Skip to content

Latest commit

 

History

History
75 lines (61 loc) · 3.13 KB

RELEASE.md

File metadata and controls

75 lines (61 loc) · 3.13 KB

Version 0.26.0

Major Features and Improvements

  • Supported output examples artifact for BulkInferrer which can be used to link with downstream training.
  • TFX Transform switched to a (notably) faster and more accurate implementation of tft.quantiles analyzer.
  • Added native TF 2 implementation of Transform. The default behavior will continue to use Tensorflow's compat.v1 APIs. This can be overriden by passing force_tf_compat_v1=False and enabling TF 2 behaviors. The default behavior for TF 2 will be switched to the new native implementation in a future release.
  • Added support for passing a callable to set pre/post transform statistic generation options.
  • In addition to the "tfx" pip package, a dependency-light distribution of the core pipeline authoring functionality of TFX is now available as the "ml-pipelines-sdk" pip package. This package does not include first-party TFX components. The "tfx" pip package is still the recommended installation path for TFX.

Breaking changes

For pipeline authors

  • N/A

For component authors

  • N/A

Deprecations

  • TrainerFnArgs is deprecated by FnArgs.
  • Deprecated DockerComponentConfig class: user should set a DockerPlatformConfig proto in platform_config using with_platform_config() API instead.

Bug fixes and other changes

  • Official TFX container image's entrypoint is changed so the image can be used as a custom worker for Dataflow.
  • In the published TFX container image, wheel files are now used to install TFX, and the TFX source code has been moved to /tfx/src.
  • Added a skeleton of CLI support for Kubeflow V2 runner, and implemented support for pipeline operations.
  • Added an experimental template to use with Kubeflow V2 runner.
  • Added sanitization of user-specified pipeline name in Kubeflow V2 runner.
  • Migrated deployment_config in Kubeflow V2 runner from Any proto message to Struct, to ensure compatibility across different copies of the proto libraries.
  • The tfx.dsl.io.fileio filesystem handler will delegate to tensorflow.io.gfile for any unknown filesystem schemes if TensorFlow is installed.
  • Skipped ephemeral package when the beam flag 'worker_harness_container_image' is set.
  • The tfx.dsl.io.makedirs call now succeeds if the directory already exists.
  • Depends on apache-beam[gcp]>=2.25,!=2.26,<3.
  • Depends on keras-tuner>=1,<1.0.2.
  • Depends on kfp-pipeline-spec>=0.1.3,<0.2.
  • Depends on ml-metadata>=0.26.0,<0.27.0.
  • Depends on tensorflow>=1.15.2,!=2.0.*,!=2.1.*,!=2.2.*,!=2.4.*,<3.
  • Depends on tensorflow-data-validation>=0.26,<0.27.
  • Depends on tensorflow-model-analysis>=0.26,<0.27.
  • Depends on tensorflow-serving>=1.15,!=2.0.*,!=2.1.*,!=2.2.*,!=2.4.*,<3.
  • Depends on tensorflow-transform>=0.26,<0.27.
  • Depends on tfx-bsl>=0.26.1,<0.27.

Documentation updates

  • N/A