diff --git a/DESCRIPTION b/DESCRIPTION
index d35fb57..a2deb87 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -7,7 +7,57 @@ Authors@R: c(
"Stefano",
"Mangiola",
email = "mangiolastefano@gmail.com",
- role = c("aut", "cre")
+ role = c("aut", "cre", "rev")
+ ),
+ person(
+ "Michael",
+ "Milton",
+ email = "milton.m@wehi.edu.au",
+ role = c("aut", "rev")
+ ),
+ person(
+ "Martin",
+ "Morgan",
+ email = "Martin.Morgan@RoswellPark.org",
+ role = c("ctb", "rev")
+ ),
+ person(
+ "Vincent",
+ "Carey",
+ email = "stvjc@channing.harvard.edu",
+ role = c("ctb", "rev")
+ ),
+ person(
+ "Julie",
+ "Iskander",
+ email = "iskander.j@wehi.edu.au",
+ role = c( "rev")
+ ),
+ person(
+ "Tony",
+ "Papenfuss",
+ email = "papenfuss@wehi.edu.au",
+ role = c( "rev")
+ ),
+ person(
+ "Silicon Valley Foundation",
+ "CZF2019-002443",
+ role = c( "fnd")
+ ),
+ person(
+ "NIH NHGRI",
+ "5U24HG004059-18",
+ role = c( "fnd")
+ ),
+ person(
+ "Victoria Cancer Agnency",
+ "ECRF21036",
+ role = c( "fnd")
+ ),
+ person(
+ "NHMRC",
+ "1116955",
+ role = c( "fnd")
))
Description: Provides access to a copy of the Human Cell Atlas, but with
harmonised metadata. This allows for uniform querying across numerous
diff --git a/README.Rmd b/README.Rmd
index e443126..d5a81bb 100644
--- a/README.Rmd
+++ b/README.Rmd
@@ -3,9 +3,12 @@ title: "CuratedAtlasQueryR"
output: github_document
---
-`CuratedAtlasQuery` is a query interface that allow the programmatic exploration and retrieval of the harmonised, curated and reannotated CELLxGENE single-cell human cell atlas. Data can be retrieved at cell, sample, or dataset levels based on filtering criteria.
+
+[![Lifecycle:maturing](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/#maturing)
+
-# Query interface
+
+`CuratedAtlasQuery` is a query interface that allow the programmatic exploration and retrieval of the harmonised, curated and reannotated CELLxGENE single-cell human cell atlas. Data can be retrieved at cell, sample, or dataset levels based on filtering criteria.
```{r, include = FALSE}
# Note: knit this to the repo readme file using:
@@ -16,8 +19,27 @@ knitr::opts_chunk$set(
)
```
-```{r, echo=FALSE, out.height = "139px", out.width = "120px"}
-knitr::include_graphics("inst/logo.png")
+```{r, echo=FALSE, out.height = c("139px"), out.width = "120x" }
+knitr::include_graphics(c("inst/logo.png"))
+```
+
+```{r, echo=FALSE, out.height = c("58px"), out.width = c("155x", "129px", "202px", "219px")}
+knitr::include_graphics(c(
+ "inst/svcf_logo.jpeg",
+ "inst/czi_logo.png",
+ "inst/bioconductor_logo.jpg",
+ "inst/vca_logo.png"
+))
+```
+
+[website](https://stemangiola.github.io/CuratedAtlasQueryR)
+
+# Query interface
+
+## Installation
+
+```{r, eval=FALSE}
+devtools::install_github("stemangiola/CuratedAtlasQueryR")
```
## Load the package
@@ -38,7 +60,7 @@ get_metadata()
### Explore the tissue
-```{r, eval=FALSE}
+```{r}
get_metadata() |>
dplyr::distinct(tissue, file_id)
```
@@ -189,7 +211,7 @@ Through harmonisation and curation we introduced custom column, not present in t
- `tissue_harmonised`: a coarser tissue name for better filtering
- `age_days`: the number of days corresponding to the age
-- `cell_type_harmonised`: the consensus call identiti (for immune cells) using the original and three novel annotations using Seurat Azimuth and SingleR
+- `cell_type_harmonised`: the consensus call identity (for immune cells) using the original and three novel annotations using Seurat Azimuth and SingleR
- `confidence_class`: an ordinal class of how confident `cell_type_harmonised` is. 1 is complete consensus, 2 is 3 out of four and so on.
- `cell_annotation_azimuth_l2`: Azimuth cell annotation
- `cell_annotation_blueprint_singler`: SingleR cell annotation using Blueprint reference
@@ -201,6 +223,15 @@ Through harmonisation and curation we introduced custom column, not present in t
# RNA abundance
-The `raw` assay includes RNA abundance in the positive real scale (not transformed with non-linear functions, e.g. log sqrt). Originally CELLxGENE include a mix of scales and tranformations specified in the `x_normalization` column.
+The `raw` assay includes RNA abundance in the positive real scale (not transformed with non-linear functions, e.g. log sqrt). Originally CELLxGENE include a mix of scales and transformations specified in the `x_normalization` column.
The `cpm` assay includes counts per million.
+
+---
+
+This project has been funded by
+
+- *Silicon Valley Foundation* CZF2019-002443
+- *Bioconductor core funding* NIH NHGRI 5U24HG004059-18
+- *Victoria Cancer Agency* ECRF21036
+- *Australian National Health and Medical Research Council* 1116955
diff --git a/README.md b/README.md
index bf37a2e..6526e2d 100644
--- a/README.md
+++ b/README.md
@@ -1,14 +1,29 @@
CuratedAtlasQueryR
================
+
+
+[![Lifecycle:maturing](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/#maturing)
+
+
`CuratedAtlasQuery` is a query interface that allow the programmatic
exploration and retrieval of the harmonised, curated and reannotated
CELLxGENE single-cell human cell atlas. Data can be retrieved at cell,
sample, or dataset levels based on filtering criteria.
+
+
+
+
+[website](https://stemangiola.github.io/CuratedAtlasQueryR)
+
# Query interface
-
+## Installation
+
+``` r
+devtools::install_github("stemangiola/CuratedAtlasQueryR")
+```
## Load the package
@@ -24,8 +39,8 @@ library(stringr)
``` r
get_metadata()
-#> # Source: table [?? x 56]
-#> # Database: sqlite 3.40.0 [/stornext/Home/data/allstaff/m/mangiola.s/.cache/R/CuratedAtlasQueryR/metadata.sqlite]
+#> # Source: table [?? x 56]
+#> # Database: DuckDB 0.6.2-dev1166 [unknown@Linux 3.10.0-1160.81.1.el7.x86_64:R 4.2.0/:memory:]
#> .cell sampl…¹ .sample .samp…² assay assay…³ file_…⁴ cell_…⁵ cell_…⁶ devel…⁷
#>
#> 1 AAACCT… 8a0fe0… 5f20d7… D17PrP… 10x … EFO:00… 1e334b… basal … CL:000… 31-yea…
@@ -52,6 +67,21 @@ get_metadata()
``` r
get_metadata() |>
dplyr::distinct(tissue, file_id)
+#> # Source: SQL [?? x 2]
+#> # Database: DuckDB 0.6.2-dev1166 [unknown@Linux 3.10.0-1160.81.1.el7.x86_64:R 4.2.0/:memory:]
+#> tissue file_id
+#>
+#> 1 blood 07beec85-51be-4d73-bb80-8f85b7b643d5
+#> 2 blood 3431ab62-b11d-445f-a461-1408d2b29f8c
+#> 3 blood 5500774a-6ebe-4ddf-adce-90302b7cd007
+#> 4 blood 550760cb-ede9-4e6b-b6ab-7152f2ce29e1
+#> 5 blood a0396bf6-cd6d-42d9-b1b5-c66b19d312ae
+#> 6 cortex of kidney a1035da5-137b-4fac-8435-d1e4af20851c
+#> 7 blood a139b1d6-eba0-484d-860c-4fb810e17615
+#> 8 prefrontal cortex 27e51147-93c7-40c5-a6a3-da4b203e05ba
+#> 9 macula lutea proper 28d54b40-7a92-40cf-b164-a6c3158f55f6
+#> 10 fovea centralis 28d54b40-7a92-40cf-b164-a6c3158f55f6
+#> # … with more rows
```
``` r
@@ -277,7 +307,7 @@ present in the original CELLxGENE metadata
- `tissue_harmonised`: a coarser tissue name for better filtering
- `age_days`: the number of days corresponding to the age
-- `cell_type_harmonised`: the consensus call identiti (for immune cells)
+- `cell_type_harmonised`: the consensus call identity (for immune cells)
using the original and three novel annotations using Seurat Azimuth
and SingleR
- `confidence_class`: an ordinal class of how confident
@@ -297,7 +327,16 @@ present in the original CELLxGENE metadata
The `raw` assay includes RNA abundance in the positive real scale (not
transformed with non-linear functions, e.g. log sqrt). Originally
-CELLxGENE include a mix of scales and tranformations specified in the
+CELLxGENE include a mix of scales and transformations specified in the
`x_normalization` column.
The `cpm` assay includes counts per million.
+
+------------------------------------------------------------------------
+
+This project has been funded by
+
+- *Silicon Valley Foundation* CZF2019-002443
+- *Bioconductor core funding* NIH NHGRI 5U24HG004059-18
+- *Victoria Cancer Agency* ECRF21036
+- *Australian National Health and Medical Research Council* 1116955
diff --git a/inst/bioconductor_logo.jpg b/inst/bioconductor_logo.jpg
new file mode 100644
index 0000000..5e1e5f5
Binary files /dev/null and b/inst/bioconductor_logo.jpg differ
diff --git a/inst/czi_logo.png b/inst/czi_logo.png
new file mode 100644
index 0000000..94014af
Binary files /dev/null and b/inst/czi_logo.png differ
diff --git a/inst/svcf_logo.jpeg b/inst/svcf_logo.jpeg
new file mode 100644
index 0000000..bbc166e
Binary files /dev/null and b/inst/svcf_logo.jpeg differ
diff --git a/inst/vca_logo.png b/inst/vca_logo.png
new file mode 100644
index 0000000..e1cce78
Binary files /dev/null and b/inst/vca_logo.png differ
diff --git a/vignettes/Introduction.Rmd b/vignettes/Introduction.Rmd
index 117ed3b..0f0d692 100644
--- a/vignettes/Introduction.Rmd
+++ b/vignettes/Introduction.Rmd
@@ -7,9 +7,11 @@ vignette: >
%\VignetteEncoding{UTF-8}
---
-`CuratedAtlasQuery` is a query interface that allow the programmatic exploration and retrieval of the harmonised, curated and reannotated CELLxGENE single-cell human cell atlas. Data can be retrieved at cell, sample, or dataset levels based on filtering criteria.
+
+[![Lifecycle:maturing](https://img.shields.io/badge/lifecycle-maturing-blue.svg)](https://www.tidyverse.org/lifecycle/#maturing)
+
-# Query interface
+`CuratedAtlasQuery` is a query interface that allow the programmatic exploration and retrieval of the harmonised, curated and reannotated CELLxGENE single-cell human cell atlas. Data can be retrieved at cell, sample, or dataset levels based on filtering criteria.
```{r, include = FALSE}
# Note: knit this to the repo readme file using:
@@ -20,9 +22,25 @@ knitr::opts_chunk$set(
)
```
-```{r, echo=FALSE, out.height = "139px", out.width = "120px"}
-system.file("logo.png", package="CuratedAtlasQueryR") |>
- knitr::include_graphics()
+```{r, echo=FALSE, out.height = c("139px"), out.width = "120x" }
+knitr::include_graphics(c("../inst/logo.png"))
+```
+
+```{r, echo=FALSE, out.height = c("58px"), out.width = c("155x", "129px", "202px", "219px")}
+knitr::include_graphics(c(
+ "../inst/svcf_logo.jpeg",
+ "../inst/czi_logo.png",
+ "../inst/bioconductor_logo.jpg",
+ "../inst/vca_logo.png"
+))
+```
+
+# Query interface
+
+## Installation
+
+```{r, eval=FALSE}
+devtools::install_github("stemangiola/CuratedAtlasQueryR")
```
## Load the package
@@ -175,8 +193,7 @@ meta |>
```
```{r, echo=FALSE, message=FALSE, warning=FALSE}
-system.file("NCAM1_figure.png", package="CuratedAtlasQueryR") |>
- knitr::include_graphics()
+knitr::include_graphics("../inst/NCAM1_figure.png")
```
# Cell metadata
@@ -197,7 +214,7 @@ Through harmonisation and curation we introduced custom column, not present in t
- `tissue_harmonised`: a coarser tissue name for better filtering
- `age_days`: the number of days corresponding to the age
-- `cell_type_harmonised`: the consensus call identiti (for immune cells) using the original and three novel annotations using Seurat Azimuth and SingleR
+- `cell_type_harmonised`: the consensus call identity (for immune cells) using the original and three novel annotations using Seurat Azimuth and SingleR
- `confidence_class`: an ordinal class of how confident `cell_type_harmonised` is. 1 is complete consensus, 2 is 3 out of four and so on.
- `cell_annotation_azimuth_l2`: Azimuth cell annotation
- `cell_annotation_blueprint_singler`: SingleR cell annotation using Blueprint reference
@@ -209,6 +226,6 @@ Through harmonisation and curation we introduced custom column, not present in t
# RNA abundance
-The `raw` assay includes RNA abundance in the positive real scale (not transformed with non-linear functions, e.g. log sqrt). Originally CELLxGENE include a mix of scales and tranformations specified in the `x_normalization` column.
+The `raw` assay includes RNA abundance in the positive real scale (not transformed with non-linear functions, e.g. log sqrt). Originally CELLxGENE include a mix of scales and transformations specified in the `x_normalization` column.
The `cpm` assay includes counts per million.