Skip to content

digitalbrain79/darknet-nnpack

 
 

Repository files navigation

Darknet with NNPACK

NNPACK was used to optimize AlexeyAB/darknet without using a GPU. It is useful for embedded devices using ARM CPUs.

Build from Raspberry Pi 4

Log in to Raspberry Pi using SSH.
Install PeachPy and confu

sudo pip install --upgrade git+https://github.com/Maratyszcza/PeachPy
sudo pip install --upgrade git+https://github.com/Maratyszcza/confu

Install Ninja

git clone https://github.com/ninja-build/ninja.git
cd ninja
git checkout release
./configure.py --bootstrap
export NINJA_PATH=$PWD

Install clang

sudo apt-get install clang

Install NNPACK-darknet

git clone https://github.com/digitalbrain79/NNPACK-darknet.git
cd NNPACK-darknet
confu setup
python ./configure.py --backend auto
$NINJA_PATH/ninja
sudo cp -a lib/* /usr/lib/
sudo cp include/nnpack.h /usr/include/
sudo cp deps/pthreadpool/include/pthreadpool.h /usr/include/

Build darknet-nnpack

git clone https://github.com/digitalbrain79/darknet-nnpack.git
cd darknet-nnpack
make

Test

COCO trained weights files can be downloaded from the AlexeyAB/darknet.

COCO
./darknet detector test cfg/coco.data [cfg file] [weights file] [image path]
Pascal VOC
./darknet detector test cfg/voc.data [cfg file] [weights file] [image path]

Results

COCO

cfg Build Options mAP Prediction Time (seconds)
yolov3-tiny.cfg NNPACK=1 33.1 1.1
yolov3-tiny.cfg NNPACK=0 14.5
yolov3-tiny-prn.cfg NNPACK=1 33.1 0.86
yolov3-tiny-prn.cfg NNPACK=0 9.3

Pascal VOC

cfg Build Options mAP Prediction Time (seconds) Weights file
yolov3-tiny-voc.cfg NNPACK=1 65.9 1.0 yolov3-tiny-voc.weights
yolov3-tiny-voc.cfg NNPACK=0 14.0
yolov3-tiny-prn-voc.cfg NNPACK=1 65.2 0.77 yolov3-tiny-prn-voc.weights
yolov3-tiny-prn-voc.cfg NNPACK=0 8.9
Gaussian_yolov3-tiny-voc.cfg NNPACK=1 65.7 1.0 Gaussian_yolov3-tiny-voc.weights

Raspberry Pi OS Image

Download OS image from here

sudo dd bs=4M if=darknet-nnpack.img of=/dev/sdX conv=fsyn

Releases

No releases published

Packages

No packages published

Languages

  • C 63.4%
  • Cuda 14.8%
  • C++ 13.6%
  • Python 4.7%
  • CMake 1.4%
  • Batchfile 0.6%
  • Other 1.5%