-
Notifications
You must be signed in to change notification settings - Fork 131
/
get_finetune_scores.py
59 lines (48 loc) · 1.77 KB
/
get_finetune_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import os
import pickle
import pandas as pd
import wandb
from tqdm import tqdm
dataframe = pd.read_csv("runs_tables/finetune_urls.csv")
api = wandb.Api(timeout=29)
def get_run_scores(run_id, is_dt=False):
run = api.run(run_id)
score_key = None
full_scores = []
regret = None
max_dt = -1e10
for k in run.history().keys():
if "normalized" in k and "score" in k and "std" not in k:
if is_dt:
st = k
if "eval/" in st:
st = st.replace("eval/", "")
target = float(st.split("_")[0])
if target > max_dt:
max_dt = target
score_key = k
else:
score_key = k
break
for _, row in run.history(keys=[score_key], samples=5000).iterrows():
full_scores.append(row[score_key])
for _, row in run.history(keys=["eval/regret"], samples=5000).iterrows():
if "eval/regret" in row:
regret = row["eval/regret"]
offline_iters = len(full_scores) // 2
return full_scores[:offline_iters], full_scores[offline_iters:], regret
def process_runs(df):
algorithms = df["algorithm"].unique()
datasets = df["dataset"].unique()
full_scores = {algo: {ds: [] for ds in datasets} for algo in algorithms}
for _, row in tqdm(
df.iterrows(), desc="Runs scores downloading", position=0, leave=True
):
full_scores[row["algorithm"]][row["dataset"]].append(
get_run_scores(row["url"], row["algorithm"] == "DT")
)
return full_scores
full_scores = process_runs(dataframe)
os.makedirs("bin", exist_ok=True)
with open("bin/finetune_scores.pickle", "wb") as handle:
pickle.dump(full_scores, handle, protocol=pickle.HIGHEST_PROTOCOL)