From 15a36cb60e1ff280e28da2eb77d9d19917517a73 Mon Sep 17 00:00:00 2001 From: Terence Tao Date: Mon, 5 Aug 2024 16:26:39 -0700 Subject: [PATCH] trying to add graphics to blueprint --- blueprint/src/chapter/additive_energy.tex | 4 ++-- blueprint/src/chapter/beta.tex | 5 ++--- blueprint/src/web.tex | 2 +- 3 files changed, 5 insertions(+), 6 deletions(-) diff --git a/blueprint/src/chapter/additive_energy.tex b/blueprint/src/chapter/additive_energy.tex index f3dd89a..c7c8fda 100644 --- a/blueprint/src/chapter/additive_energy.tex +++ b/blueprint/src/chapter/additive_energy.tex @@ -2,14 +2,14 @@ \chapter{Large value additive energy} \section{Additive energy} -\begin{definition}[Additive energy]\label{add-def} Let $W$ be a finite set of real numbers. The \emph{additive energy} $E_1(W)$ of such a set is defined to be the number of quadruples $(t_1,t_2,t_3,t_4) \in W$ such that +\begin{definition}[Additive energy]\label{energy-def} Let $W$ be a finite set of real numbers. The \emph{additive energy} $E_1(W)$ of such a set is defined to be the number of quadruples $(t_1,t_2,t_3,t_4) \in W$ such that $$ |t_1 + t_2 - t_3 - t_4| \leq 1.$$ \end{definition} We remark that in additive combinatorics, the variant $E_0(W)$ of the additive energy is often studied, in which $t_1+t_2-t_3-t_4$ is not merely required to be $1$-bounded, but in fact vanish exactly. However, this version of additive energy is less relevant for analytic number theory applications. -\begin{lemma}[Basic properties of additive energy]\label{add-energy}\uses{add-def} +\begin{lemma}[Basic properties of additive energy]\label{add-energy}\uses{energy-def} \begin{itemize} \item[(i)] If $W$ is a finite set of reals, then $$ E_1(W) \asymp \int_\R |\# \{ (t_1,t_2) \in W: |t_1+t_2 - x| \leq 1\} |^2\ dx.$$ diff --git a/blueprint/src/chapter/beta.tex b/blueprint/src/chapter/beta.tex index b3adf3c..39f7d95 100644 --- a/blueprint/src/chapter/beta.tex +++ b/blueprint/src/chapter/beta.tex @@ -10,8 +10,7 @@ \section{Phase functions} for all (variable) $u \in [1,2]$ and all fixed $p \geq 0$, where $F^{(p+1)}$ denotes the $(p+1)^{\mathrm{st}}$ derivative of $F$. \end{definition} -For instance, $u \mapsto \log u$ is a model phase function (with $\sigma=1$), and for any fixed $\sigma \neq 1$, $u \mapsto u^{1-\sigma}/(1-\sigma)$ is a model phase function. Informally, a model phase function is a function which asymptotically behaves like -$u \mapsto \log u$ (for $\sigma = 1$) or $u \mapsto u^{1-\sigma}/(1-\sigma)$ (for $\sigma \neq 1$), up to constants. +For instance, $u \mapsto \log u$ is a model phase function (with $\sigma=1$), and for any fixed $\sigma \neq 1$, $u \mapsto u^{1-\sigma}/(1-\sigma)$ is also a model phase function. Informally, a model phase function is a function which asymptotically behaves like $u \mapsto \log u$ (for $\sigma = 1$) or $u \mapsto u^{1-\sigma}/(1-\sigma)$ (for $\sigma \neq 1$), up to constants. This turns out to be a good class for exponential sum estimates, as it is stable under Weyl differencing and Legendre transforms, which show up in the van der Corput A-process and B-process respectively. Note from Proposition \ref{auto} that the $o(1)$ decay rate in \eqref{fpu} can be made uniform, after passing to a subsequence if necessary. @@ -40,7 +39,7 @@ \section{Exponential sum exponent} \item[(i)] $\beta(\alpha) \leq \overline{\beta}$. \item[(ii)] For every (fixed) $\eps>0$ and $\sigma > 0$ there exists (fixed) $\delta>0$, $P \geq 1$, $C \geq 1$ with the following property: if $T \geq C$, $T^{\alpha-\delta} \leq N \leq T^{\alpha+\delta}$ are (fixed) real numbers, $I \subset [N,2N]$ is a (fixed) interval, and $F$ is a (fixed) phase function such that \begin{equation}\label{fpu-bound} - |F^{(p+1)}(u) - \frac{d^p}{du^p} u^{-\sigma}| \leq \delta + \left|F^{(p+1)}(u) - \frac{d^p}{du^p} u^{-\sigma}\right| \leq \delta \end{equation} for all (fixed) $0 \leq p \leq P$ and $u \in [1,2]$, then $$ |\sum_{n \in I} e(T F(n/N))| \leq C T^{\overline{\beta}+\eps}.$$ diff --git a/blueprint/src/web.tex b/blueprint/src/web.tex index 9d7ac78..60b66b1 100644 --- a/blueprint/src/web.tex +++ b/blueprint/src/web.tex @@ -9,7 +9,7 @@ \usepackage{amssymb, amsthm, amsmath, mathtools} \usepackage{hyperref} \usepackage[showmore, dep_graph]{blueprint} - +\usepackage{graphicx} \usepackage{listings} \usepackage[warnings-off={mathtools-colon,mathtools-overbracket}]{unicode-math} \usepackage[nameinlink, capitalize]{cleveref}