-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
manual.yml
2878 lines (2190 loc) · 105 KB
/
manual.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
headline: jq 1.5 Manual
history: |
*The manual for the development version of jq can be found
[here](/jq/manual).*
body: |
A jq program is a "filter": it takes an input, and produces an
output. There are a lot of builtin filters for extracting a
particular field of an object, or converting a number to a string,
or various other standard tasks.
Filters can be combined in various ways - you can pipe the output of
one filter into another filter, or collect the output of a filter
into an array.
Some filters produce multiple results, for instance there's one that
produces all the elements of its input array. Piping that filter
into a second runs the second filter for each element of the
array. Generally, things that would be done with loops and iteration
in other languages are just done by gluing filters together in jq.
It's important to remember that every filter has an input and an
output. Even literals like "hello" or 42 are filters - they take an
input but always produce the same literal as output. Operations that
combine two filters, like addition, generally feed the same input to
both and combine the results. So, you can implement an averaging
filter as `add / length` - feeding the input array both to the `add`
filter and the `length` filter and then performing the division.
But that's getting ahead of ourselves. :) Let's start with something
simpler:
manpage_intro: |
jq(1) -- Command-line JSON processor
====================================
## SYNOPSIS
`jq` [<options>...] <filter> [<files>...]
`jq` can transform JSON in various ways, by selecting, iterating,
reducing and otherwise mangling JSON documents. For instance,
running the command `jq 'map(.price) | add'` will take an array of
JSON objects as input and return the sum of their "price" fields.
`jq` can accept text input as well, but by default, `jq` reads a
stream of JSON entities (including numbers and other literals) from
`stdin`. Whitespace is only needed to separate entities such as 1
and 2, and true and false. One or more <files> may be specified, in
which case `jq` will read input from those instead.
The <options> are described in the [INVOKING JQ] section; they
mostly concern input and output formatting. The <filter> is written
in the jq language and specifies how to transform the input
file or document.
## FILTERS
manpage_epilogue: |
## BUGS
Presumably. Report them or discuss them at:
https://github.com/stedolan/jq/issues
## AUTHOR
Stephen Dolan `<[email protected]>`
sections:
- title: Invoking jq
body: |
jq filters run on a stream of JSON data. The input to jq is
parsed as a sequence of whitespace-separated JSON values which
are passed through the provided filter one at a time. The
output(s) of the filter are written to standard out, again as a
sequence of whitespace-separated JSON data.
Note: it is important to mind the shell's quoting rules. As a
general rule it's best to always quote (with single-quote
characters) the jq program, as too many characters with special
meaning to jq are also shell meta-characters. For example, `jq
"foo"` will fail on most Unix shells because that will be the same
as `jq foo`, which will generally fail because `foo is not
defined`. When using the Windows command shell (cmd.exe) it's
best to use double quotes around your jq program when given on the
command-line (instead of the `-f program-file` option), but then
double-quotes in the jq program need backslash escaping.
You can affect how jq reads and writes its input and output
using some command-line options:
* `--version`:
Output the jq version and exit with zero.
* `--seq`:
Use the `application/json-seq` MIME type scheme for separating
JSON texts in jq's input and output. This means that an ASCII
RS (record separator) character is printed before each value on
output and an ASCII LF (line feed) is printed after every
output. Input JSON texts that fail to parse are ignored (but
warned about), discarding all subsequent input until the next
RS. This more also parses the output of jq without the `--seq`
option.
* `--stream`:
Parse the input in streaming fashion, outputing arrays of path
and leaf values (scalars and empty arrays or empty objects).
For example, `"a"` becomes `[[],"a"]`, and `[[],"a",["b"]]`
becomes `[[0],[]]`, `[[1],"a"]`, and `[[1,0],"b"]`.
This is useful for processing very large inputs. Use this in
conjunction with filtering and the `reduce` and `foreach` syntax
to reduce large inputs incrementally.
* `--slurp`/`-s`:
Instead of running the filter for each JSON object in the
input, read the entire input stream into a large array and run
the filter just once.
* `--raw-input`/`-R`:
Don't parse the input as JSON. Instead, each line of text is
passed to the filter as a string. If combined with `--slurp`,
then the entire input is passed to the filter as a single long
string.
* `--null-input`/`-n`:
Don't read any input at all! Instead, the filter is run once
using `null` as the input. This is useful when using jq as a
simple calculator or to construct JSON data from scratch.
* `--compact-output` / `-c`:
By default, jq pretty-prints JSON output. Using this option
will result in more compact output by instead putting each
JSON object on a single line.
* `--tab`:
Use a tab for each indentation level instead of two spaces.
* `--indent n`:
Use the given number of spaces (no more than 8) for indentation.
* `--color-output` / `-C` and `--monochrome-output` / `-M`:
By default, jq outputs colored JSON if writing to a
terminal. You can force it to produce color even if writing to
a pipe or a file using `-C`, and disable color with `-M`.
* `--ascii-output` / `-a`:
jq usually outputs non-ASCII Unicode codepoints as UTF-8, even
if the input specified them as escape sequences (like
"\u03bc"). Using this option, you can force jq to produce pure
ASCII output with every non-ASCII character replaced with the
equivalent escape sequence.
* `--unbuffered`
Flush the output after each JSON object is printed (useful if
you're piping a slow data source into jq and piping jq's
output elsewhere).
* `--sort-keys` / `-S`:
Output the fields of each object with the keys in sorted order.
* `--raw-output` / `-r`:
With this option, if the filter's result is a string then it
will be written directly to standard output rather than being
formatted as a JSON string with quotes. This can be useful for
making jq filters talk to non-JSON-based systems.
* `--join-output` / `-j`:
Like `-r` but jq won't print a newline after each output.
* `-f filename` / `--from-file filename`:
Read filter from the file rather than from a command line, like
awk's -f option. You can also use '#' to make comments.
* `-Ldirectory` / `-L directory`:
Prepend `directory` to the search list for modules. If this
option is used then no builtin search list is used. See the
section on modules below.
* `-e` / `--exit-status`:
Sets the exit status of jq to 0 if the last output values was
neither `false` nor `null`, 1 if the last output value was
either `false` or `null`, or 4 if no valid result was ever
produced. Normally jq exits with 2 if there was any usage
problem or system error, 3 if there was a jq program compile
error, or 0 if the jq program ran.
* `--arg name value`:
This option passes a value to the jq program as a predefined
variable. If you run jq with `--arg foo bar`, then `$foo` is
available in the program and has the value `"bar"`. Note that
`value` will be treated as a string, so `--arg foo 123` will
bind `$foo` to `"123"`.
* `--argjson name JSON-text`:
This option passes a JSON-encoded value to the jq program as a
predefined variable. If you run jq with `--argjson foo 123`, then
`$foo` is available in the program and has the value `123`.
* `--slurpfile variable-name filename`:
This option reads all the JSON texts in the named file and binds
an array of the parsed JSON values to the given global variable.
If you run jq with `--argfile foo bar`, then `$foo` is available
in the program and has an array whose elements correspond to the
texts in the file named `bar`.
* `--argfile variable-name filename`:
Do not use. Use `--slurpfile` instead.
(This option is like `--slurpfile`, but when the file has just
one text, then that is used, else an array of texts is used as
in `--slurpfile`.)
* `--run-tests [filename]`:
Runs the tests in the given file or standard input. This must
be the last option given and does not honor all preceding
options. The input consists of comment lines, empty lines, and
program lines followed by one input line, as many lines of
output as are expected (one per output), and a terminating empty
line. Compilation failure tests start with a line containing
only "%%FAIL", then a line containing the program to compile,
then a line containing an error message to compare to the
actual.
Be warned that this option can change backwards-incompatibly.
- title: Basic filters
entries:
- title: "`.`"
body: |
The absolute simplest (and least interesting) filter
is `.`. This is a filter that takes its input and
produces it unchanged as output.
Since jq by default pretty-prints all output, this trivial
program can be a useful way of formatting JSON output from,
say, `curl`.
examples:
- program: '.'
input: '"Hello, world!"'
output: ['"Hello, world!"']
- title: "`.foo`, `.foo.bar`"
body: |
The simplest *useful* filter is `.foo`. When given a
JSON object (aka dictionary or hash) as input, it produces
the value at the key "foo", or null if there's none present.
If the key contains special characters, you need to surround
it with double quotes like this: `."foo$"`.
A filter of the form `.foo.bar` is equivalent to `.foo|.bar`.
examples:
- program: '.foo'
input: '{"foo": 42, "bar": "less interesting data"}'
output: [42]
- program: '.foo'
input: '{"notfoo": true, "alsonotfoo": false}'
output: ['null']
- program: '.["foo"]'
input: '{"foo": 42}'
output: [42]
- title: "`.foo?`"
body: |
Just like `.foo`, but does not output even an error when `.`
is not an array or an object.
examples:
- program: '.foo?'
input: '{"foo": 42, "bar": "less interesting data"}'
output: [42]
- program: '.foo?'
input: '{"notfoo": true, "alsonotfoo": false}'
output: ['null']
- program: '.["foo"]?'
input: '{"foo": 42}'
output: [42]
- program: '[.foo?]'
input: '[1,2]'
output: ['[]']
- title: "`.[<string>]`, `.[2]`, `.[10:15]`"
body: |
You can also look up fields of an object using syntax like
`.["foo"]` (.foo above is a shorthand version of this). This
one works for arrays as well, if the key is an
integer. Arrays are zero-based (like javascript), so `.[2]`
returns the third element of the array.
The `.[10:15]` syntax can be used to return a subarray of an
array or substring of a string. The array returned by
`.[10:15]` will be of length 5, containing the elements from
index 10 (inclusive) to index 15 (exclusive). Either index may
be negative (in which case it counts backwards from the end of
the array), or omitted (in which case it refers to the start
or end of the array).
The `.[2]` syntax can be used to return the element at the
given index. Negative indices are allowed, with -1 referring
to the last element, -2 referring to the next to last element,
and so on.
The `.foo` syntax only works for simple keys i.e. keys that
are all alphanumeric characters. `.[<string>]` works with
keys that contain special characters such as colons and dots.
For example `.["foo::bar"]` and `.["foo.bar"]` work while
`.foo::bar` and `.foo.bar` would not.
The `?` "operator" can also be used with the slice operator,
as in `.[10:15]?`, which outputs values where the inputs are
slice-able.
examples:
- program: '.[0]'
input: '[{"name":"JSON", "good":true}, {"name":"XML", "good":false}]'
output: ['{"name":"JSON", "good":true}']
- program: '.[2]'
input: '[{"name":"JSON", "good":true}, {"name":"XML", "good":false}]'
output: ['null']
- program: '.[2:4]'
input: '["a","b","c","d","e"]'
output: ['["c", "d"]']
- program: '.[2:4]'
input: '"abcdefghi"'
output: ['"cd"']
- program: '.[:3]'
input: '["a","b","c","d","e"]'
output: ['["a", "b", "c"]']
- program: '.[-2:]'
input: '["a","b","c","d","e"]'
output: ['["d", "e"]']
- program: '.[-2]'
input: '[1,2,3]'
output: ['2']
- title: "`.[]`"
body: |
If you use the `.[index]` syntax, but omit the index
entirely, it will return *all* of the elements of an
array. Running `.[]` with the input `[1,2,3]` will produce the
numbers as three separate results, rather than as a single
array.
You can also use this on an object, and it will return all
the values of the object.
examples:
- program: '.[]'
input: '[{"name":"JSON", "good":true}, {"name":"XML", "good":false}]'
output:
- '{"name":"JSON", "good":true}'
- '{"name":"XML", "good":false}'
- program: '.[]'
input: '[]'
output: []
- program: '.[]'
input: '{"a": 1, "b": 1}'
output: ['1', '1']
- title: "`.[]?`"
body: |
Like `.[]`, but no errors will be output if . is not an array
or object.
- title: "`,`"
body: |
If two filters are separated by a comma, then the
input will be fed into both and there will be multiple
outputs: first, all of the outputs produced by the left
expression, and then all of the outputs produced by the
right. For instance, filter `.foo, .bar`, produces
both the "foo" fields and "bar" fields as separate outputs.
examples:
- program: '.foo, .bar'
input: '{"foo": 42, "bar": "something else", "baz": true}'
output: ['42', '"something else"']
- program: ".user, .projects[]"
input: '{"user":"stedolan", "projects": ["jq", "wikiflow"]}'
output: ['"stedolan"', '"jq"', '"wikiflow"']
- program: '.[4,2]'
input: '["a","b","c","d","e"]'
output: ['"e"', '"c"']
- title: "`|`"
body: |
The | operator combines two filters by feeding the output(s) of
the one on the left into the input of the one on the right. It's
pretty much the same as the Unix shell's pipe, if you're used to
that.
If the one on the left produces multiple results, the one on
the right will be run for each of those results. So, the
expression `.[] | .foo` retrieves the "foo" field of each
element of the input array.
examples:
- program: '.[] | .name'
input: '[{"name":"JSON", "good":true}, {"name":"XML", "good":false}]'
output: ['"JSON"', '"XML"']
- title: Types and Values
body: |
jq supports the same set of datatypes as JSON - numbers,
strings, booleans, arrays, objects (which in JSON-speak are
hashes with only string keys), and "null".
Booleans, null, strings and numbers are written the same way as
in javascript. Just like everything else in jq, these simple
values take an input and produce an output - `42` is a valid jq
expression that takes an input, ignores it, and returns 42
instead.
entries:
- title: Array construction - `[]`
body: |
As in JSON, `[]` is used to construct arrays, as in
`[1,2,3]`. The elements of the arrays can be any jq
expression. All of the results produced by all of the
expressions are collected into one big array. You can use it
to construct an array out of a known quantity of values (as
in `[.foo, .bar, .baz]`) or to "collect" all the results of a
filter into an array (as in `[.items[].name]`)
Once you understand the "," operator, you can look at jq's array
syntax in a different light: the expression `[1,2,3]` is not using a
built-in syntax for comma-separated arrays, but is instead applying
the `[]` operator (collect results) to the expression 1,2,3 (which
produces three different results).
If you have a filter `X` that produces four results,
then the expression `[X]` will produce a single result, an
array of four elements.
examples:
- program: "[.user, .projects[]]"
input: '{"user":"stedolan", "projects": ["jq", "wikiflow"]}'
output: ['["stedolan", "jq", "wikiflow"]']
- title: Objects - `{}`
body: |
Like JSON, `{}` is for constructing objects (aka
dictionaries or hashes), as in: `{"a": 42, "b": 17}`.
If the keys are "sensible" (all alphabetic characters), then
the quotes can be left off. The value can be any expression
(although you may need to wrap it in parentheses if it's a
complicated one), which gets applied to the {} expression's
input (remember, all filters have an input and an
output).
{foo: .bar}
will produce the JSON object `{"foo": 42}` if given the JSON
object `{"bar":42, "baz":43}`. You can use this to select
particular fields of an object: if the input is an object
with "user", "title", "id", and "content" fields and you
just want "user" and "title", you can write
{user: .user, title: .title}
Because that's so common, there's a shortcut syntax: `{user, title}`.
If one of the expressions produces multiple results,
multiple dictionaries will be produced. If the input's
{"user":"stedolan","titles":["JQ Primer", "More JQ"]}
then the expression
{user, title: .titles[]}
will produce two outputs:
{"user":"stedolan", "title": "JQ Primer"}
{"user":"stedolan", "title": "More JQ"}
Putting parentheses around the key means it will be evaluated as an
expression. With the same input as above,
{(.user): .titles}
produces
{"stedolan": ["JQ Primer", "More JQ"]}
examples:
- program: '{user, title: .titles[]}'
input: '{"user":"stedolan","titles":["JQ Primer", "More JQ"]}'
output:
- '{"user":"stedolan", "title": "JQ Primer"}'
- '{"user":"stedolan", "title": "More JQ"}'
- program: '{(.user): .titles}'
input: '{"user":"stedolan","titles":["JQ Primer", "More JQ"]}'
output: ['{"stedolan": ["JQ Primer", "More JQ"]}']
- title: Builtin operators and functions
body: |
Some jq operator (for instance, `+`) do different things
depending on the type of their arguments (arrays, numbers,
etc.). However, jq never does implicit type conversions. If you
try to add a string to an object you'll get an error message and
no result.
entries:
- title: Addition - `+`
body: |
The operator `+` takes two filters, applies them both
to the same input, and adds the results together. What
"adding" means depends on the types involved:
- **Numbers** are added by normal arithmetic.
- **Arrays** are added by being concatenated into a larger array.
- **Strings** are added by being joined into a larger string.
- **Objects** are added by merging, that is, inserting all
the key-value pairs from both objects into a single
combined object. If both objects contain a value for the
same key, the object on the right of the `+` wins. (For
recursive merge use the `*` operator.)
`null` can be added to any value, and returns the other
value unchanged.
examples:
- program: '.a + 1'
input: '{"a": 7}'
output: ['8']
- program: '.a + .b'
input: '{"a": [1,2], "b": [3,4]}'
output: ['[1,2,3,4]']
- program: '.a + null'
input: '{"a": 1}'
output: ['1']
- program: '.a + 1'
input: '{}'
output: ['1']
- program: '{a: 1} + {b: 2} + {c: 3} + {a: 42}'
input: 'null'
output: ['{"a": 42, "b": 2, "c": 3}']
- title: Subtraction - `-`
body: |
As well as normal arithmetic subtraction on numbers, the `-`
operator can be used on arrays to remove all occurrences of
the second array's elements from the first array.
examples:
- program: '4 - .a'
input: '{"a":3}'
output: ['1']
- program: . - ["xml", "yaml"]
input: '["xml", "yaml", "json"]'
output: ['["json"]']
- title: Multiplication, division, modulo - `*`, `/`, and `%`
body: |
These infix operators behave as expected when given two numbers.
Division by zero raises an error. `x % y` computes x modulo y.
Multiplying a string by a number produces the concatenation of
that string that many times. `"x" * 0` produces **null**.
Dividing a string by another splits the first using the second
as separators.
Multiplying two objects will merge them recursively: this works
like addition but if both objects contain a value for the
same key, and the values are objects, the two are merged with
the same strategy.
examples:
- program: '10 / . * 3'
input: 5
output: [6]
- program: '. / ", "'
input: '"a, b,c,d, e"'
output: ['["a","b,c,d","e"]']
- program: '{"k": {"a": 1, "b": 2}} * {"k": {"a": 0,"c": 3}}'
input: 'null'
output: ['{"k": {"a": 0, "b": 2, "c": 3}}']
- program: '.[] | (1 / .)?'
input: '[1,0,-1]'
output: ['1', '-1']
- title: "`length`"
body: |
The builtin function `length` gets the length of various
different types of value:
- The length of a **string** is the number of Unicode
codepoints it contains (which will be the same as its
JSON-encoded length in bytes if it's pure ASCII).
- The length of an **array** is the number of elements.
- The length of an **object** is the number of key-value pairs.
- The length of **null** is zero.
examples:
- program: '.[] | length'
input: '[[1,2], "string", {"a":2}, null]'
output: [2, 6, 1, 0]
- title: "`keys`, `keys_unsorted`"
body: |
The builtin function `keys`, when given an object, returns
its keys in an array.
The keys are sorted "alphabetically", by unicode codepoint
order. This is not an order that makes particular sense in
any particular language, but you can count on it being the
same for any two objects with the same set of keys,
regardless of locale settings.
When `keys` is given an array, it returns the valid indices
for that array: the integers from 0 to length-1.
The `keys_unsorted` function is just like `keys`, but if
the input is an object then the keys will not be sorted,
instead the keys will roughly be in insertion order.
examples:
- program: 'keys'
input: '{"abc": 1, "abcd": 2, "Foo": 3}'
output: ['["Foo", "abc", "abcd"]']
- program: 'keys'
input: '[42,3,35]'
output: ['[0,1,2]']
- title: "`has(key)`"
body: |
The builtin function `has` returns whether the input object
has the given key, or the input array has an element at the
given index.
`has($key)` has the same effect as checking whether `$key`
is a member of the array returned by `keys`, although `has`
will be faster.
examples:
- program: 'map(has("foo"))'
input: '[{"foo": 42}, {}]'
output: ['[true, false]']
- program: 'map(has(2))'
input: '[[0,1], ["a","b","c"]]'
output: ['[false, true]']
- title: "`in`"
body: |
The builtin function `in` returns whether or not the input key is in the
given object, or the input index corresponds to an element
in the given array. It is, essentially, an inversed version
of `has`.
examples:
- program: '.[] | in({"foo": 42})'
input: '["foo", "bar"]'
output: ['true', 'false']
- program: 'map(in([0,1]))'
input: '[2, 0]'
output: ['[false, true]']
- title: "`path(path_expression)`"
body: |
Outputs array representations of the given path expression
in `.`. The outputs are arrays of strings (object keys)
and/or numbers (array indices).
Path expressions are jq expressions like `.a`, but also `.[]`.
There are two types of path expressions: ones that can match
exactly, and ones that cannot. For example, `.a.b.c` is an
exact match path expression, while `.a[].b` is not.
`path(exact_path_expression)` will produce the array
representation of the path expression even if it does not
exist in `.`, if `.` is `null` or an array or an object.
`path(pattern)` will produce array representations of the
paths matching `pattern` if the paths exist in `.`.
Note that the path expressions are not different from normal
expressions. The expression
`path(..|select(type=="boolean"))` outputs all the paths to
boolean values in `.`, and only those paths.
examples:
- program: 'path(.a[0].b)'
input: 'null'
output: ['["a",0,"b"]']
- program: '[path(..)]'
input: '{"a":[{"b":1}]}'
output: ['[[],["a"],["a",0],["a",0,"b"]]']
- title: "`del(path_expression)`"
body: |
The builtin function `del` removes a key and its corresponding
value from an object.
examples:
- program: 'del(.foo)'
input: '{"foo": 42, "bar": 9001, "baz": 42}'
output: ['{"bar": 9001, "baz": 42}']
- program: 'del(.[1, 2])'
input: '["foo", "bar", "baz"]'
output: ['["foo"]']
- title: "`to_entries`, `from_entries`, `with_entries`"
body: |
These functions convert between an object and an array of
key-value pairs. If `to_entries` is passed an object, then
for each `k: v` entry in the input, the output array
includes `{"key": k, "value": v}`.
`from_entries` does the opposite conversion, and
`with_entries(foo)` is a shorthand for `to_entries |
map(foo) | from_entries`, useful for doing some operation to
all keys and values of an object. `from_entries` accepts key, Key,
Name, value and Value as keys.
examples:
- program: 'to_entries'
input: '{"a": 1, "b": 2}'
output: ['[{"key":"a", "value":1}, {"key":"b", "value":2}]']
- program: 'from_entries'
input: '[{"key":"a", "value":1}, {"key":"b", "value":2}]'
output: ['{"a": 1, "b": 2}']
- program: 'with_entries(.key |= "KEY_" + .)'
input: '{"a": 1, "b": 2}'
output: ['{"KEY_a": 1, "KEY_b": 2}']
- title: "`select(boolean_expression)`"
body: |
The function `select(foo)` produces its input unchanged if
`foo` returns true for that input, and produces no output
otherwise.
It's useful for filtering lists: `[1,2,3] | map(select(. >= 2))`
will give you `[2,3]`.
examples:
- program: 'map(select(. >= 2))'
input: '[1,5,3,0,7]'
output: ['[5,3,7]']
- program: '.[] | select(.id == "second")'
input: '[{"id": "first", "val": 1}, {"id": "second", "val": 2}]'
output: ['{"id": "second", "val": 2}']
- title: "`arrays`, `objects`, `iterables`, `booleans`, `numbers`, `normals`, `finites`, `strings`, `nulls`, `values`, `scalars`"
body: |
These built-ins select only inputs that are arrays, objects,
iterables (arrays or objects), booleans, numbers, normal
numbers, finite numbers, strings, null, non-null values, and
non-iterables, respectively.
examples:
- program: '.[]|numbers'
input: '[[],{},1,"foo",null,true,false]'
output: ['1']
- title: "`empty`"
body: |
`empty` returns no results. None at all. Not even `null`.
It's useful on occasion. You'll know if you need it :)
examples:
- program: '1, empty, 2'
input: 'null'
output: [1, 2]
- program: '[1,2,empty,3]'
input: 'null'
output: ['[1,2,3]']
- title: "`error(message)`"
body: |
Produces an error, just like `.a` applied to values other than
null and objects would, but with the given message as the
error's value.
- title: "`$__loc__`"
body: |
Produces an object with a "file" key and a "line" key, with
the filename and line number where `$__loc__` occurs, as
values.
examples:
- program: 'try error("\($__loc__)") catch .'
input: 'null'
output: ['"{\"file\":\"<top-level>\",\"line\":1}"']
- title: "`map(x)`, `map_values(x)`"
body: |
For any filter `x`, `map(x)` will run that filter for each
element of the input array, and return the outputs in a new
array. `map(.+1)` will increment each element of an array of numbers.
Similarly, `map_values(x)` will run that filter for each element,
but it will return an object when an object is passed.
`map(x)` is equivalent to `[.[] | x]`. In fact, this is how
it's defined. Similarly, `map_values(x)` is defined as `.[] |= x`.
examples:
- program: 'map(.+1)'
input: '[1,2,3]'
output: ['[2,3,4]']
- program: 'map_values(.+1)'
input: '{"a": 1, "b": 2, "c": 3}'
output: ['{"a": 2, "b": 3, "c": 4}']
- title: "`paths`, `paths(node_filter)`, `leaf_paths`"
body: |
`paths` outputs the paths to all the elements in its input
(except it does not output the empty list, representing .
itself).
`paths(f)` outputs the paths to any values for which `f` is true.
That is, `paths(numbers)` outputs the paths to all numeric
values.
`leaf_paths` is an alias of `paths(scalars)`; `leaf_paths` is
*deprecated* and will be removed in the next major release.
examples:
- program: '[paths]'
input: '[1,[[],{"a":2}]]'
output: ['[[0],[1],[1,0],[1,1],[1,1,"a"]]']
- program: '[paths(scalars)]'
input: '[1,[[],{"a":2}]]'
output: ['[[0],[1,1,"a"]]']
- title: "`add`"
body: |
The filter `add` takes as input an array, and produces as
output the elements of the array added together. This might
mean summed, concatenated or merged depending on the types
of the elements of the input array - the rules are the same
as those for the `+` operator (described above).
If the input is an empty array, `add` returns `null`.
examples:
- program: add
input: '["a","b","c"]'
output: ['"abc"']
- program: add
input: '[1, 2, 3]'
output: [6]
- program: add
input: '[]'
output: ["null"]
- title: "`any`, `any(condition)`, `any(generator; condition)`"
body: |
The filter `any` takes as input an array of boolean values,
and produces `true` as output if any of the elements of
the array are `true`.
If the input is an empty array, `any` returns `false`.
The `any(condition)` form applies the given condition to the
elements of the input array.
The `any(generator; condition)` form applies the given
condition to all the outputs of the given generator.
examples:
- program: any
input: '[true, false]'
output: ["true"]
- program: any
input: '[false, false]'
output: ["false"]
- program: any
input: '[]'
output: ["false"]
- title: "`all`, `all(condition)`, `all(generator; condition)`"
body: |
The filter `all` takes as input an array of boolean values,
and produces `true` as output if all of the elements of
the array are `true`.
The `all(condition)` form applies the given condition to the
elements of the input array.
The `all(generator; condition)` form applies the given
condition to all the outputs of the given generator.
If the input is an empty array, `all` returns `true`.
examples:
- program: all
input: '[true, false]'
output: ["false"]
- program: all
input: '[true, true]'
output: ["true"]
- program: all
input: '[]'
output: ["true"]
- title: "`flatten`, `flatten(depth)`"
body: |
The filter `flatten` takes as input an array of nested arrays,
and produces a flat array in which all arrays inside the original
array have been recursively replaced by their values. You can pass
an argument to it to specify how many levels of nesting to flatten.
`flatten(2)` is like `flatten`, but going only up to two
levels deep.
examples:
- program: flatten
input: '[1, [2], [[3]]]'
output: ["[1, 2, 3]"]
- program: flatten(1)
input: '[1, [2], [[3]]]'
output: ["[1, 2, [3]]"]