forked from ispc/ispc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
func.cpp
627 lines (555 loc) · 25.3 KB
/
func.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
/*
Copyright (c) 2011-2016, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file func.cpp
@brief
*/
#include "func.h"
#include "ctx.h"
#include "expr.h"
#include "llvmutil.h"
#include "module.h"
#include "type.h"
#include "stmt.h"
#include "sym.h"
#include "util.h"
#include <stdio.h>
#if ISPC_LLVM_VERSION == ISPC_LLVM_3_2 // 3.2
#ifdef ISPC_NVPTX_ENABLED
#include <llvm/Metadata.h>
#endif /* ISPC_NVPTX_ENABLED */
#include <llvm/LLVMContext.h>
#include <llvm/Module.h>
#include <llvm/Type.h>
#include <llvm/Instructions.h>
#include <llvm/Intrinsics.h>
#include <llvm/DerivedTypes.h>
#else
#ifdef ISPC_NVPTX_ENABLED
#include <llvm/IR/Metadata.h>
#endif /* ISPC_NVPTX_ENABLED */
#include <llvm/IR/LLVMContext.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/Type.h>
#include <llvm/IR/Instructions.h>
#include <llvm/IR/Intrinsics.h>
#include <llvm/IR/DerivedTypes.h>
#endif
#if ISPC_LLVM_VERSION <= ISPC_LLVM_3_6
#include "llvm/PassManager.h"
#else // LLVM 3.7+
#include "llvm/IR/LegacyPassManager.h"
#endif
#include <llvm/PassRegistry.h>
#include <llvm/Transforms/IPO.h>
#include <llvm/Support/FormattedStream.h>
#include <llvm/Support/FileUtilities.h>
#include <llvm/Target/TargetMachine.h>
#include <llvm/Target/TargetOptions.h>
#if ISPC_LLVM_VERSION >= ISPC_LLVM_3_5 // LLVM 3.5+
#include <llvm/IR/Verifier.h>
#include <llvm/IR/IRPrintingPasses.h>
#include <llvm/IR/CFG.h>
#else
#include <llvm/Analysis/Verifier.h>
#include <llvm/Assembly/PrintModulePass.h>
#include <llvm/Support/CFG.h>
#endif
#include <llvm/Support/ToolOutputFile.h>
Function::Function(Symbol *s, Stmt *c) {
sym = s;
code = c;
maskSymbol = m->symbolTable->LookupVariable("__mask");
Assert(maskSymbol != NULL);
if (code != NULL) {
code = TypeCheck(code);
if (code != NULL && g->debugPrint) {
printf("After typechecking function \"%s\":\n",
sym->name.c_str());
code->Print(0);
printf("---------------------\n");
}
if (code != NULL) {
code = Optimize(code);
if (g->debugPrint) {
printf("After optimizing function \"%s\":\n",
sym->name.c_str());
code->Print(0);
printf("---------------------\n");
}
}
}
if (g->debugPrint) {
printf("Add Function %s\n", sym->name.c_str());
code->Print(0);
printf("\n\n\n");
}
const FunctionType *type = CastType<FunctionType>(sym->type);
Assert(type != NULL);
for (int i = 0; i < type->GetNumParameters(); ++i) {
const char *paramName = type->GetParameterName(i).c_str();
Symbol *sym = m->symbolTable->LookupVariable(paramName);
if (sym == NULL)
Assert(strncmp(paramName, "__anon_parameter_", 17) == 0);
args.push_back(sym);
const Type *t = type->GetParameterType(i);
if (sym != NULL && CastType<ReferenceType>(t) == NULL)
sym->parentFunction = this;
}
if (type->isTask
#ifdef ISPC_NVPTX_ENABLED
&& (g->target->getISA() != Target::NVPTX)
#endif
){
threadIndexSym = m->symbolTable->LookupVariable("threadIndex");
Assert(threadIndexSym);
threadCountSym = m->symbolTable->LookupVariable("threadCount");
Assert(threadCountSym);
taskIndexSym = m->symbolTable->LookupVariable("taskIndex");
Assert(taskIndexSym);
taskCountSym = m->symbolTable->LookupVariable("taskCount");
Assert(taskCountSym);
taskIndexSym0 = m->symbolTable->LookupVariable("taskIndex0");
Assert(taskIndexSym0);
taskIndexSym1 = m->symbolTable->LookupVariable("taskIndex1");
Assert(taskIndexSym1);
taskIndexSym2 = m->symbolTable->LookupVariable("taskIndex2");
Assert(taskIndexSym2);
taskCountSym0 = m->symbolTable->LookupVariable("taskCount0");
Assert(taskCountSym0);
taskCountSym1 = m->symbolTable->LookupVariable("taskCount1");
Assert(taskCountSym1);
taskCountSym2 = m->symbolTable->LookupVariable("taskCount2");
Assert(taskCountSym2);
}
else
{
threadIndexSym = threadCountSym = taskIndexSym = taskCountSym = NULL;
taskIndexSym0 = taskIndexSym1 = taskIndexSym2 = NULL;
taskCountSym0 = taskCountSym1 = taskCountSym2 = NULL;
}
}
const Type *
Function::GetReturnType() const {
const FunctionType *type = CastType<FunctionType>(sym->type);
Assert(type != NULL);
return type->GetReturnType();
}
const FunctionType *
Function::GetType() const {
const FunctionType *type = CastType<FunctionType>(sym->type);
Assert(type != NULL);
return type;
}
/** Parameters for tasks are stored in a big structure; this utility
function emits code to copy those values out of the task structure into
local stack-allocated variables. (Which we expect that LLVM's
'mem2reg' pass will in turn promote to SSA registers..
*/
static void
lCopyInTaskParameter(int i, llvm::Value *structArgPtr, const
std::vector<Symbol *> &args,
FunctionEmitContext *ctx) {
// We expect the argument structure to come in as a poitner to a
// structure. Confirm and figure out its type here.
const llvm::Type *structArgType = structArgPtr->getType();
Assert(llvm::isa<llvm::PointerType>(structArgType));
const llvm::PointerType *pt = llvm::dyn_cast<const llvm::PointerType>(structArgType);
Assert(llvm::isa<llvm::StructType>(pt->getElementType()));
const llvm::StructType *argStructType =
llvm::dyn_cast<const llvm::StructType>(pt->getElementType());
// Get the type of the argument we're copying in and its Symbol pointer
llvm::Type *argType = argStructType->getElementType(i);
Symbol *sym = args[i];
if (sym == NULL)
// anonymous parameter, so don't worry about it
return;
// allocate space to copy the parameter in to
sym->storagePtr = ctx->AllocaInst(argType, sym->name.c_str());
// get a pointer to the value in the struct
llvm::Value *ptr = ctx->AddElementOffset(structArgPtr, i, NULL, sym->name.c_str());
// and copy the value from the struct and into the local alloca'ed
// memory
llvm::Value *ptrval = ctx->LoadInst(ptr, sym->name.c_str());
ctx->StoreInst(ptrval, sym->storagePtr);
ctx->EmitFunctionParameterDebugInfo(sym, i);
}
/** Given the statements implementing a function, emit the code that
implements the function. Most of the work do be done here just
involves wiring up the function parameter values to be available in the
function body code.
*/
void
Function::emitCode(FunctionEmitContext *ctx, llvm::Function *function,
SourcePos firstStmtPos) {
// Connect the __mask builtin to the location in memory that stores its
// value
maskSymbol->storagePtr = ctx->GetFullMaskPointer();
// add debugging info for __mask
maskSymbol->pos = firstStmtPos;
ctx->EmitVariableDebugInfo(maskSymbol);
#if ISPC_LLVM_VERSION >= ISPC_LLVM_3_7 // LLVM 3.7+
if (g->NoOmitFramePointer)
function->addFnAttr("no-frame-pointer-elim", "true");
#endif
#if 0
llvm::BasicBlock *entryBBlock = ctx->GetCurrentBasicBlock();
#endif
const FunctionType *type = CastType<FunctionType>(sym->type);
Assert(type != NULL);
if (type->isTask == true
#ifdef ISPC_NVPTX_ENABLED
&& (g->target->getISA() != Target::NVPTX)
#endif
){
// For tasks, there should always be three parameters: the
// pointer to the structure that holds all of the arguments, the
// thread index, and the thread count variables.
llvm::Function::arg_iterator argIter = function->arg_begin();
#if ISPC_LLVM_VERSION <= ISPC_LLVM_3_7 /* 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 */
llvm::Value *structParamPtr = argIter++;
llvm::Value *threadIndex = argIter++;
llvm::Value *threadCount = argIter++;
llvm::Value *taskIndex = argIter++;
llvm::Value *taskCount = argIter++;
llvm::Value *taskIndex0 = argIter++;
llvm::Value *taskIndex1 = argIter++;
llvm::Value *taskIndex2 = argIter++;
llvm::Value *taskCount0 = argIter++;
llvm::Value *taskCount1 = argIter++;
llvm::Value *taskCount2 = argIter++;
#else /* LLVM 3.8+ */
llvm::Value *structParamPtr = &*(argIter++);
llvm::Value *threadIndex = &*(argIter++);
llvm::Value *threadCount = &*(argIter++);
llvm::Value *taskIndex = &*(argIter++);
llvm::Value *taskCount = &*(argIter++);
llvm::Value *taskIndex0 = &*(argIter++);
llvm::Value *taskIndex1 = &*(argIter++);
llvm::Value *taskIndex2 = &*(argIter++);
llvm::Value *taskCount0 = &*(argIter++);
llvm::Value *taskCount1 = &*(argIter++);
llvm::Value *taskCount2 = &*(argIter++);
#endif
// Copy the function parameter values from the structure into local
// storage
for (unsigned int i = 0; i < args.size(); ++i)
lCopyInTaskParameter(i, structParamPtr, args, ctx);
if (type->isUnmasked == false) {
// Copy in the mask as well.
int nArgs = (int)args.size();
// The mask is the last parameter in the argument structure
llvm::Value *ptr = ctx->AddElementOffset(structParamPtr, nArgs, NULL,
"task_struct_mask");
llvm::Value *ptrval = ctx->LoadInst(ptr, "mask");
ctx->SetFunctionMask(ptrval);
}
// Copy threadIndex and threadCount into stack-allocated storage so
// that their symbols point to something reasonable.
threadIndexSym->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "threadIndex");
ctx->StoreInst(threadIndex, threadIndexSym->storagePtr);
threadCountSym->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "threadCount");
ctx->StoreInst(threadCount, threadCountSym->storagePtr);
// Copy taskIndex and taskCount into stack-allocated storage so
// that their symbols point to something reasonable.
taskIndexSym->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "taskIndex");
ctx->StoreInst(taskIndex, taskIndexSym->storagePtr);
taskCountSym->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "taskCount");
ctx->StoreInst(taskCount, taskCountSym->storagePtr);
taskIndexSym0->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "taskIndex0");
ctx->StoreInst(taskIndex0, taskIndexSym0->storagePtr);
taskIndexSym1->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "taskIndex1");
ctx->StoreInst(taskIndex1, taskIndexSym1->storagePtr);
taskIndexSym2->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "taskIndex2");
ctx->StoreInst(taskIndex2, taskIndexSym2->storagePtr);
taskCountSym0->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "taskCount0");
ctx->StoreInst(taskCount0, taskCountSym0->storagePtr);
taskCountSym1->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "taskCount1");
ctx->StoreInst(taskCount1, taskCountSym1->storagePtr);
taskCountSym2->storagePtr = ctx->AllocaInst(LLVMTypes::Int32Type, "taskCount2");
ctx->StoreInst(taskCount2, taskCountSym2->storagePtr);
}
else {
// Regular, non-task function
llvm::Function::arg_iterator argIter = function->arg_begin();
for (unsigned int i = 0; i < args.size(); ++i, ++argIter) {
Symbol *sym = args[i];
if (sym == NULL)
// anonymous function parameter
continue;
argIter->setName(sym->name.c_str());
// Allocate stack storage for the parameter and emit code
// to store the its value there.
sym->storagePtr = ctx->AllocaInst(argIter->getType(), sym->name.c_str());
#if ISPC_LLVM_VERSION <= ISPC_LLVM_3_7 /* 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 */
ctx->StoreInst(argIter, sym->storagePtr);
#else /* LLVM 3.8+ */
ctx->StoreInst(&*argIter, sym->storagePtr);
#endif
ctx->EmitFunctionParameterDebugInfo(sym, i);
}
// If the number of actual function arguments is equal to the
// number of declared arguments in decl->functionParams, then we
// don't have a mask parameter, so set it to be all on. This
// happens for exmaple with 'export'ed functions that the app
// calls.
if (argIter == function->arg_end()) {
Assert(type->isUnmasked || type->isExported);
ctx->SetFunctionMask(LLVMMaskAllOn);
}
else {
Assert(type->isUnmasked == false);
// Otherwise use the mask to set the entry mask value
argIter->setName("__mask");
Assert(argIter->getType() == LLVMTypes::MaskType);
#if ISPC_LLVM_VERSION <= ISPC_LLVM_3_7 /* 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 */
ctx->SetFunctionMask(argIter);
#else /* LLVM 3.8+ */
ctx->SetFunctionMask(&*argIter);
#endif
Assert(++argIter == function->arg_end());
}
#ifdef ISPC_NVPTX_ENABLED
if (type->isTask == true && g->target->getISA() == Target::NVPTX)
{
llvm::NamedMDNode* annotations =
m->module->getOrInsertNamedMetadata("nvvm.annotations");
#if ISPC_LLVM_VERSION >= ISPC_LLVM_3_6 // LLVM 3.6+
llvm::SmallVector<llvm::Metadata*, 3> av;
av.push_back(llvm::ValueAsMetadata::get(function));
av.push_back(llvm::MDString::get(*g->ctx, "kernel"));
av.push_back(llvm::ConstantAsMetadata::get(LLVMInt32(1)));
annotations->addOperand(llvm::MDNode::get(*g->ctx, llvm::ArrayRef<llvm::Metadata*>(av)));
#else
llvm::SmallVector<llvm::Value*, 3> av;
av.push_back(function);
av.push_back(llvm::MDString::get(*g->ctx, "kernel"));
av.push_back(LLVMInt32(1));
annotations->addOperand(llvm::MDNode::get(*g->ctx, av));
#endif
}
#endif /* ISPC_NVPTX_ENABLED */
}
// Finally, we can generate code for the function
if (code != NULL) {
ctx->SetDebugPos(code->pos);
ctx->AddInstrumentationPoint("function entry");
int costEstimate = EstimateCost(code);
Debug(code->pos, "Estimated cost for function \"%s\" = %d\n",
sym->name.c_str(), costEstimate);
// If the body of the function is non-trivial, then we wrap the
// entire thing inside code that tests to see if the mask is all
// on, all off, or mixed. If this is a simple function, then this
// isn't worth the code bloat / overhead.
bool checkMask = (type->isTask == true) ||
(
#if ISPC_LLVM_VERSION == ISPC_LLVM_3_2 // 3.2
(function->getFnAttributes().hasAttribute(llvm::Attributes::AlwaysInline) == false)
#else // LLVM 3.3+
(function->getAttributes().getFnAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex, llvm::Attribute::AlwaysInline) == false)
#endif
&&
costEstimate > CHECK_MASK_AT_FUNCTION_START_COST);
checkMask &= (type->isUnmasked == false);
checkMask &= (g->target->getMaskingIsFree() == false);
checkMask &= (g->opt.disableCoherentControlFlow == false);
if (checkMask) {
llvm::Value *mask = ctx->GetFunctionMask();
llvm::Value *allOn = ctx->All(mask);
llvm::BasicBlock *bbAllOn = ctx->CreateBasicBlock("all_on");
llvm::BasicBlock *bbSomeOn = ctx->CreateBasicBlock("some_on");
// Set up basic blocks for goto targets
ctx->InitializeLabelMap(code);
ctx->BranchInst(bbAllOn, bbSomeOn, allOn);
// all on: we've determined dynamically that the mask is all
// on. Set the current mask to "all on" explicitly so that
// codegen for this path can be improved with this knowledge in
// hand...
ctx->SetCurrentBasicBlock(bbAllOn);
if (!g->opt.disableMaskAllOnOptimizations)
ctx->SetFunctionMask(LLVMMaskAllOn);
code->EmitCode(ctx);
if (ctx->GetCurrentBasicBlock())
ctx->ReturnInst();
// not all on: however, at least one lane must be running,
// since we should never run with all off... some on: reset
// the mask to the value it had at function entry and emit the
// code. Resetting the mask here is important, due to the "all
// on" setting of it for the path above.
ctx->SetCurrentBasicBlock(bbSomeOn);
ctx->SetFunctionMask(mask);
// Set up basic blocks for goto targets again; we want to have
// one set of them for gotos in the 'all on' case, and a
// distinct set for the 'mixed mask' case.
ctx->InitializeLabelMap(code);
code->EmitCode(ctx);
if (ctx->GetCurrentBasicBlock())
ctx->ReturnInst();
}
else {
// Set up basic blocks for goto targets
ctx->InitializeLabelMap(code);
// No check, just emit the code
code->EmitCode(ctx);
}
}
if (ctx->GetCurrentBasicBlock()) {
// FIXME: We'd like to issue a warning if we've reached the end of
// the function without a return statement (for non-void
// functions). But the test below isn't right, since we can have
// (with 'x' a varying test) "if (x) return a; else return b;", in
// which case we have a valid basic block but its unreachable so ok
// to not have return statement.
#if 0
// If the bblock has no predecessors, then it doesn't matter if it
// doesn't have a return; it'll never be reached. If it does,
// issue a warning. Also need to warn if it's the entry block for
// the function (in which case it will not have predeccesors but is
// still reachable.)
if (type->GetReturnType()->IsVoidType() == false &&
(pred_begin(ec.bblock) != pred_end(ec.bblock) || (ec.bblock == entryBBlock)))
Warning(sym->pos, "Missing return statement in function returning \"%s\".",
type->rType->GetString().c_str());
#endif
// FIXME: would like to set the context's current position to
// e.g. the end of the function code
// if bblock is non-NULL, it hasn't been terminated by e.g. a
// return instruction. Need to add a return instruction.
ctx->ReturnInst();
}
}
void
Function::GenerateIR() {
if (sym == NULL)
// May be NULL due to error earlier in compilation
return;
llvm::Function *function = sym->function;
Assert(function != NULL);
// But if that function has a definition, we don't want to redefine it.
if (function->empty() == false) {
Error(sym->pos, "Ignoring redefinition of function \"%s\".",
sym->name.c_str());
return;
}
// Figure out a reasonable source file position for the start of the
// function body. If possible, get the position of the first actual
// non-StmtList statment...
SourcePos firstStmtPos = sym->pos;
if (code) {
StmtList *sl = llvm::dyn_cast<StmtList>(code);
if (sl && sl->stmts.size() > 0 && sl->stmts[0] != NULL)
firstStmtPos = sl->stmts[0]->pos;
else
firstStmtPos = code->pos;
}
// And we can now go ahead and emit the code
{
FunctionEmitContext ec(this, sym, function, firstStmtPos);
emitCode(&ec, function, firstStmtPos);
}
if (m->errorCount == 0) {
// If the function is 'export'-qualified, emit a second version of
// it without a mask parameter and without name mangling so that
// the application can call it
const FunctionType *type = CastType<FunctionType>(sym->type);
Assert(type != NULL);
if (type->isExported) {
if (!type->isTask) {
llvm::FunctionType *ftype = type->LLVMFunctionType(g->ctx, true);
llvm::GlobalValue::LinkageTypes linkage = llvm::GlobalValue::ExternalLinkage;
std::string functionName = sym->name;
if (g->mangleFunctionsWithTarget) {
// If we treat generic as smth, we should have appropriate mangling
if (g->target->getISA() == Target::GENERIC &&
!g->target->getTreatGenericAsSmth().empty())
functionName += std::string("_") + g->target->getTreatGenericAsSmth();
else
functionName += std::string("_") + g->target->GetISAString();
}
#ifdef ISPC_NVPTX_ENABLED
if (g->target->getISA() == Target::NVPTX)
{
functionName += std::string("___export"); /* add ___export to the end, for ptxcc to recognize it is exported */
#if 0
llvm::NamedMDNode* annotations =
m->module->getOrInsertNamedMetadata("nvvm.annotations");
llvm::SmallVector<llvm::Value*, 3> av;
av.push_back(function);
av.push_back(llvm::MDString::get(*g->ctx, "kernel"));
av.push_back(llvm::ConstantInt::get(llvm::IntegerType::get(*g->ctx,32), 1));
annotations->addOperand(llvm::MDNode::get(*g->ctx, av));
#endif
}
#endif /* ISPC_NVPTX_ENABLED */
llvm::Function *appFunction =
llvm::Function::Create(ftype, linkage, functionName.c_str(), m->module.get());
appFunction->setDoesNotThrow();
// We should iterate from 1 because zero parameter is return.
// We should iterate till getNumParams instead of getNumParams+1 because new
// function is export function and doesn't contain the last parameter "mask".
for (int i = 1; i < function->getFunctionType()->getNumParams(); i++) {
if (function->doesNotAlias(i)) {
appFunction->setDoesNotAlias(i);
}
}
g->target->markFuncWithTargetAttr(appFunction);
if (appFunction->getName() != functionName) {
// this was a redefinition for which we already emitted an
// error, so don't worry about this one...
appFunction->eraseFromParent();
}
else {
// And emit the code again
FunctionEmitContext ec(this, sym, appFunction, firstStmtPos);
emitCode(&ec, appFunction, firstStmtPos);
if (m->errorCount == 0) {
sym->exportedFunction = appFunction;
}
#ifdef ISPC_NVPTX_ENABLED
if (g->target->getISA() == Target::NVPTX)
{
llvm::NamedMDNode* annotations =
m->module->getOrInsertNamedMetadata("nvvm.annotations");
#if ISPC_LLVM_VERSION >= ISPC_LLVM_3_6 // LLVM 3.6+
llvm::SmallVector<llvm::Metadata*, 3> av;
av.push_back(llvm::ValueAsMetadata::get(appFunction));
av.push_back(llvm::MDString::get(*g->ctx, "kernel"));
av.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(llvm::IntegerType::get(*g->ctx,32), 1)));
annotations->addOperand(llvm::MDNode::get(*g->ctx, llvm::ArrayRef<llvm::Metadata*>(av)));
#else
llvm::SmallVector<llvm::Value*, 3> av;
av.push_back(appFunction);
av.push_back(llvm::MDString::get(*g->ctx, "kernel"));
av.push_back(llvm::ConstantInt::get(llvm::IntegerType::get(*g->ctx,32), 1));
annotations->addOperand(llvm::MDNode::get(*g->ctx, av));
#endif
}
#endif /* ISPC_NVPTX_ENABLED */
}
}
}
}
}