-
Notifications
You must be signed in to change notification settings - Fork 1
/
generic.py
528 lines (460 loc) · 17.8 KB
/
generic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
from __future__ import print_function
from __future__ import division
from builtins import zip
from builtins import str
from builtins import range
from past.utils import old_div
from builtins import object
import numpy as np, pandas as pd
import multiprocessing as mp
import os, scipy, h5py, time, sys
import urllib, shutil, subprocess
from munch import Munch
from sklearn.model_selection import train_test_split
if sys.version_info.major == 2:
input = raw_input
# Helps with the DataGeneratorHDF5
class H5Helper(object):
"""
Read/Write named data sets from/to an HDF5 file.
The structure of the data inside the HDF5 file is:
'group_name/dataset_name' or 'dataset_name'
Enables reading from random groups e.g. 'augmentation_type/file_name'
such that the helper can be used during training Keras models.
"""
def __init__(self, file_name, file_mode=None,
memory_mapped=False, overwrite=False,
backing_store=False, verbose=False):
"""
* file_name: HDF5 file path
* file_mode: one of 'a','w','r','w+','r+'
* memory_mapped: enables memory mapped backing store
* overwrite: over-write existing file
* backing_store: use another backing store
* verbose: verbosity
"""
self.hf = None
self.file_name = file_name
self.verbose = verbose
self.memory_mapped = memory_mapped
self.backing_store = backing_store
self._lock = mp.Lock()
_file_mode = file_mode or ('w' if overwrite else 'a')
with self._lock:
if memory_mapped:
# memory mapping via h5py built-ins
self.hf = h5py.File(file_name, _file_mode, driver='core',
backing_store = backing_store)
else:
self.hf = h5py.File(file_name, _file_mode)
def _write_datasets(self, writer, data, dataset_names):
# internal to the class
for i in range(len(data)):
if self.verbose:
show_progress(i, len(data), prefix='Writing datasets')
writer.create_dataset(dataset_names[i], data=data[i, ...])
def write_data(self, data, dataset_names, group_names=None):
"""
Write `data` to HDF5 file, using `dataset_names` for datasets,
and optionally `group_names` for groups.
* data: if `group_names` is None: np.ndarray of N data instances of size N x [...]
else list of np.ndarray of N data instances of size N x [...] each
* dataset_names: list of strings
* group_names: None, or list of strings
"""
with self._lock:
assert isinstance(dataset_names, list), "`dataset_names` is of type {} and should be `list`".format(type(dataset_names))
hf = self.hf
if group_names is None:
assert not isinstance(data, list),\
'`data` should be a `numpy.ndarray` when no groups are specified'
self._write_datasets(hf, data, dataset_names)
else:
assert isinstance(data, list) and len(data) == len(group_names),\
'Each group name should correspond to a `data` list entry, `len(data)`={}, while `len(grou_names)`={}'.\
format(len(data), len(group_names))
for i, name in enumerate(group_names):
group = hf.require_group(name)
self._write_datasets(group, data[i], dataset_names)
def _read_datasets(self, reader, dataset_names):
# internal to the class
name = dataset_names[0]
data0 = reader[name][...]
data = np.empty((len(dataset_names),) + data0.shape,
dtype=data0.dtype)
data[0,...] = data0
for i in range(1, len(dataset_names)):
if self.verbose:
show_progress(i, len(data), prefix='Reading datasets')
data[i, ...] = reader[dataset_names[i]][...]
return data
def read_data(self, dataset_names, group_names=None):
"""
Read `dataset_names` from HDF5 file, optionally using `group_names`.
* dataset_names: list of strings
* group_names: None, or list of strings
:return: np.ndarray
"""
with self._lock:
hf = self.hf
assert isinstance(dataset_names, list), "`dataset_names` is of type {} and should be `list`".format(type(dataset_names))
if group_names is None:
return self._read_datasets(hf, dataset_names)
else:
return [self._read_datasets(hf[group_name], dataset_names)
for group_name in group_names]
def read_data_random_group(self, dataset_names):
"""
Reads `dataset_names` each one from a random group.
At least one group must exist.
* dataset_names: list of strings
:return: np.ndarray
"""
with self._lock:
hf = self.hf
group_names = np.array(self.group_names)
idx = np.random.randint(0, len(group_names), len(dataset_names))
names = ['{}/{}'.format(g, d) for g, d in zip(group_names[idx], dataset_names)]
return self._read_datasets(hf, names)
def summary(self, print_limit=100):
"""
Prints a summary of the contents of the HDF5 file.
Lists all groups and first `print_limit` datasets for each group.
* print_limit: number of datasets to list per group.
"""
size_bytes = os.path.getsize(self.file_name)
print('File size: {:.3f} GB'.format(size_bytes/(2.0**30)))
print('Groups:')
hf = self.hf
keys = list(hf.keys())
for i, group_name in enumerate(keys):
if i > print_limit:
print('[...] showing %d of %d' % (print_limit, len(keys)))
break
print('*',group_name, '\b/')
group = hf[group_name]
try:
group_keys = list(group.keys())
print(' ', end=' ')
for j, dataset_name in enumerate(group_keys):
if j > print_limit:
print('[...] showing %d of %d' % (print_limit, len(group_keys)))
break
print(dataset_name, end=' ')
if len(group_keys):
print()
except: pass
@property
def group_names(self):
"""
:return: list of group names
"""
return list(self.hf.keys())
@property
def dataset_names(self):
"""
:return: list of dataset names
(if groups are present, from the first group)
"""
values = list(self.hf.values())
if isinstance(values[0], h5py._hl.dataset.Dataset):
return list(self.hf.keys())
else:
return list(values[0].keys())
# enable 'with' statements
def __del__(self):
self.__exit__(None, None, None)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
if self.hf is not None:
self.hf.flush()
self.hf.close()
del self.hf
self.hf = None
def minmax(x):
"""
Range of x.
* x: list or np.ndarray
:return: (min, max)
"""
if not isinstance(x, np.ndarray):
x = np.array(x)
return x.min(), x.max()
def mapmm(x, new_range = (0, 1)):
"""
Remap values in `x` to `new_range`.
* x: np.ndarray
* new_range: (min, max)
:return: np.ndarray with values mapped to [new_range[0], new_range[1]]
"""
mina, maxa = new_range
if not type(x) == np.ndarray:
x = np.asfarray(x, dtype='float32')
if x.dtype != np.float32:
x = x.astype(np.float32)
minx, maxx = minmax(x)
if minx < maxx:
x = old_div((x-minx),(maxx-minx))*(maxa-mina)+mina
return x
def plcc(x, y):
"""Pearson Linear Correlation Coefficient"""
x, y = np.float32(x), np.float32(y)
return scipy.stats.pearsonr(x, y)[0]
def srocc(xs, ys):
"""Spearman Rank Order Correlation Coefficient"""
xranks = pd.Series(xs).rank()
yranks = pd.Series(ys).rank()
return plcc(xranks, yranks)
srcc = srocc
def dist2mos(x, scale=np.arange(1, 6)):
"""
Find the MOS of a distribution of scores `x`, given a `scale`.
e.g. x=[0,2,2], scale=[1,2,3] => MOS=2.5
"""
x = old_div(x, np.reshape(np.sum(x*1., axis=1), (len(x), 1)))
return np.sum(x * scale, axis=1)
def force_tuple(x):
"""Make tuple out of `x` if not already a tuple or `x` is None"""
if x is not None and not isinstance(x, tuple):
return (x,)
else:
return x
def force_list(x):
"""Make list out of `x` if not already a list or `x` is None"""
if x is not None and not isinstance(x, list):
return [x]
else:
return x
def make_dirs(filename):
"""
Create directory structure described by `filename`.
* filename: a valid system path
"""
if not os.path.exists(os.path.dirname(filename)):
try:
os.makedirs(os.path.dirname(filename))
except: pass
def updated_dict(d, only_existing=True, **updates):
"""
Update dictionary `d` with `updates`, optionally changing `only_existing` keys.
* d: dict
* only_existing: do not add new keys, update existing ones only
* updates: dict
:return: updated dictionary
"""
d = d.copy()
if only_existing:
common = {key: value for key, value in list(updates.items())
if key in list(d.keys())}
d.update(common)
else:
d.update(updates)
return d
def chunks(l, n):
"""Yields successive `n`-sized chunks from list `l`."""
for i in range(0, len(l), n):
yield l[i:i + n]
def pretty_print(d, indent=0, key_sep=':', trim=True):
"""
Pretty print dictionary, recursively.
* d: dict
* indent: indentation amount
* key_sep: separator printed between key and values
* trim: remove redundant white space from printed values
"""
if indent == 0 and not isinstance(d, dict):
d = d.__dict__
max_key_len = 0
keys = list(d.keys())
if isinstance(keys, list) and len(keys)>0:
max_key_len = max([len(str(k)) for k in keys])
for key, value in list(d.items()):
equal_offset = ' '*(max_key_len - len(str(key)))
print('\t' * indent + str(key) + key_sep, end=' ')
if isinstance(value, dict):
print()
pretty(value, indent+1)
else:
value_str = str(value).strip()
if trim:
value_str = ' '.join(value_str.split())
if len(value_str) > 70:
value_str = value_str[:70] + ' [...]'
print(equal_offset + value_str)
pretty = pretty_print
class ShortNameBuilder(Munch):
"""
Utility for building short (file) names
that contain multiple parameters.
For internal use in ModelHelper.
"""
def __init__(self, prefix='', sep=('', '_'),
max_len=32, **kwargs):
self.__prefix = prefix
self.__sep = sep
self.__max_len = max_len
super(ShortNameBuilder, self).__init__(**kwargs)
def subset(self, selected_keys):
subself = ShortNameBuilder(**self)
for k in list(subself.keys()):
if k not in selected_keys and \
'_ShortNameBuilder' not in k:
del subself[k]
return subself
def __call__(self, subset=None, **kwargs):
self.update(**kwargs)
return str(self)
def __str__(self):
def combine(k, v):
k = str(k)[:self.__max_len]
v = str(v)[:self.__max_len]
return (k + self.__sep[0] + v if v else k)
return self.__prefix + \
self.__sep[1].join([combine(k, self[k])
for k in sorted(self.keys())
if '_ShortNameBuilder' not in k])
def check_keys_exist(new, old):
"""
Check that keys in `new` dict existing in `old` dict.
* new: dict
* old: dict
:return: exception if `new` keys don't existing in `old` ones
Utility function used internally.
"""
for key in list(new.keys()):
if key not in list(old.keys()):
raise Exception('Undefined parameter: "%s"' % key)
def get_sizes(x, array_marker='array'):
"""
String representation of the shapes of arrays in lists/tuples.
"""
if isinstance(x, list) or isinstance(x, tuple):
content = ', '.join([get_sizes(_x_, array_marker) for _x_ in x])
if isinstance(x, list):
return '[' + content + ']'
else:
return '(' + content + ')'
elif hasattr(x, 'shape'):
return array_marker + '<' + ','.join(map(str, x.shape)) + '>'
else: return '<1>'
def print_sizes(x, array_marker=''):
"""
Prints get_sizes(x)
"""
print(get_sizes(x, array_marker=array_marker))
def raw_confirm(message):
"""
Ask for confirmation.
* message: message to show
:return: true if confirmation given, false otherwise
"""
confirmation = input(message + " (y/[n])")
if not confirmation:
return False # do not confirm by default
else:
return confirmation.lower()[0] == "y"
def update_config(obj, **kwargs):
"""
Update configuration of Keras `obj` e.g. layer, model.
* obj: object that has .get_config() and .from_config() methods.
* kwargs: dict of updates
:return: updated object
"""
cfg = obj.get_config()
cfg.update(**kwargs)
return obj.from_config(cfg)
class Timer(object):
def __init__(self, name=None):
self.name = name
def __enter__(self):
self.tstart = time.time()
def __exit__(self, type, value, traceback):
if self.name:
print(('[%s]' % self.name), end=' ')
print('elapsed: %s seconds' % round(time.time() - self.tstart, 4))
def partition_rows(t, test_size=0.2, set_name='set',
set_values=['training', 'test'],
random_state=None, copy=True):
if copy: t = t.copy()
t = t.reset_index(drop=True)
itrain, itest = train_test_split(list(range(len(t))),
test_size=test_size,
random_state=random_state)
t.loc[itrain, set_name] = set_values[0]
t.loc[itest, set_name] = set_values[1]
return t
def array_overlap(a, b):
"""
Returns indices of overlapping values in two arrays.
From: https://www.followthesheep.com/?p=1366
"""
ia=np.argsort(a)
ib=np.argsort(b)
# use searchsorted:
sort_left_a = a[ia].searchsorted(b[ib], side='left')
sort_right_a = a[ia].searchsorted(b[ib], side='right')
#
sort_left_b = b[ib].searchsorted(a[ia], side='left')
sort_right_b = b[ib].searchsorted(a[ia], side='right')
# which values of b are also in a?
inds_b = (sort_right_a-sort_left_a > 0).nonzero()[0]
# which values of a are also in b?
inds_a = (sort_right_b-sort_left_b > 0).nonzero()[0]
return ia[inds_a], ib[inds_b]
# Print iterations progress
# Source: https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console
def show_progress(iteration, total, prefix = '', suffix = '', decimals = 0,
length = 50, fill = '=', printEnd = "\r"):
"""
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
suffix - Optional : suffix string (Str)
decimals - Optional : positive number of decimals in percent complete (Int)
length - Optional : character length of bar (Int)
fill - Optional : bar fill character (Str)
printEnd - Optional : end character (e.g. "\r", "\r\n") (Str)
"""
iteration_ = iteration+1
percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration_ / float(total)))
filledLength = int(length * iteration_ / total)
bar = fill * filledLength + '-' * (length - filledLength)
print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = printEnd)
# Print New Line on Complete
if iteration_ == total:
print()
def download_archive(data_url, data_root, cache_root=None,
delete_archive=True, verbose=False, archive_type=None):
archive_name = data_url.split('/')[-1]
data_path = os.path.join(data_root, archive_name)
make_dirs(data_root)
if cache_root:
make_dirs(cache_root)
cache_path = os.path.join(cache_root, archive_name)
if not os.path.exists(cache_path):
if verbose:
print('downloading {} via cache {}'.format(data_url, cache_root))
urllib.request.urlretrieve(data_url, cache_path)
if verbose:
print('copying {} to {}'.format(archive_name, data_root))
shutil.copy(cache_path, data_root)
else:
if not os.path.exists(data_path):
if verbose:
print('downloading {} to {}'.format(data_url, data_path))
urllib.request.urlretrieve(data_url, data_path)
if verbose:
print('unpacking archive {} to {}'.format(archive_name, data_root))
if archive_type is None:
archive_type = archive_name.split('.')[-1]
if archive_type == 'zip':
failed_command = subprocess.run(["unzip","-qq","-o",data_path,"-d",data_root], check=True)
else:
failed_command = subprocess.run(["tar","-xf",data_path,"-C",data_root], check=True)
if failed_command.returncode:
print("unpack failed: %d" % failed_command.returncode)
if delete_archive:
os.unlink(data_path)