, angle1, reshape=self.reshape, order=self.order)
depth = ndimage.interpolation.rotate(
depth, angle1, reshape=self.reshape, order=self.order)
image = Image.fromarray(image)
depth = Image.fromarray(depth)
return {'image': image, 'depth': depth}
class HorizontalFlip(object):
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
if not _is_pil_image(image):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(img)))
if not _is_pil_image(depth):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(depth)))
image = image.transpose(Image.FLIP_LEFT_RIGHT)
depth = depth.transpose(Image.FLIP_LEFT_RIGHT)
return {'image': image, 'depth': depth}
class VerticalFlip(object):
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
if not _is_pil_image(image):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(img)))
if not _is_pil_image(depth):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(depth)))
image = image.transpose(Image.FLIP_TOP_BOTTOM)
depth = depth.transpose(Image.FLIP_TOP_BOTTOM)
return {'image': image, 'depth': depth}
class RandomHorizontalFlip(object):
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
if not _is_pil_image(image):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(img)))
if not _is_pil_image(depth):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(depth)))
if random.random() < 0.5:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
depth = depth.transpose(Image.FLIP_LEFT_RIGHT)
return {'image': image, 'depth': depth}
class Scale(object):
""" Rescales the inputs and target arrays to the given 'size'.
'size' will be the size of the smaller edge.
For example, if height > width, then image will be
rescaled to (size * height / width, size)
size: size of the smaller edge
interpolation order: Default: 2 (bilinear)
"""
def __init__(self, size):
self.size = size
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
image = self.changeScale(image, self.size)
depth = self.changeScale(depth, self.size,Image.NEAREST)
return {'image': image, 'depth': depth}
def changeScale(self, img, size, interpolation=Image.BILINEAR):
if not _is_pil_image(img):
raise TypeError(
'img should be PIL Image. Got {}'.format(type(img)))
if not (isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)):
raise TypeError('Got inappropriate size arg: {}'.format(size))
if isinstance(size, int):
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
else:
return img.resize(size[::-1], interpolation)
class CenterCrop(object):
def __init__(self, size_image, size_depth):
self.size_image = size_image
self.size_depth = size_depth
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
image = self.centerCrop(image, self.size_image)
depth = self.centerCrop(depth, self.size_image)
ow, oh = self.size_depth
depth = depth.resize((ow, oh),resample=Image.NEAREST)
return {'image': image, 'depth': depth}
def centerCrop(self, image, size):
w1, h1 = image.size
tw, th = size
if w1 == tw and h1 == th:
return image
x1 = int(round((w1 - tw) / 2.))
y1 = int(round((h1 - th) / 2.))
image = image.crop((x1, y1, tw + x1, th + y1))
return image
class ToTensor(object):
"""Convert a ``PIL.Image`` or ``numpy.ndarray`` to tensor.
Converts a PIL.Image or numpy.ndarray (H x W x C) in the range
[0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
"""
def __init__(self,is_train=True):
self.is_train = is_train
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
"""
Args:
pic (PIL.Image or numpy.ndarray): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
image = self.to_tensor(image)/255
depth = self.to_tensor(depth)/100000
return {'image': image, 'depth': depth}
def to_tensor(self, pic):
# handle PIL Image
if pic.mode == 'I':
img = torch.from_numpy(np.array(pic, np.int32, copy=False))
elif pic.mode == 'I;16':
img = torch.from_numpy(np.array(pic, np.int16, copy=False))
else:
img = torch.ByteTensor(
torch.ByteStorage.from_buffer(pic.tobytes()))
# PIL image mode: 1, L, P, I, F, RGB, YCbCr, RGBA, CMYK
if pic.mode == 'YCbCr':
nchannel = 3
elif pic.mode == 'I;16':
nchannel = 1
else:
nchannel = len(pic.mode)
img = img.view(pic.size[1], pic.size[0], nchannel)
# put it from HWC to CHW format
# yikes, this transpose takes 80% of the loading time/CPU
img = img.transpose(0, 1).transpose(0, 2).contiguous()
return img.float()
class Lighting(object):
def __init__(self, alphastd, eigval, eigvec):
self.alphastd = alphastd
self.eigval = eigval
self.eigvec = eigvec
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
if self.alphastd == 0:
return image
alpha = image.new().resize_(3).normal_(0, self.alphastd)
rgb = self.eigvec.type_as(image).clone()\
.mul(alpha.view(1, 3).expand(3, 3))\
.mul(self.eigval.view(1, 3).expand(3, 3))\
.sum(1).squeeze()
image = image.add(rgb.view(3, 1, 1).expand_as(image))
return {'image': image, 'depth': depth}
class Grayscale(object):
def __call__(self, img):
gs = img.clone()
gs[0].mul_(0.299).add_(0.587, gs[1]).add_(0.114, gs[2])
gs[1].copy_(gs[0])
gs[2].copy_(gs[0])
return gs
class Saturation(object):
def __init__(self, var):
self.var = var
def __call__(self, img):
gs = Grayscale()(img)
alpha = random.uniform(-self.var, self.var)
return img.lerp(gs, alpha)
class Brightness(object):
def __init__(self, var):
self.var = var
def __call__(self, img):
gs = img.new().resize_as_(img).zero_()
alpha = random.uniform(-self.var, self.var)
return img.lerp(gs, alpha)
class Contrast(object):
def __init__(self, var):
self.var = var
def __call__(self, img):
gs = Grayscale()(img)
gs.fill_(gs.mean())
alpha = random.uniform(-self.var, self.var)
return img.lerp(gs, alpha)
class RandomOrder(object):
""" Composes several transforms together in random order.
"""
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, sample):
image, depth = sample['image'], sample['depth']
if self.transforms is None:
return {'image': image, 'depth': depth}
order = torch.randperm(len(self.transforms))
for i in order:
image = self.transforms[i](image)
return {'image': image, 'depth': depth}
class ColorJitter(RandomOrder):
def __init__(self, brightness=0.4, contrast=0.4, saturation=0.4):
self.transforms = []
if brightness != 0:
self.transforms.append(Brightness(brightness))
if contrast != 0:
self.transforms.append(Contrast(contrast))
if saturation != 0:
self.transforms.append(Saturation(saturation))
class Normalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, sample):
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
Returns:
Tensor: Normalized image.
"""
image, depth = sample['image'], sample['depth']
image = self.normalize(image, self.mean, self.std)
return {'image': image, 'depth': depth}
def normalize(self, tensor, mean, std):
"""Normalize a tensor image with mean and standard deviation.
See ``Normalize`` for more details.
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
mean (sequence): Sequence of means for R, G, B channels respecitvely.
std (sequence): Sequence of standard deviations for R, G, B channels
respecitvely.
Returns:
Tensor: Normalized image.
"""
# TODO: make efficient
for t, m, s in zip(tensor, mean, std):
t.sub_(m).div_(s)
return tensor