-
Notifications
You must be signed in to change notification settings - Fork 973
/
Servo.cpp
237 lines (198 loc) · 6.97 KB
/
Servo.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/*
Copyright (c) 2017 Arduino LLC. All right reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if defined(ARDUINO_ARCH_STM32)
#include <Arduino.h>
#include <Servo.h>
#include <HardwareTimer.h>
#if defined(HAL_TIM_MODULE_ENABLED) && defined(TIMER_SERVO) && !defined(HAL_TIM_MODULE_ONLY)
static servo_t servos[MAX_SERVOS]; // static array of servo structures
static volatile int8_t timerChannel[_Nbr_16timers] = {-1}; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
static HardwareTimer TimerServo(TIMER_SERVO);
uint8_t ServoCount = 0; // the total number of attached servos
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
#define TIMER_ID(_timer) ((timer_id_e)(_timer))
#define SERVO_TIMER(_timer_id) ((timer16_Sequence_t)(_timer_id))
/************ static functions common to all instances ***********************/
volatile uint32_t CumulativeCountSinceRefresh = 0;
static void Servo_PeriodElapsedCallback()
{
// Only 1 timer used
timer16_Sequence_t timer_id = _timer1;
if (timerChannel[timer_id] < 0) {
// Restart from 1st servo
CumulativeCountSinceRefresh = 0;
} else {
if (timerChannel[timer_id] < ServoCount && servos[timerChannel[timer_id]].Pin.isActive == true) {
digitalWrite(servos[timerChannel[timer_id]].Pin.nbr, LOW); // pulse this channel low if activated
}
}
timerChannel[timer_id]++; // increment to the next channel
if (timerChannel[timer_id] < ServoCount && timerChannel[timer_id] < SERVOS_PER_TIMER) {
TimerServo.setOverflow(servos[timerChannel[timer_id]].ticks);
CumulativeCountSinceRefresh += servos[timerChannel[timer_id]].ticks;
if (servos[timerChannel[timer_id]].Pin.isActive == true) {
// check if activated
digitalWrite(servos[timerChannel[timer_id]].Pin.nbr, HIGH); // its an active channel so pulse it high
}
} else {
// finished all channels so wait for the refresh period to expire before starting over
if (CumulativeCountSinceRefresh + 4 < REFRESH_INTERVAL) {
// allow a few ticks to ensure the next OCR1A not missed
TimerServo.setOverflow(REFRESH_INTERVAL - CumulativeCountSinceRefresh);
} else {
// generate update to restart immediately from the beginning with the 1st servo
TimerServo.refresh();
}
timerChannel[timer_id] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
static void TimerServoInit()
{
// prescaler is computed so that timer tick correspond to 1 microseconde
uint32_t prescaler = TimerServo.getTimerClkFreq() / 1000000;
TimerServo.setPrescaleFactor(prescaler);
TimerServo.setOverflow(REFRESH_INTERVAL); // thanks to prescaler Tick = microsec
TimerServo.attachInterrupt(Servo_PeriodElapsedCallback);
TimerServo.setPreloadEnable(false);
TimerServo.resume();
}
static bool isTimerActive()
{
// returns true if any servo is active on this timer
for (uint8_t channel = 0; channel < SERVOS_PER_TIMER; channel++) {
if (servos[channel].Pin.isActive == true) {
return true;
}
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo()
{
if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servos[this->servoIndex].ticks = DEFAULT_PULSE_WIDTH; // store default values
} else {
this->servoIndex = INVALID_SERVO; // too many servos
}
}
uint8_t Servo::attach(int pin, int value)
{
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH, value);
}
uint8_t Servo::attach(int pin, int min, int max, int value)
{
if (this->servoIndex < MAX_SERVOS) {
pinMode(pin, OUTPUT); // set servo pin to output
servos[this->servoIndex].Pin.nbr = pin;
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min) / 4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max) / 4;
write(value); // set the initial position
// initialize the timer if it has not already been initialized
if (isTimerActive() == false) {
TimerServoInit();
}
servos[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
}
return this->servoIndex;
}
void Servo::detach()
{
servos[this->servoIndex].Pin.isActive = false;
if (isTimerActive() == false) {
TimerServo.pause();
}
}
void Servo::write(int value)
{
// treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
if (value < MIN_PULSE_WIDTH) {
if (value < 0) {
value = 0;
} else if (value > 180) {
value = 180;
}
value = map(value, 0, 180, SERVO_MIN(), SERVO_MAX());
}
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value)
{
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if ((channel < MAX_SERVOS)) { // ensure channel is valid
if (value < SERVO_MIN()) { // ensure pulse width is valid
value = SERVO_MIN();
} else if (value > SERVO_MAX()) {
value = SERVO_MAX();
}
servos[channel].ticks = value;
}
}
int Servo::read() // return the value as degrees
{
return map(readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
unsigned int pulsewidth;
if (this->servoIndex != INVALID_SERVO) {
pulsewidth = servos[this->servoIndex].ticks;
} else {
pulsewidth = 0;
}
return pulsewidth;
}
bool Servo::attached()
{
return servos[this->servoIndex].Pin.isActive;
}
#else
#warning "TIMER_TONE or HAL_TIM_MODULE_ENABLED not defined"
Servo::Servo() {}
uint8_t Servo::attach(int pin)
{
UNUSED(pin);
return 0;
}
uint8_t Servo::attach(int pin, int min, int max)
{
UNUSED(pin);
UNUSED(min);
UNUSED(max);
return 0;
}
void Servo::detach() {}
void Servo::write(int value)
{
UNUSED(value);
}
void Servo::writeMicroseconds(int value)
{
UNUSED(value);
}
int Servo::read()
{
return 0;
}
int Servo::readMicroseconds()
{
return 0;
}
bool Servo::attached() {}
#endif /* HAL_TIM_MODULE_ENABLED && TIMER_SERVO & !HAL_TIM_MODULE_ONLY */
#endif // ARDUINO_ARCH_STM32