-
Notifications
You must be signed in to change notification settings - Fork 57
/
basics.rkt
665 lines (577 loc) · 22.8 KB
/
basics.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
#lang typed/racket/base
;;; basics.rkt
;;;
;;; This file contains preliminary definitions that are needed in
;;; the rest of the system, including datatypes for ASTs, values,
;;; contexts, states, etc.
(require (for-syntax racket/base syntax/parse) racket/match
"fresh.rkt")
(provide (all-defined-out)
(for-syntax (all-defined-out))
Precise-Loc
location?
syntax->location
location->srcloc
Srcloc)
;;; Source locations
(define-type Srcloc (List String Integer Integer Integer Integer))
(require/typed "locations.rkt"
[#:opaque Precise-Loc location?]
[location-for-info? (-> Precise-Loc Boolean)]
[syntax->location (-> Syntax Precise-Loc)]
[location->srcloc (-> Precise-Loc Srcloc)]
[not-for-info (-> Precise-Loc Precise-Loc)])
;;; Note that Loc is used for the equality of TODO that comes out of read-back, so
;;; it should not be a trivial value.
(define-type Loc Precise-Loc)
;;; Keywords
(define-type Pie-Keyword
(U 'U
'Nat 'zero 'add1 'which-Nat 'iter-Nat 'rec-Nat 'ind-Nat
'-> '→ 'Π 'λ 'Pi '∏ 'lambda
'quote 'Atom
'car 'cdr 'cons 'Σ 'Sigma 'Pair
'Trivial 'sole
'List ':: 'nil 'rec-List 'ind-List
'Absurd 'ind-Absurd
'= 'same 'replace 'trans 'cong 'symm 'ind-=
'Vec 'vecnil 'vec:: 'head 'tail 'ind-Vec
'Either 'left 'right 'ind-Either
'TODO 'the))
;;; Abstract syntax of high-level programs
;; @ associates a source location with a Pie expression or
;; declaration. This allows the implementation to report give precise,
;; helpful feedback.
(struct @ ([loc : Loc]
[stx : Src-Stx])
#:transparent
#:type-name Src)
(: src-loc (-> Src Loc))
(define src-loc @-loc)
(: src-stx (-> Src Src-Stx))
(define src-stx @-stx)
(: src? (-> Any Boolean : Src))
(define src? @?)
(struct binder ([loc : Loc] [var : Symbol]) #:transparent #:type-name Binding-Site)
(define-type Typed-Binder
(List Binding-Site Src))
;;; Pie expressions consist of a source location attached by @ to an
;;; S-expression that follows the structure defined in The Little
;;; Typer. Each sub-expression also has a source location, so they are
;;; Src rather than Src-Stx.
(define-type Src-Stx
(U (List 'the Src Src)
'U
'Nat
'zero
Symbol
'Atom
(List 'quote Symbol)
(List 'add1 Src)
(List 'which-Nat Src Src Src)
(List 'iter-Nat Src Src Src)
(List 'rec-Nat Src Src Src)
(List 'ind-Nat Src Src Src Src)
(List* '-> Src Src (Listof Src))
(List 'Π (List* Typed-Binder (Listof Typed-Binder)) Src)
(List 'λ (List* Binding-Site (Listof Binding-Site)) Src)
(List 'Σ (List* Typed-Binder (Listof Typed-Binder)) Src)
(List 'Pair Src Src)
(List 'cons Src Src)
(List 'car Src)
(List 'cdr Src)
'Trivial
'sole
'nil
Natural
(List ':: Src Src)
(List 'List Src)
(List 'rec-List Src Src Src)
(List 'ind-List Src Src Src Src)
'Absurd
(List 'ind-Absurd Src Src)
(List '= Src Src Src)
(List 'same Src)
(List 'replace Src Src Src)
(List 'trans Src Src)
(List 'cong Src Src)
(List 'symm Src)
(List 'ind-= Src Src Src)
(List 'Vec Src Src)
'vecnil
(List 'vec:: Src Src)
(List 'head Src)
(List 'tail Src)
(List 'ind-Vec Src Src Src Src Src)
(List 'Either Src Src)
(List 'left Src)
(List 'right Src)
(List 'ind-Either Src Src Src Src)
'TODO
(List* Src Src (Listof Src))))
;; Core Pie expressions are the result of type checking (elaborating)
;; an expression written in Pie. They do not have source positions,
;; because they by definition are not written by a user of the
;; implementation.
(define-type Core
(U (List 'the Core Core)
'U
'Nat
'zero
Symbol
(List 'add1 Core)
(List 'which-Nat Core (List 'the Core Core) Core)
(List 'iter-Nat Core (List 'the Core Core) Core)
(List 'rec-Nat Core (List 'the Core Core) Core)
(List 'ind-Nat Core Core Core Core)
(List 'Π (List (List Symbol Core)) Core)
(List 'λ (List Symbol) Core)
'Atom
(List 'quote Symbol)
(List 'Σ (List (List Symbol Core)) Core)
(List 'cons Core Core)
(List 'car Core)
(List 'cdr Core)
(List ':: Core Core)
'nil
(List 'List Core)
(List 'rec-List Core (List 'the Core Core) Core)
(List 'ind-List Core Core Core Core)
'Absurd
(List 'ind-Absurd Core Core)
(List '= Core Core Core)
(List 'same Core)
(List 'replace Core Core Core)
(List 'trans Core Core)
(List 'cong Core Core Core) ;; Extra expr is type found through synth
(List 'symm Core)
(List 'ind-= Core Core Core)
(List 'Vec Core Core)
(List 'vec:: Core Core)
'vecnil
(List 'head Core)
(List 'tail Core)
(List 'ind-Vec Core Core Core Core Core)
(List 'Either Core Core)
(List 'left Core)
(List 'right Core)
(List 'ind-Either Core Core Core Core)
(List 'TODO Srcloc Core)
(List Core Core)))
;;; Values
;; In order to type check Pie, it is necessary to find the normal
;; forms of expressions and compare them with each other. The normal
;; form of an expression is determined by its type - types that have
;; η-rules (such as Π, Σ, Trivial, and Absurd) impose requirements on
;; the normal form. For instance, every normal function has λ at the
;; top, and every normal pair has cons at the top.
;; Finding normal forms has two steps: first, programs are evaluated,
;; much as they are with the Scheme interpreter at the end of The
;; Little Schemer. Then, these values are "read back" into the syntax
;; of their normal forms. This happens in normalize.rkt. This file
;; defines the values that expressions can have. Structures or symbols
;; that represent values are written in ALL-CAPS.
;; Laziness is implemented by allowing values to be a closure that
;; does not bind a variable. It is described in normalize.rkt (search
;; for "Call-by-need").
(struct DELAY-CLOS ([env : Env] [expr : Core]) #:transparent)
(struct DELAY ([val : (Boxof (U DELAY-CLOS Value))]) #:transparent)
(struct QUOTE ([name : Symbol]) #:transparent)
(struct ADD1 ([smaller : Value]) #:transparent)
(struct PI ([arg-name : Symbol]
[arg-type : Value]
[result-type : Closure])
#:transparent)
(struct LAM ([arg-name : Symbol] [body : Closure]) #:transparent)
(struct SIGMA ([car-name : Symbol]
[car-type : Value]
[cdr-type : Closure])
#:transparent)
(struct CONS ([car : Value] [cdr : Value]) #:transparent)
(struct LIST:: ([head : Value] [tail : Value]) #:transparent)
(struct LIST ([entry-type : Value]) #:transparent)
(struct EQUAL ([type : Value] [from : Value] [to : Value])
#:transparent)
(struct SAME ([value : Value]) #:transparent)
(struct VEC ([entry-type : Value] [length : Value]) #:transparent)
(struct VEC:: ([head : Value] [tail : Value]) #:transparent)
(struct EITHER ([left-type : Value] [right-type : Value]) #:transparent)
(struct LEFT ([value : Value]) #:transparent)
(struct RIGHT ([value : Value]) #:transparent)
(struct NEU ([type : Value] [neutral : Neutral]) #:transparent)
(define-type Value
(U 'UNIVERSE
'NAT 'ZERO ADD1
QUOTE 'ATOM
PI LAM
SIGMA CONS
'TRIVIAL 'SOLE
LIST LIST:: 'NIL
'ABSURD
EQUAL SAME
VEC 'VECNIL VEC::
EITHER LEFT RIGHT
NEU
DELAY))
;; Neutral expressions are represented by structs that ensure that no
;; non-neutral expressions can be represented.
(struct N-var ([name : Symbol]) #:transparent)
(struct N-TODO ([where : Srcloc] [type : Value]) #:transparent)
(struct N-which-Nat ([target : Neutral] [base : Norm] [step : Norm]) #:transparent)
(struct N-iter-Nat ([target : Neutral] [base : Norm] [step : Norm]) #:transparent)
(struct N-rec-Nat ([target : Neutral] [base : Norm] [step : Norm]) #:transparent)
(struct N-ind-Nat ([target : Neutral]
[motive : Norm]
[base : Norm]
[step : Norm])
#:transparent)
(struct N-car ([target : Neutral]) #:transparent)
(struct N-cdr ([target : Neutral]) #:transparent)
(struct N-rec-List ([target : Neutral] [base : Norm] [step : Norm]) #:transparent)
(struct N-ind-List ([target : Neutral]
[motive : Norm]
[base : Norm]
[step : Norm])
#:transparent)
(struct N-ind-Absurd ([target : Neutral] [motive : Norm]) #:transparent)
(struct N-replace ([target : Neutral] [motive : Norm] [base : Norm]) #:transparent)
(struct N-trans1 ([target1 : Neutral] [target2 : Norm]) #:transparent)
(struct N-trans2 ([target1 : Norm] [target2 : Neutral]) #:transparent)
(struct N-trans12 ([target1 : Neutral] [target2 : Neutral]) #:transparent)
;; function contains enough to get back res type, so only two fields here
(struct N-cong ([target : Neutral] [function : Norm]) #:transparent)
(struct N-symm ([target : Neutral]) #:transparent)
(struct N-ind-= ([target : Neutral] [motive : Norm] [base : Norm]) #:transparent)
(struct N-head ([target : Neutral]) #:transparent)
(struct N-tail ([target : Neutral]) #:transparent)
(struct N-ind-Vec1 ([target1 : Neutral]
[target2 : Norm]
[motive : Norm]
[base : Norm]
[step : Norm])
#:transparent)
(struct N-ind-Vec2 ([target1 : Norm]
[target2 : Neutral]
[motive : Norm]
[base : Norm]
[step : Norm])
#:transparent)
(struct N-ind-Vec12 ([target1 : Neutral]
[target2 : Neutral]
[motive : Norm]
[base : Norm]
[step : Norm])
#:transparent)
(struct N-ind-Either ([target : Neutral]
[motive : Norm]
[base-left : Norm]
[base-right : Norm])
#:transparent)
(struct N-ap ([rator : Neutral] [rand : Norm]) #:transparent)
(define-type Neutral
(U N-var N-TODO
N-which-Nat N-iter-Nat N-rec-Nat N-ind-Nat
N-car N-cdr
N-rec-List N-ind-List
N-ind-Absurd
N-replace N-trans1 N-trans2 N-trans12 N-cong N-symm N-ind-=
N-head N-tail N-ind-Vec1 N-ind-Vec2 N-ind-Vec12
N-ind-Either
N-ap))
(define-predicate Neutral? Neutral)
;; Normal forms consist of syntax that is produced by read-back,
;; following the type. This structure contains a type value and a
;; value described by the type, so that read-back can later be applied
;; to it.
(struct THE ([type : Value] [value : Value]) #:transparent #:type-name Norm)
(define-predicate Norm? Norm)
;;; Error handling
;; Messages to be shown to the user contain a mix of text (represented
;; as strings) and expressions (represented as Core Pie expressions).
(define-type Message
(Listof (U String Core)))
;; The result of an operation that can fail, such as type checking, is
;; represented using either the stop or the go structures.
(define-type (Perhaps α)
(U (go α) stop))
;; A successful result
(struct (α) go ([result : α]) #:transparent)
;; An error message
(struct stop ([where : Loc] [message : Message]) #:transparent)
;; go-on is very much like let*. The difference is that if any of the
;; values bound to variables in it are stop, then the entire
;; expression becomes that first stop. Otherwise, the variables are
;; bound to the contents of each go.
(define-syntax (go-on stx)
(syntax-parse stx
[(go-on () e) (syntax/loc stx e)]
[(go-on ((p0 b0) (p b) ...) e)
(syntax/loc stx
(match b0
[(go p0) (go-on ((p b) ...) e)]
[(stop where msg) (stop where msg)]))]))
;;; Recognizing variable names
;; This macro causes a name to be defined both for Racket macros and
;; for use in ordinary Racket programs. In Racket, these are
;; separated.
;;
;; Variable name recognition is needed in Racket macros in order to
;; parse Pie into the Src type, and it is needed in ordinary programs
;; in order to implement the type checker.
(define-syntax-rule (define-here-and-for-syntax what impl)
(begin (define what impl)
(begin-for-syntax (define what impl))))
;; The type of var-name? guarantees that the implementation will
;; always accept symbols that are not Pie keywords, and never accept
;; those that are.
(: var-name? (-> Symbol Boolean :
#:+ (! Pie-Keyword)
#:- Pie-Keyword))
(define-here-and-for-syntax (var-name? x)
(not (or (eqv? x 'U) (eqv? x 'Nat) (eqv? x 'zero)
(eqv? x 'add1) (eqv? x 'which-Nat) (eqv? x 'ind-Nat)
(eqv? x 'rec-Nat) (eqv? x 'iter-Nat)
(eqv? x '->) (eqv? x '→) (eqv? x 'Π) (eqv? x 'Pi) (eqv? x '∏) (eqv? x 'λ) (eqv? x 'lambda)
(eqv? x 'quote) (eqv? x 'Atom) (eqv? x 'Σ) (eqv? x 'Sigma) (eqv? x 'Pair)
(eqv? x 'cons) (eqv? x 'car) (eqv? x 'cdr)
(eqv? x 'Trivial) (eqv? x 'sole)
(eqv? x '::) (eqv? x 'nil) (eqv? x 'List)
(eqv? x 'rec-List) (eqv? x 'ind-List)
(eqv? x 'Absurd) (eqv? x 'ind-Absurd)
(eqv? x '=) (eqv? x 'same) (eqv? x 'replace)
(eqv? x 'symm) (eqv? x 'trans) (eqv? x 'cong) (eqv? x 'ind-=)
(eqv? x 'Vec) (eqv? x 'vec::) (eqv? x 'vecnil)
(eqv? x 'head) (eqv? x 'tail) (eqv? x 'ind-Vec)
(eqv? x 'Either) (eqv? x 'left) (eqv? x 'right)
(eqv? x 'ind-Either) (eqv? x 'the)
(eqv? x 'TODO))))
;;; Contexts
;; A context maps free variable names to binders.
(define-type Ctx
(Listof (Pair Symbol Binder)))
;; There are three kinds of binders: a free binder represents a free
;; variable, that was bound in some larger context by λ, Π, or Σ. A
;; def binder represents a name bound by define. A claim binder
;; doesn't actually bind a name; however, it reserves the name for
;; later definition with define and records the type that will be
;; used.
(define-type Binder (U Def Free Claim))
(define-type Claim claim)
(struct claim ([type : Value]) #:transparent)
(struct def ([type : Value] [value : Value]) #:transparent #:type-name Def)
(struct free ([type : Value]) #:transparent #:type-name Free)
;; To find the type of a variable in a context, find the closest
;; non-claim binder and extract its type.
(: var-type (-> Ctx Loc Symbol (Perhaps Value)))
(define (var-type Γ where x)
(match Γ
['() (stop where `("Unknown variable" ,x))]
[(cons (cons y (claim tv)) Γ-next)
(var-type Γ-next where x)]
[(cons (cons y b) Γ-next)
(if (eqv? x y)
(go (binder-type b))
(var-type Γ-next where x))]))
(: binder-type (-> Binder Value))
(define (binder-type b)
(match b
[(claim tv) tv]
[(def tv v) tv]
[(free tv) tv]))
;; The starting context is empty.
(: init-ctx Ctx)
(define init-ctx '())
(: bind-free (-> Ctx Symbol Value Ctx))
(define (bind-free Γ x tv)
(if (assv x Γ)
(error 'bind-free "~a is already bound in ~a" x Γ)
(cons (cons x (free tv)) Γ)))
(: bind-val (-> Ctx Symbol Value Value Ctx))
(define (bind-val Γ x tv v)
(cons (cons x (def tv v)) Γ))
;; For informationa bout serializable contexts, see the comments in
;; normalize.rkt.
(define-type Serializable-Ctx
(Listof (List Symbol (U (List 'free Core)
(List 'def Core Core)
(List 'claim Core)))))
(define-predicate serializable-ctx? Serializable-Ctx)
;;; Run-time environments
;; A run-time environment associates a value with each variable.
(define-type Env
(Listof (Pair Symbol Value)))
;; When type checking Pie, it is sometimes necessary to find the
;; normal form of an expression that has free variables. These free
;; variables are described in the type checking context. The value
;; associated with each free variable should be itself - a neutral
;; expression. ctx->env converts a context into an environment by
;; assigning a neutral expression to each variable.
(: ctx->env (-> Ctx Env))
(define (ctx->env Γ)
(match Γ
[(cons (cons x (def tv v)) Γ-next)
(cons (cons x v)
(ctx->env Γ-next))]
[(cons (cons x (free tv)) Γ-next)
(cons (cons x (NEU tv (N-var x)))
(ctx->env Γ-next))]
[(cons (cons x (claim tv)) Γ-next)
(ctx->env Γ-next)]
['() '()]))
;; Extend an environment with a value for a new variable.
(: extend-env (-> Env Symbol Value Env))
(define (extend-env ρ x v) (cons (cons x v) ρ))
;; To find the value of a variable in an environment, look it up in
;; the usual Lisp way using assv.
(: var-val (-> Env Symbol Value))
(define (var-val ρ x)
(match (assv x ρ)
[(cons y v) v]
[#f (error (format "Variable ~a not in\n\tρ: ~a\n" x ρ))]))
;;; Closures
;; There are two kinds of closures: first-order closures and
;; higher-order closures. They are used for different purposes in
;; Pie. It would be possible to have only one representation, but they
;; are good for different things, so both are included. See
;; val-of-closure in normalize.rkt for how to find the value of a
;; closure, given the value for its free variable.
(define-type Closure (U FO-CLOS HO-CLOS))
;; First-order closures, which are a pair of an environment an an
;; expression whose free variables are given values by the
;; environment, are used for most closures in Pie. They are easier to
;; debug, because their contents are visible rather than being part of
;; a compiled Racket function. On the other hand, they are more
;; difficult to construct out of values, because it would be necessary
;; to first read the values back into Core Pie syntax.
(struct FO-CLOS ([env : Env] [var : Symbol] [expr : Core]) #:transparent)
;; Higher-order closures re-used Racket's built-in notion of
;; closure. They are more convenient when constructing closures from
;; existing values, which happens both during type checking, where
;; these values are used for things like the type of a step, and
;; during evaluation, where they are used as type annotations on THE
;; and NEU.
(struct HO-CLOS ([proc : (-> Value Value)]) #:transparent)
;;; Finding fresh names
;; Find a fresh name, using none of those described in a context.
;;
;; This is the implementation of the Γ ⊢ fresh ↝ x form of
;; judgment. Unlike the rules in the appendix to The Little Typer,
;; this implementation also accepts a name suggestion so that the code
;; produced by elaboration has names that are as similar as possible
;; to those written by the user.
(: fresh (-> Ctx Symbol Symbol))
(define (fresh Γ x)
(freshen (names-only Γ) x))
;; Find a fresh name, using none of those described in a context nor
;; occurring in an expression. This is used when constructing a fresh
;; binding to avoid capturing a free variable that would otherwise be
;; an error because it points at the context.
(: fresh-binder (-> Ctx Src Symbol Symbol))
(define (fresh-binder Γ expr x)
(freshen (append (names-only Γ) (occurring-names expr)) x))
;; Find the names that are described in a context, so they can be
;; avoided.
(: names-only (-> Ctx (Listof Symbol)))
(define (names-only Γ)
(cond
[(null? Γ) '()]
[else (cons (car (car Γ)) (names-only (cdr Γ)))]))
;; Find all the names that occur in an expression. For correctness, we
;; need only find the free identifiers, but finding the bound
;; identifiers as well means that the bindings introduced by
;; desugaring expressions are more different from the program as
;; written, which can help readability of internals.
(: occurring-names (-> Src (Listof Symbol)))
(define (occurring-names expr)
(match (src-stx expr)
[`(the ,t ,e)
(append (occurring-names t) (occurring-names e))]
[`(quote ,x)
'()]
[`(add1 ,n)
(occurring-names n)]
[`(which-Nat ,tgt ,base ,step)
(append (occurring-names tgt) (occurring-names base) (occurring-names step))]
[`(iter-Nat ,tgt ,base ,step)
(append (occurring-names tgt) (occurring-names base) (occurring-names step))]
[`(rec-Nat ,tgt ,base ,step)
(append (occurring-names tgt) (occurring-names base) (occurring-names step))]
[`(ind-Nat ,tgt ,mot ,base ,step)
(append (occurring-names tgt) (occurring-names mot) (occurring-names base) (occurring-names step))]
[(cons '-> (cons t0 ts))
(append (occurring-names t0) (apply append (map occurring-names ts)))]
[`(Π ,bindings ,t)
(append (apply append (map occurring-binder-names bindings)) (occurring-names t))]
[`(λ ,bindings ,t)
(append (map binder-var bindings) (occurring-names t))]
[`(Σ ,bindings ,t)
(append (apply append (map occurring-binder-names bindings)) (occurring-names t))]
[`(Pair ,A ,D)
(append (occurring-names A) (occurring-names D))]
[`(cons ,A ,D)
(append (occurring-names A) (occurring-names D))]
[`(car ,p)
(occurring-names p)]
[`(cdr ,p)
(occurring-names p)]
[`(:: ,A ,D)
(append (occurring-names A) (occurring-names D))]
[`(List ,E)
(occurring-names E)]
[`(rec-List ,tgt ,base ,step)
(append (occurring-names tgt) (occurring-names base) (occurring-names step))]
[`(ind-List ,tgt ,mot ,base ,step)
(append (occurring-names tgt) (occurring-names mot) (occurring-names base) (occurring-names step))]
[`(ind-Absurd ,tgt ,mot)
(append (occurring-names tgt) (occurring-names mot))]
[`(= ,A ,from ,to)
(append (occurring-names A) (occurring-names from) (occurring-names to))]
[`(same ,e)
(occurring-names e)]
[`(replace ,tgt ,mot ,base)
(append (occurring-names tgt) (occurring-names mot) (occurring-names base))]
[`(trans ,tgt1 ,tgt2)
(append (occurring-names tgt1) (occurring-names tgt2))]
[`(cong ,tgt ,f)
(append (occurring-names tgt) (occurring-names f))]
[`(symm ,tgt)
(occurring-names tgt)]
[`(ind-= ,tgt ,mot ,base)
(append (occurring-names tgt) (occurring-names mot) (occurring-names base))]
[`(Vec ,E ,len)
(append (occurring-names E) (occurring-names len))]
[`(vec:: ,hd ,tl)
(append (occurring-names hd) (occurring-names tl))]
[`(head ,tgt)
(occurring-names tgt)]
[`(tail ,tgt)
(occurring-names tgt)]
[`(ind-Vec ,len ,tgt ,mot ,base ,step)
(append (occurring-names len) (occurring-names tgt)
(occurring-names mot)
(occurring-names base) (occurring-names step))]
[`(Either ,A ,B)
(append (occurring-names A) (occurring-names B))]
[`(left ,e)
(occurring-names e)]
[`(right ,e)
(occurring-names e)]
[`(ind-Either ,tgt ,mot ,l ,r)
(append (occurring-names tgt) (occurring-names mot) (occurring-names l) (occurring-names r))]
[(cons (? src? f) (cons arg0 args))
(append (occurring-names f) (occurring-names arg0) (apply append (map occurring-names args)))]
[x
(if (and (symbol? x) (var-name? x))
(list x)
'())]))
(: occurring-binder-names (-> Typed-Binder (Listof Symbol)))
(define (occurring-binder-names b)
(match b
[(list (binder where x) t)
(cons x (occurring-names t))]))
;; Local Variables:
;; eval: (put 'Π 'racket-indent-function 1)
;; eval: (put 'Σ 'racket-indent-function 1)
;; eval: (put 'go-on 'racket-indent-function 1)
;; eval: (setq whitespace-line-column 70)
;; End: