Skip to content

Latest commit

 

History

History
89 lines (76 loc) · 14.5 KB

BENCHMARK_INFER_cn.md

File metadata and controls

89 lines (76 loc) · 14.5 KB

推理Benchmark

  • 测试环境:
    • CUDA 9.0
    • CUDNN 7.5
    • TensorRT-5.1.2.2
    • PaddlePaddle v1.6
    • GPU分别为: Tesla V100和Tesla P4
  • 测试方式:
    • 为了方面比较不同模型的推理速度,输入采用同样大小的图片,为 3x640x640,采用 demo/000000014439_640x640.jpg 图片。
    • Batch Size=1
    • 去掉前10轮warmup时间,测试100轮的平均时间,单位ms/image,包括输入数据拷贝至GPU的时间、计算时间、数据拷贝只CPU的时间。
    • 采用Fluid C++预测引擎: 包含Fluid C++预测、Fluid-TensorRT预测,下面同时测试了Float32 (FP32) 和Float16 (FP16)的推理速度。
    • 测试时开启了 FLAGS_cudnn_exhaustive_search=True,使用exhaustive方式搜索卷积计算算法。

推理速度

模型 Tesla V100 Fluid (ms/image) Tesla V100 Fluid-TensorRT-FP32 (ms/image) Tesla V100 Fluid-TensorRT-FP16 (ms/image) Tesla P4 Fluid (ms/image) Tesla P4 Fluid-TensorRT-FP32 (ms/image)
faster_rcnn_r50_1x 147.488 146.124 142.416 471.547 471.631
faster_rcnn_r50_2x 147.636 147.73 141.664 471.548 472.86
faster_rcnn_r50_vd_1x 146.588 144.767 141.208 459.357 457.852
faster_rcnn_r50_fpn_1x 25.11 24.758 20.744 59.411 57.585
faster_rcnn_r50_fpn_2x 25.351 24.505 20.509 59.594 57.591
faster_rcnn_r50_vd_fpn_2x 25.514 25.292 21.097 61.026 58.377
faster_rcnn_r50_fpn_gn_2x 36.959 36.173 32.356 101.339 101.212
faster_rcnn_dcn_r50_fpn_1x 28.707 28.162 27.503 68.154 67.443
faster_rcnn_dcn_r50_vd_fpn_2x 28.576 28.271 27.512 68.959 68.448
faster_rcnn_r101_1x 153.267 150.985 144.849 490.104 486.836
faster_rcnn_r101_fpn_1x 30.949 30.331 24.021 73.591 69.736
faster_rcnn_r101_fpn_2x 30.918 29.126 23.677 73.563 70.32
faster_rcnn_r101_vd_fpn_1x 31.144 30.202 23.57 74.767 70.773
faster_rcnn_r101_vd_fpn_2x 30.678 29.969 23.327 74.882 70.842
faster_rcnn_x101_vd_64x4d_fpn_1x 60.36 58.461 45.172 132.178 131.734
faster_rcnn_x101_vd_64x4d_fpn_2x 59.003 59.163 46.065 131.422 132.186
faster_rcnn_dcn_r101_vd_fpn_1x 36.862 37.205 36.539 93.273 92.616
faster_rcnn_dcn_x101_vd_64x4d_fpn_1x 78.476 78.335 77.559 185.976 185.996
faster_rcnn_se154_vd_fpn_s1x 166.282 90.508 80.738 304.653 193.234
mask_rcnn_r50_1x 160.185 160.4 160.322 - -
mask_rcnn_r50_2x 159.821 159.527 160.41 - -
mask_rcnn_r50_fpn_1x 95.72 95.719 92.455 259.8 258.04
mask_rcnn_r50_fpn_2x 84.545 83.567 79.269 227.284 222.975
mask_rcnn_r50_vd_fpn_2x 82.07 82.442 77.187 223.75 221.683
mask_rcnn_r50_fpn_gn_2x 94.936 94.611 91.42 265.468 263.76
mask_rcnn_dcn_r50_fpn_1x 97.828 97.433 93.76 256.295 258.056
mask_rcnn_dcn_r50_vd_fpn_2x 77.831 79.453 76.983 205.469 204.499
mask_rcnn_r101_fpn_1x 95.543 97.929 90.314 252.997 250.782
mask_rcnn_r101_vd_fpn_1x 98.046 97.647 90.272 261.286 262.108
mask_rcnn_x101_vd_64x4d_fpn_1x 115.461 115.756 102.04 296.066 293.62
mask_rcnn_x101_vd_64x4d_fpn_2x 107.144 107.29 97.275 267.636 267.577
mask_rcnn_dcn_r101_vd_fpn_1x 85.504 84.875 84.907 225.202 226.585
mask_rcnn_dcn_x101_vd_64x4d_fpn_1x 129.937 129.934 127.804 326.786 326.161
mask_rcnn_se154_vd_fpn_s1x 214.188 139.807 121.516 440.391 439.727
cascade_rcnn_r50_fpn_1x 36.866 36.949 36.637 101.851 101.912
cascade_mask_rcnn_r50_fpn_1x 110.344 106.412 100.367 301.703 297.739
cascade_rcnn_dcn_r50_fpn_1x 40.412 39.58 39.853 110.346 110.077
cascade_mask_rcnn_r50_fpn_gn_2x 170.092 168.758 163.298 527.998 529.59
cascade_rcnn_dcn_r101_vd_fpn_1x 48.414 48.849 48.701 134.9 134.846
cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x 90.062 90.218 90.009 228.67 228.396
retinanet_r101_fpn_1x 55.59 54.636 48.489 90.394 83.951
retinanet_r50_fpn_1x 50.048 47.932 44.385 73.819 70.282
retinanet_x101_vd_64x4d_fpn_1x 83.329 83.446 70.76 145.936 146.168
yolov3_darknet 21.427 20.252 13.856 55.173 55.692
yolov3_darknet_voc 17.58 16.241 9.473 51.049 51.249
yolov3_mobilenet_v1 12.869 11.834 9.408 24.887 21.352
yolov3_mobilenet_v1_voc 9.118 8.146 5.575 20.787 17.169
yolov3_r34 14.914 14.125 11.176 20.798 20.822
yolov3_r34_voc 11.288 10.73 7.7 25.874 22.399
ssd_mobilenet_v1_voc 5.763 5.854 4.589 11.75 9.485
ssd_vgg16_300 28.722 29.644 20.399 73.707 74.531
ssd_vgg16_300_voc 18.425 19.288 11.298 56.297 56.201
ssd_vgg16_512 27.471 28.328 19.328 68.685 69.808
ssd_vgg16_512_voc 18.721 19.636 12.004 54.688 56.174
  1. RCNN系列模型Fluid-TensorRT速度相比Fluid预测没有优势,原因是: TensorRT仅支持定长输入,当前基于ResNet系列的RCNN模型,只有backbone部分采用了TensorRT子图计算,比较耗时的stage-5没有基于TensorRT计算。 Fluid对CNN模型也做了一系列的融合优化。后续TensorRT版本升级、或有其他优化策略时再更新数据。
  2. YOLO v3系列模型,Fluid-TensorRT相比Fluid预测加速5% - 10%不等。
  3. SSD和YOLOv3系列模型 TensorRT-FP16预测速度有一定的优势,加速约20% - 40%不等。具体如下图。