diff --git a/CHANGELOG.md b/CHANGELOG.md
index 42f6cc36d..625bae031 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -20,10 +20,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
-
-
-
--
### Changed
- Add columns and mode parameters in plot_correlation_matrix ([#726](https://github.com/tinkoff-ai/etna/pull/753))
--
+- Add CatBoostPerSegmentModel and CatBoostMultiSegmentModel classes, deprecate CatBoostModelPerSegment and CatBoostModelMultiSegment ([#779](https://github.com/tinkoff-ai/etna/pull/779))
-
-
-
diff --git a/README.md b/README.md
index 294a04fc3..d6026bc3e 100644
--- a/README.md
+++ b/README.md
@@ -69,7 +69,7 @@ train_ts, test_ts = ts.train_test_split(test_size=HORIZON)
Define transformations and model:
```python
-from etna.models import CatBoostModelMultiSegment
+from etna.models import CatBoostMultiSegmentModel
from etna.transforms import DateFlagsTransform
from etna.transforms import DensityOutliersTransform
from etna.transforms import FourierTransform
@@ -95,7 +95,7 @@ transforms = [
]
# Prepare model
-model = CatBoostModelMultiSegment()
+model = CatBoostMultiSegmentModel()
```
Fit `Pipeline` and make a prediction:
diff --git a/benchmarks/perfomance/configs/pipeline/daily_case1.yaml b/benchmarks/perfomance/configs/pipeline/daily_case1.yaml
index 1b8afa067..ce6efceaa 100644
--- a/benchmarks/perfomance/configs/pipeline/daily_case1.yaml
+++ b/benchmarks/perfomance/configs/pipeline/daily_case1.yaml
@@ -1,7 +1,7 @@
_target_: etna.pipeline.Pipeline
horizon: 14
model:
- _target_: etna.models.CatBoostModelMultiSegment
+ _target_: etna.models.CatBoostMultiSegmentModel
transforms:
- _target_: etna.transforms.TimeSeriesImputerTransform
in_column: target
diff --git a/benchmarks/perfomance/configs/pipeline/daily_case2.yaml b/benchmarks/perfomance/configs/pipeline/daily_case2.yaml
index b8228ac0b..5b90746ce 100644
--- a/benchmarks/perfomance/configs/pipeline/daily_case2.yaml
+++ b/benchmarks/perfomance/configs/pipeline/daily_case2.yaml
@@ -1,7 +1,7 @@
_target_: etna.pipeline.Pipeline
horizon: 14
model:
- _target_: etna.models.CatBoostModelPerSegment
+ _target_: etna.models.CatBoostPerSegmentModel
transforms:
- _target_: etna.transforms.TimeSeriesImputerTransform
in_column: target
diff --git a/benchmarks/perfomance/configs/pipeline/daily_case3.yaml b/benchmarks/perfomance/configs/pipeline/daily_case3.yaml
index 03c5e73e5..fa95eac26 100644
--- a/benchmarks/perfomance/configs/pipeline/daily_case3.yaml
+++ b/benchmarks/perfomance/configs/pipeline/daily_case3.yaml
@@ -1,7 +1,7 @@
_target_: etna.pipeline.Pipeline
horizon: 14
model:
- _target_: etna.models.CatBoostModelMultiSegment
+ _target_: etna.models.CatBoostMultiSegmentModel
transforms:
- _target_: etna.transforms.TimeSeriesImputerTransform
in_column: target
diff --git a/benchmarks/perfomance/configs/pipeline/daily_case6.yaml b/benchmarks/perfomance/configs/pipeline/daily_case6.yaml
index ee46895d2..2de36843d 100644
--- a/benchmarks/perfomance/configs/pipeline/daily_case6.yaml
+++ b/benchmarks/perfomance/configs/pipeline/daily_case6.yaml
@@ -1,7 +1,7 @@
_target_: etna.pipeline.Pipeline
horizon: 14
model:
- _target_: etna.models.CatBoostModelMultiSegment
+ _target_: etna.models.CatBoostMultiSegmentModel
transforms:
- _target_: etna.transforms.TimeSeriesImputerTransform
in_column: target
diff --git a/benchmarks/perfomance/configs/pipeline/default.yaml b/benchmarks/perfomance/configs/pipeline/default.yaml
index 1e567904a..a34bf8c2e 100644
--- a/benchmarks/perfomance/configs/pipeline/default.yaml
+++ b/benchmarks/perfomance/configs/pipeline/default.yaml
@@ -1,7 +1,7 @@
_target_: etna.pipeline.Pipeline
horizon: 14
model:
- _target_: etna.models.CatBoostModelMultiSegment
+ _target_: etna.models.CatBoostMultiSegmentModel
transforms:
- _target_: etna.transforms.LinearTrendTransform
in_column: target
diff --git a/docs/source/commands.rst b/docs/source/commands.rst
index 04a9d79ae..321b45480 100644
--- a/docs/source/commands.rst
+++ b/docs/source/commands.rst
@@ -29,7 +29,7 @@ Example of pipeline's config:
_target_: etna.pipeline.Pipeline
horizon: 4
model:
- _target_: etna.models.CatBoostModelMultiSegment
+ _target_: etna.models.CatBoostMultiSegmentModel
transforms:
- _target_: etna.transforms.LinearTrendTransform
in_column: target
@@ -103,7 +103,7 @@ Example of pipeline's config:
_target_: etna.pipeline.Pipeline
horizon: 4
model:
- _target_: etna.models.CatBoostModelMultiSegment
+ _target_: etna.models.CatBoostMultiSegmentModel
transforms:
- _target_: etna.transforms.LinearTrendTransform
in_column: target
diff --git a/etna/models/__init__.py b/etna/models/__init__.py
index cdb97b3d6..73d43aacb 100644
--- a/etna/models/__init__.py
+++ b/etna/models/__init__.py
@@ -6,6 +6,8 @@
from etna.models.base import PerSegmentModel
from etna.models.catboost import CatBoostModelMultiSegment
from etna.models.catboost import CatBoostModelPerSegment
+from etna.models.catboost import CatBoostMultiSegmentModel
+from etna.models.catboost import CatBoostPerSegmentModel
from etna.models.holt_winters import HoltModel
from etna.models.holt_winters import HoltWintersModel
from etna.models.holt_winters import SimpleExpSmoothingModel
diff --git a/etna/models/catboost.py b/etna/models/catboost.py
index 72a1bbf3a..19337979b 100644
--- a/etna/models/catboost.py
+++ b/etna/models/catboost.py
@@ -5,6 +5,7 @@
import pandas as pd
from catboost import CatBoostRegressor
from catboost import Pool
+from deprecated import deprecated
from etna.models.base import BaseAdapter
from etna.models.base import MultiSegmentModel
@@ -87,14 +88,14 @@ def get_model(self) -> CatBoostRegressor:
return self.model
-class CatBoostModelPerSegment(PerSegmentModel):
+class CatBoostPerSegmentModel(PerSegmentModel):
"""Class for holding per segment Catboost model.
Examples
--------
>>> from etna.datasets import generate_periodic_df
>>> from etna.datasets import TSDataset
- >>> from etna.models import CatBoostModelPerSegment
+ >>> from etna.models import CatBoostPerSegmentModel
>>> from etna.transforms import LagTransform
>>> classic_df = generate_periodic_df(
... periods=100,
@@ -111,9 +112,9 @@ class CatBoostModelPerSegment(PerSegmentModel):
... ]
>>> ts.fit_transform(transforms=transforms)
>>> future = ts.make_future(horizon)
- >>> model = CatBoostModelPerSegment()
+ >>> model = CatBoostPerSegmentModel()
>>> model.fit(ts=ts)
- CatBoostModelPerSegment(iterations = None, depth = None, learning_rate = None,
+ CatBoostPerSegmentModel(iterations = None, depth = None, learning_rate = None,
logging_level = 'Silent', l2_leaf_reg = None, thread_count = None, )
>>> forecast = model.forecast(future)
>>> pd.options.display.float_format = '{:,.2f}'.format
@@ -140,7 +141,7 @@ def __init__(
thread_count: Optional[int] = None,
**kwargs,
):
- """Create instance of CatBoostModelPerSegment with given parameters.
+ """Create instance of CatBoostPerSegmentModel with given parameters.
Parameters
----------
@@ -196,7 +197,7 @@ def __init__(
self.l2_leaf_reg = l2_leaf_reg
self.thread_count = thread_count
self.kwargs = kwargs
- super(CatBoostModelPerSegment, self).__init__(
+ super().__init__(
base_model=_CatBoostAdapter(
iterations=iterations,
depth=depth,
@@ -209,14 +210,14 @@ def __init__(
)
-class CatBoostModelMultiSegment(MultiSegmentModel):
+class CatBoostMultiSegmentModel(MultiSegmentModel):
"""Class for holding Catboost model for all segments.
Examples
--------
>>> from etna.datasets import generate_periodic_df
>>> from etna.datasets import TSDataset
- >>> from etna.models import CatBoostModelMultiSegment
+ >>> from etna.models import CatBoostMultiSegmentModel
>>> from etna.transforms import LagTransform
>>> classic_df = generate_periodic_df(
... periods=100,
@@ -233,9 +234,9 @@ class CatBoostModelMultiSegment(MultiSegmentModel):
... ]
>>> ts.fit_transform(transforms=transforms)
>>> future = ts.make_future(horizon)
- >>> model = CatBoostModelMultiSegment()
+ >>> model = CatBoostMultiSegmentModel()
>>> model.fit(ts=ts)
- CatBoostModelMultiSegment(iterations = None, depth = None, learning_rate = None,
+ CatBoostMultiSegmentModel(iterations = None, depth = None, learning_rate = None,
logging_level = 'Silent', l2_leaf_reg = None, thread_count = None, )
>>> forecast = model.forecast(future)
>>> pd.options.display.float_format = '{:,.2f}'.format
@@ -262,7 +263,7 @@ def __init__(
thread_count: Optional[int] = None,
**kwargs,
):
- """Create instance of CatBoostModelMultiSegment with given parameters.
+ """Create instance of CatBoostMultiSegmentModel with given parameters.
Parameters
----------
@@ -329,3 +330,260 @@ def __init__(
**kwargs,
)
)
+
+
+@deprecated(
+ reason="CatBoostModelPerSegment is deprecated; will be deleted in etna==2.0. Use CatBoostPerSegmentModel instead."
+)
+class CatBoostModelPerSegment(CatBoostPerSegmentModel):
+ """Class for holding per segment Catboost model.
+
+ Warnings
+ --------
+ CatBoostModelPerSegment is deprecated; will be deleted in etna==2.0.
+ Use etna.models.CatBoostPerSegmentModel instead.
+
+ Examples
+ --------
+ >>> from etna.datasets import generate_periodic_df
+ >>> from etna.datasets import TSDataset
+ >>> from etna.models import CatBoostModelPerSegment
+ >>> from etna.transforms import LagTransform
+ >>> classic_df = generate_periodic_df(
+ ... periods=100,
+ ... start_time="2020-01-01",
+ ... n_segments=4,
+ ... period=7,
+ ... sigma=3
+ ... )
+ >>> df = TSDataset.to_dataset(df=classic_df)
+ >>> ts = TSDataset(df, freq="D")
+ >>> horizon = 7
+ >>> transforms = [
+ ... LagTransform(in_column="target", lags=[horizon, horizon+1, horizon+2])
+ ... ]
+ >>> ts.fit_transform(transforms=transforms)
+ >>> future = ts.make_future(horizon)
+ >>> model = CatBoostModelPerSegment()
+ >>> model.fit(ts=ts)
+ CatBoostModelPerSegment(iterations = None, depth = None, learning_rate = None,
+ logging_level = 'Silent', l2_leaf_reg = None, thread_count = None, )
+ >>> forecast = model.forecast(future)
+ >>> pd.options.display.float_format = '{:,.2f}'.format
+ >>> forecast[:, :, "target"]
+ segment segment_0 segment_1 segment_2 segment_3
+ feature target target target target
+ timestamp
+ 2020-04-10 9.00 9.00 4.00 6.00
+ 2020-04-11 5.00 2.00 7.00 9.00
+ 2020-04-12 0.00 4.00 7.00 9.00
+ 2020-04-13 0.00 5.00 9.00 7.00
+ 2020-04-14 1.00 2.00 1.00 6.00
+ 2020-04-15 5.00 7.00 4.00 7.00
+ 2020-04-16 8.00 6.00 2.00 0.00
+ """
+
+ def __init__(
+ self,
+ iterations: Optional[int] = None,
+ depth: Optional[int] = None,
+ learning_rate: Optional[float] = None,
+ logging_level: Optional[str] = "Silent",
+ l2_leaf_reg: Optional[float] = None,
+ thread_count: Optional[int] = None,
+ **kwargs,
+ ):
+ """Create instance of CatBoostModelPerSegment with given parameters.
+
+ Parameters
+ ----------
+ iterations:
+ The maximum number of trees that can be built when solving
+ machine learning problems. When using other parameters that
+ limit the number of iterations, the final number of trees
+ may be less than the number specified in this parameter.
+ depth:
+ Depth of the tree. The range of supported values depends
+ on the processing unit type and the type of the selected loss function:
+
+ * CPU — Any integer up to 16.
+
+ * GPU — Any integer up to 8 pairwise modes (YetiRank, PairLogitPairwise and
+ QueryCrossEntropy) and up to 16 for all other loss functions.
+ learning_rate:
+ The learning rate. Used for reducing the gradient step.
+ If None the value is defined automatically depending on the number of iterations.
+ logging_level:
+ The logging level to output to stdout.
+ Possible values:
+
+ * Silent — Do not output any logging information to stdout.
+
+ * Verbose — Output the following data to stdout:
+
+ * optimized metric
+
+ * elapsed time of training
+
+ * remaining time of training
+
+ * Info — Output additional information and the number of trees.
+
+ * Debug — Output debugging information.
+
+ l2_leaf_reg:
+ Coefficient at the L2 regularization term of the cost function.
+ Any positive value is allowed.
+ thread_count:
+ The number of threads to use during the training.
+
+ * For CPU. Optimizes the speed of execution. This parameter doesn't affect results.
+ * For GPU. The given value is used for reading the data from the hard drive and does
+ not affect the training.
+ During the training one main thread and one thread for each GPU are used.
+ """
+ self.iterations = iterations
+ self.depth = depth
+ self.learning_rate = learning_rate
+ self.logging_level = logging_level
+ self.l2_leaf_reg = l2_leaf_reg
+ self.thread_count = thread_count
+ self.kwargs = kwargs
+ super().__init__(
+ iterations=iterations,
+ depth=depth,
+ learning_rate=learning_rate,
+ logging_level=logging_level,
+ thread_count=thread_count,
+ l2_leaf_reg=l2_leaf_reg,
+ **kwargs,
+ )
+
+
+@deprecated(
+ reason="CatBoostModelMultiSegment is deprecated; will be deleted in etna==2.0. "
+ "Use CatBoostMultiSegmentModel instead."
+)
+class CatBoostModelMultiSegment(CatBoostMultiSegmentModel):
+ """Class for holding Catboost model for all segments.
+
+ Warnings
+ --------
+ CatBoostModelMultiSegment is deprecated; will be deleted in etna==2.0.
+ Use etna.models.CatBoostMultiSegmentModel instead.
+
+ Examples
+ --------
+ >>> from etna.datasets import generate_periodic_df
+ >>> from etna.datasets import TSDataset
+ >>> from etna.models import CatBoostModelMultiSegment
+ >>> from etna.transforms import LagTransform
+ >>> classic_df = generate_periodic_df(
+ ... periods=100,
+ ... start_time="2020-01-01",
+ ... n_segments=4,
+ ... period=7,
+ ... sigma=3
+ ... )
+ >>> df = TSDataset.to_dataset(df=classic_df)
+ >>> ts = TSDataset(df, freq="D")
+ >>> horizon = 7
+ >>> transforms = [
+ ... LagTransform(in_column="target", lags=[horizon, horizon+1, horizon+2])
+ ... ]
+ >>> ts.fit_transform(transforms=transforms)
+ >>> future = ts.make_future(horizon)
+ >>> model = CatBoostModelMultiSegment()
+ >>> model.fit(ts=ts)
+ CatBoostModelMultiSegment(iterations = None, depth = None, learning_rate = None,
+ logging_level = 'Silent', l2_leaf_reg = None, thread_count = None, )
+ >>> forecast = model.forecast(future)
+ >>> pd.options.display.float_format = '{:,.2f}'.format
+ >>> forecast[:, :, "target"].round()
+ segment segment_0 segment_1 segment_2 segment_3
+ feature target target target target
+ timestamp
+ 2020-04-10 9.00 9.00 4.00 6.00
+ 2020-04-11 5.00 2.00 7.00 9.00
+ 2020-04-12 -0.00 4.00 7.00 9.00
+ 2020-04-13 0.00 5.00 9.00 7.00
+ 2020-04-14 1.00 2.00 1.00 6.00
+ 2020-04-15 5.00 7.00 4.00 7.00
+ 2020-04-16 8.00 6.00 2.00 0.00
+ """
+
+ def __init__(
+ self,
+ iterations: Optional[int] = None,
+ depth: Optional[int] = None,
+ learning_rate: Optional[float] = None,
+ logging_level: Optional[str] = "Silent",
+ l2_leaf_reg: Optional[float] = None,
+ thread_count: Optional[int] = None,
+ **kwargs,
+ ):
+ """Create instance of CatBoostModelMultiSegment with given parameters.
+
+ Parameters
+ ----------
+ iterations:
+ The maximum number of trees that can be built when solving
+ machine learning problems. When using other parameters that
+ limit the number of iterations, the final number of trees
+ may be less than the number specified in this parameter.
+ depth:
+ Depth of the tree. The range of supported values depends
+ on the processing unit type and the type of the selected loss function:
+
+ * CPU — Any integer up to 16.
+
+ * GPU — Any integer up to 8 pairwise modes (YetiRank, PairLogitPairwise and
+ QueryCrossEntropy) and up to 16 for all other loss functions.
+ learning_rate:
+ The learning rate. Used for reducing the gradient step.
+ If None the value is defined automatically depending on the number of iterations.
+ logging_level:
+ The logging level to output to stdout.
+ Possible values:
+
+ * Silent — Do not output any logging information to stdout.
+
+ * Verbose — Output the following data to stdout:
+
+ * optimized metric
+
+ * elapsed time of training
+
+ * remaining time of training
+
+ * Info — Output additional information and the number of trees.
+
+ * Debug — Output debugging information.
+
+ l2_leaf_reg:
+ Coefficient at the L2 regularization term of the cost function.
+ Any positive value is allowed.
+ thread_count:
+ The number of threads to use during the training.
+
+ * For CPU. Optimizes the speed of execution. This parameter doesn't affect results.
+ * For GPU. The given value is used for reading the data from the hard drive and does
+ not affect the training.
+ During the training one main thread and one thread for each GPU are used.
+ """
+ self.iterations = iterations
+ self.depth = depth
+ self.learning_rate = learning_rate
+ self.logging_level = logging_level
+ self.l2_leaf_reg = l2_leaf_reg
+ self.thread_count = thread_count
+ self.kwargs = kwargs
+ super().__init__(
+ iterations=iterations,
+ depth=depth,
+ learning_rate=learning_rate,
+ logging_level=logging_level,
+ thread_count=thread_count,
+ l2_leaf_reg=l2_leaf_reg,
+ **kwargs,
+ )
diff --git a/examples/ensembles.ipynb b/examples/ensembles.ipynb
index ce4996962..de0ff02b8 100644
--- a/examples/ensembles.ipynb
+++ b/examples/ensembles.ipynb
@@ -31,7 +31,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"id": "7b9df4dc",
"metadata": {},
"outputs": [],
@@ -53,7 +53,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"id": "639d0580",
"metadata": {},
"outputs": [],
@@ -64,7 +64,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 4,
"id": "01e2fcee",
"metadata": {},
"outputs": [
@@ -105,7 +105,17 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 5,
+ "id": "68918585",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "from etna.pipeline.pipeline import Pipeline"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
"id": "0ee58fa6",
"metadata": {},
"outputs": [],
@@ -114,7 +124,7 @@
"from etna.models import (\n",
" NaiveModel,\n",
" SeasonalMovingAverageModel,\n",
- " CatBoostModelMultiSegment,\n",
+ " CatBoostMultiSegmentModel,\n",
")\n",
"from etna.transforms import LagTransform\n",
"from etna.metrics import MAE, MSE, SMAPE, MAPE\n",
@@ -133,7 +143,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 7,
"id": "f0dc26e4",
"metadata": {},
"outputs": [],
@@ -145,7 +155,7 @@
" horizon=HORIZON,\n",
")\n",
"catboost_pipeline = Pipeline(\n",
- " model=CatBoostModelMultiSegment(),\n",
+ " model=CatBoostMultiSegmentModel(),\n",
" transforms=[LagTransform(lags=[6, 7, 8, 9, 10, 11, 12], in_column=\"target\")],\n",
" horizon=HORIZON,\n",
")\n",
@@ -163,7 +173,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 8,
"id": "53c1a0b9",
"metadata": {
"scrolled": false
@@ -174,25 +184,44 @@
"output_type": "stream",
"text": [
"[Parallel(n_jobs=5)]: Using backend MultiprocessingBackend with 5 concurrent workers.\n",
- "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 6.3s\n",
- "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 12.0s remaining: 17.9s\n",
- "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 17.0s remaining: 11.3s\n",
- "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 26.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 26.2s finished\n",
+ "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 0.1s\n",
+ "[Parallel(n_jobs=5)]: Batch computation too fast (0.0794s.) Setting batch_size=2.\n",
+ "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 0.1s remaining: 0.2s\n",
+ "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 0.2s remaining: 0.1s\n",
+ "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 0.2s finished\n",
"[Parallel(n_jobs=5)]: Using backend MultiprocessingBackend with 5 concurrent workers.\n",
- "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 5.0s\n",
- "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 9.7s remaining: 14.6s\n",
- "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 16.5s remaining: 11.0s\n",
- "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 28.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 28.1s finished\n",
+ "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 0.2s\n",
+ "[Parallel(n_jobs=5)]: Batch computation too fast (0.1119s.) Setting batch_size=2.\n",
+ "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 0.2s remaining: 0.3s\n",
+ "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 0.2s remaining: 0.1s\n",
+ "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 0.2s finished\n",
"[Parallel(n_jobs=5)]: Using backend MultiprocessingBackend with 5 concurrent workers.\n",
- "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 5.9s\n",
- "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 11.4s remaining: 17.0s\n",
- "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 16.7s remaining: 11.1s\n",
- "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 28.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 28.8s finished\n"
+ "[Parallel(n_jobs=5)]: Done 1 tasks | elapsed: 1.6s\n",
+ "[Parallel(n_jobs=5)]: Done 2 out of 5 | elapsed: 1.6s remaining: 2.4s\n",
+ "[Parallel(n_jobs=5)]: Done 3 out of 5 | elapsed: 1.6s remaining: 1.1s\n",
+ "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 1.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=5)]: Done 5 out of 5 | elapsed: 1.7s finished\n"
]
- },
+ }
+ ],
+ "source": [
+ "metrics = []\n",
+ "for pipeline in pipelines:\n",
+ " metrics.append(\n",
+ " pipeline.backtest(ts=ts, metrics=[MAE(), MSE(), MAPE()], n_folds=N_FOLDS, aggregate_metrics=True, n_jobs=5,)[\n",
+ " 0\n",
+ " ].iloc[:, 1:]\n",
+ " )"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "928e04bd",
+ "metadata": {},
+ "outputs": [
{
"data": {
"text/html": [
@@ -216,7 +245,6 @@
"
| \n",
" MAE | \n",
" MSE | \n",
- " SMAPE | \n",
" MAPE | \n",
" \n",
" \n",
@@ -225,21 +253,18 @@
" naive | \n",
" 2437.466667 | \n",
" 1.089199e+07 | \n",
- " 9.949886 | \n",
" 10.222106 | \n",
" \n",
" \n",
" moving average | \n",
" 1913.826667 | \n",
" 6.113701e+06 | \n",
- " 7.897570 | \n",
" 7.824056 | \n",
"
\n",
" \n",
" catboost | \n",
" 2271.766726 | \n",
" 8.923741e+06 | \n",
- " 9.376638 | \n",
" 10.013138 | \n",
"
\n",
" \n",
@@ -247,29 +272,18 @@
""
],
"text/plain": [
- " MAE MSE SMAPE MAPE\n",
- "naive 2437.466667 1.089199e+07 9.949886 10.222106\n",
- "moving average 1913.826667 6.113701e+06 7.897570 7.824056\n",
- "catboost 2271.766726 8.923741e+06 9.376638 10.013138"
+ " MAE MSE MAPE\n",
+ "naive 2437.466667 1.089199e+07 10.222106\n",
+ "moving average 1913.826667 6.113701e+06 7.824056\n",
+ "catboost 2271.766726 8.923741e+06 10.013138"
]
},
- "execution_count": 6,
+ "execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
- "metrics = []\n",
- "for pipeline in pipelines:\n",
- " metrics.append(\n",
- " pipeline.backtest(\n",
- " ts=ts,\n",
- " metrics=[MAE(), MSE(), SMAPE(), MAPE()],\n",
- " n_folds=N_FOLDS,\n",
- " aggregate_metrics=True,\n",
- " n_jobs=5,\n",
- " )[0].iloc[:, 1:]\n",
- " )\n",
"metrics = pd.concat(metrics)\n",
"metrics.index = pipeline_names\n",
"metrics"
@@ -296,7 +310,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 10,
"id": "5338aeea",
"metadata": {},
"outputs": [],
@@ -316,7 +330,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 11,
"id": "1c4029fc",
"metadata": {},
"outputs": [],
@@ -326,7 +340,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 12,
"id": "f1cb83b8",
"metadata": {},
"outputs": [
@@ -334,72 +348,62 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "[Parallel(n_jobs=2)]: Using backend MultiprocessingBackend with 2 concurrent workers.\n",
- "[Parallel(n_jobs=2)]: Done 1 tasks | elapsed: 6.6s\n",
- "[Parallel(n_jobs=2)]: Done 2 tasks | elapsed: 11.7s\n",
- "[Parallel(n_jobs=2)]: Done 3 out of 5 | elapsed: 11.7s remaining: 7.8s\n",
- "[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 12.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 12.8s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
- "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=2)]: Using backend MultiprocessingBackend with 2 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.8s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.8s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
+ "[Parallel(n_jobs=2)]: Done 1 tasks | elapsed: 1.1s\n",
+ "[Parallel(n_jobs=2)]: Done 2 tasks | elapsed: 1.1s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 1.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 1.0s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 1.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 1.0s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s finished\n",
+ "[Parallel(n_jobs=2)]: Done 3 out of 5 | elapsed: 2.2s remaining: 1.5s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.7s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n"
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
+ "[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 3.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 3.0s finished\n"
]
},
{
@@ -446,7 +450,7 @@
"voting ensemble 1972.207943 6.685831e+06 8.172377 8.299714"
]
},
- "execution_count": 9,
+ "execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
@@ -474,7 +478,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 13,
"id": "78c46663",
"metadata": {},
"outputs": [],
@@ -497,7 +501,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 14,
"id": "273626b1",
"metadata": {},
"outputs": [],
@@ -507,7 +511,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 15,
"id": "272cc433",
"metadata": {
"scrolled": false
@@ -517,248 +521,240 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "[Parallel(n_jobs=2)]: Using backend MultiprocessingBackend with 2 concurrent workers.\n",
- "[Parallel(n_jobs=2)]: Done 1 tasks | elapsed: 14.9s\n",
- "[Parallel(n_jobs=2)]: Done 2 tasks | elapsed: 22.5s\n",
- "[Parallel(n_jobs=2)]: Done 3 out of 5 | elapsed: 25.7s remaining: 17.1s\n",
- "[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 36.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 36.4s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=2)]: Using backend MultiprocessingBackend with 2 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s finished\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s finished\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.3s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s finished\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s finished\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.8s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.6s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 3.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 3.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 3.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 3.8s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 3.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 4.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 4.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 4.5s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 5.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 5.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 6.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 6.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 7.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 8.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 8.2s finished\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.5s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 7.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 7.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.9s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.9s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.9s finished\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.9s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.1s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.1s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
+ "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=2)]: Done 1 tasks | elapsed: 10.3s\n",
+ "[Parallel(n_jobs=2)]: Done 2 tasks | elapsed: 10.3s\n",
"[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.2s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.6s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 3.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 3.9s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 4.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 5.7s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 6.6s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 7.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 8.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 8.4s finished\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.8s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
- "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 1.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 1.0s finished\n",
- "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
- "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s finished\n",
- "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.6s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.3s finished\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.0s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.4s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 2.8s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 2.8s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 3.5s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 3.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 4.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 5.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 5.7s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 6.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.3s finished\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 8.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 8.4s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 4.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 4.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 5.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 5.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 5.9s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 5.9s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 6.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 6.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.5s finished\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 7.5s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 8.8s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 8.8s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 8.8s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 8.8s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.8s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.8s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.8s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.8s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
- "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
- "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.7s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.6s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 3.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 4.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 5.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 5.9s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 6.7s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 7.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 8.2s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 8.2s finished\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.7s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.7s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.9s finished\n",
- "[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
+ "[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=2)]: Done 3 out of 5 | elapsed: 20.1s remaining: 13.4s\n",
"[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
- "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s finished\n",
+ "[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.5s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 0.1s remaining: 0.0s\n",
@@ -767,37 +763,37 @@
"[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 0.2s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 0.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 0.3s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 0.4s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.5s finished\n",
- "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 0.4s finished\n",
+ "[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 1.1s remaining: 0.0s\n",
"[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.\n",
- "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.6s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 2.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 3.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 4.3s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 5.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 6.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 6.9s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 7.7s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 8.5s remaining: 0.0s\n",
- "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 8.5s finished\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.8s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 9.8s finished\n",
- "/Users/d.a.binin/Library/Caches/pypoetry/virtualenvs/etna-5hbqKzTr-py3.8/lib/python3.8/site-packages/joblib/parallel.py:735: UserWarning: Multiprocessing-backed parallel loops cannot be nested, setting n_jobs=1\n",
- " n_jobs = self._backend.configure(n_jobs=self.n_jobs, parallel=self,\n",
+ "[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 0.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 1.1s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 1.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 2.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 2.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 3.2s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 3.8s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 4.4s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 5.0s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 5.5s remaining: 0.0s\n",
+ "[Parallel(n_jobs=1)]: Done 10 out of 10 | elapsed: 5.5s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 6.7s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 6.7s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.7s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.7s finished\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.6s finished\n",
"[Parallel(n_jobs=4)]: Using backend SequentialBackend with 1 concurrent workers.\n",
"[Parallel(n_jobs=4)]: Done 1 out of 1 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 2 out of 2 | elapsed: 0.0s remaining: 0.0s\n",
"[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s remaining: 0.0s\n",
- "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n"
+ "[Parallel(n_jobs=4)]: Done 3 out of 3 | elapsed: 0.1s finished\n",
+ "[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 27.6s remaining: 0.0s\n",
+ "[Parallel(n_jobs=2)]: Done 5 out of 5 | elapsed: 27.6s finished\n"
]
},
{
@@ -844,7 +840,7 @@
"stacking ensemble 2058.487868 8.182131e+06 8.508705 8.50082"
]
},
- "execution_count": 12,
+ "execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
@@ -880,7 +876,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 16,
"id": "c2f1d397",
"metadata": {},
"outputs": [
@@ -907,8 +903,8 @@
" | \n",
" MAE | \n",
" MSE | \n",
- " SMAPE | \n",
" MAPE | \n",
+ " SMAPE | \n",
" \n",
" \n",
" \n",
@@ -916,51 +912,51 @@
" naive | \n",
" 2437.466667 | \n",
" 1.089199e+07 | \n",
- " 9.949886 | \n",
" 10.222106 | \n",
+ " NaN | \n",
" \n",
" \n",
" moving average | \n",
" 1913.826667 | \n",
" 6.113701e+06 | \n",
- " 7.897570 | \n",
" 7.824056 | \n",
+ " NaN | \n",
"
\n",
" \n",
" catboost | \n",
" 2271.766726 | \n",
" 8.923741e+06 | \n",
- " 9.376638 | \n",
" 10.013138 | \n",
+ " NaN | \n",
"
\n",
" \n",
" voting ensemble | \n",
" 1972.207943 | \n",
" 6.685831e+06 | \n",
- " 8.172377 | \n",
" 8.299714 | \n",
+ " 8.172377 | \n",
"
\n",
" \n",
" stacking ensemble | \n",
" 2058.487868 | \n",
" 8.182131e+06 | \n",
- " 8.508705 | \n",
" 8.500820 | \n",
+ " 8.508705 | \n",
"
\n",
" \n",
"\n",
""
],
"text/plain": [
- " MAE MSE SMAPE MAPE\n",
- "naive 2437.466667 1.089199e+07 9.949886 10.222106\n",
- "moving average 1913.826667 6.113701e+06 7.897570 7.824056\n",
- "catboost 2271.766726 8.923741e+06 9.376638 10.013138\n",
- "voting ensemble 1972.207943 6.685831e+06 8.172377 8.299714\n",
- "stacking ensemble 2058.487868 8.182131e+06 8.508705 8.500820"
+ " MAE MSE MAPE SMAPE\n",
+ "naive 2437.466667 1.089199e+07 10.222106 NaN\n",
+ "moving average 1913.826667 6.113701e+06 7.824056 NaN\n",
+ "catboost 2271.766726 8.923741e+06 10.013138 NaN\n",
+ "voting ensemble 1972.207943 6.685831e+06 8.299714 8.172377\n",
+ "stacking ensemble 2058.487868 8.182131e+06 8.500820 8.508705"
]
},
- "execution_count": 13,
+ "execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
@@ -973,9 +969,9 @@
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3 (ipykernel)",
+ "display_name": "etna-v4dy4EUy-py3.8",
"language": "python",
- "name": "python3"
+ "name": "etna-v4dy4euy-py3.8"
},
"language_info": {
"codemirror_mode": {
@@ -987,7 +983,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.6"
+ "version": "3.8.12"
}
},
"nbformat": 4,
diff --git a/examples/get_started.ipynb b/examples/get_started.ipynb
index 11c1cc112..80c4d3295 100644
--- a/examples/get_started.ipynb
+++ b/examples/get_started.ipynb
@@ -390,7 +390,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "/Users/d.a.binin/Documents/tasks/etna-github/etna/datasets/tsdataset.py:115: UserWarning: You probably set wrong freq. Discovered freq in you data is MS, you set 1M\n",
+ "/Users/y.a.shenshina/repos/etna/etna/datasets/tsdataset.py:115: UserWarning: You probably set wrong freq. Discovered freq in you data is MS, you set 1M\n",
" warnings.warn(\n"
]
}
@@ -693,7 +693,24 @@
"name": "#%%\n"
}
},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/Users/y.a.shenshina/Library/Caches/pypoetry/virtualenvs/etna-v4dy4EUy-py3.8/lib/python3.8/site-packages/torchmetrics/utilities/prints.py:36: UserWarning: Torchmetrics v0.9 introduced a new argument class property called `full_state_update` that has\n",
+ " not been set for this class (SMAPE). The property determines if `update` by\n",
+ " default needs access to the full metric state. If this is not the case, significant speedups can be\n",
+ " achieved and we recommend setting this to `False`.\n",
+ " We provide an checking function\n",
+ " `from torchmetrics.utilities import check_forward_no_full_state`\n",
+ " that can be used to check if the `full_state_update=True` (old and potential slower behaviour,\n",
+ " default for now) or if `full_state_update=False` can be used safely.\n",
+ " \n",
+ " warnings.warn(*args, **kwargs)\n"
+ ]
+ }
+ ],
"source": [
"from etna.analysis import plot_forecast"
]
@@ -877,9 +894,9 @@
},
"outputs": [],
"source": [
- "from etna.models import CatBoostModelMultiSegment\n",
+ "from etna.models import CatBoostMultiSegmentModel\n",
"\n",
- "model = CatBoostModelMultiSegment()\n",
+ "model = CatBoostMultiSegmentModel()\n",
"model.fit(train_ts)\n",
"future_ts = train_ts.make_future(HORIZON)\n",
"forecast_ts = model.forecast(future_ts)"
@@ -1194,9 +1211,9 @@
},
"outputs": [],
"source": [
- "from etna.models import CatBoostModelMultiSegment\n",
+ "from etna.models.catboost import CatBoostMultiSegmentModel\n",
"\n",
- "model = CatBoostModelMultiSegment()\n",
+ "model = CatBoostMultiSegmentModel()\n",
"model.fit(train_ts)\n",
"future_ts = train_ts.make_future(HORIZON)\n",
"forecast_ts = model.forecast(future_ts)"
@@ -1214,10 +1231,10 @@
{
"data": {
"text/plain": [
- "{'segment_a': 6.059390208724589,\n",
- " 'segment_c': 11.729007773459358,\n",
- " 'segment_b': 4.210896545479207,\n",
- " 'segment_d': 4.987840592553301}"
+ "{'segment_d': 4.98784059255331,\n",
+ " 'segment_b': 4.210896545479218,\n",
+ " 'segment_c': 11.729007773459314,\n",
+ " 'segment_a': 6.059390208724575}"
]
},
"execution_count": 31,
@@ -1241,7 +1258,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABagAAALYCAYAAACZoRUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3ib1fXA8e+V95D3SLzi7L0gCQlJIINN2JuWTSkUKB1QoONXumlpKdCWvXfYhJAAIcQJ2XsvZ3rvIcnb0v39ISs4ZHhJeiX5fJ7HT2zpHUevFPvq6NxzldYaIYQQQgghhBBCCCGEEMLbTEYHIIQQQgghhBBCCCGEEKJ3kgS1EEIIIYQQQgghhBBCCENIgloIIYQQQgghhBBCCCGEISRBLYQQQgghhBBCCCGEEMIQkqAWQgghhBBCCCGEEEIIYQhJUAshhBBCCCGEEEIIIYQwhCSohRBCCCGEEEIIIYQQQhhCEtRCCCEAUErlKKVuNzoOIYQQQggh/JGMp4UQonskQS2EEEIIIYQQQgghhBDCEJKgFkIIN1JKPaiUKlRKWZVSe5RSs5VSJqXUQ0qp/UqpSqXUe0qphHb73KiUOtx23++UUoeUUme13feIUup9pdSbbcfcppQaopR6WClVppTKV0qd0+5YsUqpl5RSxW1x/FkpFdR2381KqeVKqX8qpaqVUgeVUue33fcXYDrwX6WUTSn13w4e55Nt57YopTYopaZ74noKIYQQQojepReNp0cqpRYppaqUUqVKqV974noKIYQ/kAS1EEK4iVJqKHAPMFFrbQbOBQ4B9wKXAmcCaUA18L+2fUYATwM/APoCsUD69w59EfAGEA9sAr7E+fs7Hfgj8Fy7bV8FWoFBwHjgHKD9NMPTgD1AEvAP4CWllNJa/wb4FrhHax2ttb6ng4e7DhgHJABvA+8rpcI72EcIIYQQQogT6i3jaaWUGfga+KLt8QwCFnd4gYQQIkBJgloIIdzHDoQBI5RSIVrrQ1rr/cCdwG+01gVa6ybgEeBKpVQwcCXwmdZ6uda6Gfg/QH/vuN9qrb/UWrcC7wPJwKNa6xbgXSBbKRWnlEoFLgB+prWu01qXAf8Grm13rMNa6xe01nbgNZyD+NSuPlCt9Zta60qtdavW+l9tj3toV48jhBBCCCFEO71lPD0HKNFa/0tr3ai1tmqt13TxGEIIETCCjQ5ACCEChdZ6n1LqZzgHzCOVUl8CvwD6AR8rpRztNrfjHMimAfntjlGvlKr83qFL233fAFS0DYhdPwNEtx0rBChWSrm2N7U/PlDyvXO59u0SpdT9wG1t59RADM4qEiGEEEIIIbqlF42nM4H9XdxHCCECllRQCyGEG2mt39ZaT8M5iNbA33EOaM/XWse1+wrXWhcCxUCGa3+lVASQ2M3T5wNNQFK788RorUd2NvzObNTWb/pXwNVAvNY6DqgF1Mn2E0IIIYQQoiO9YTzddp4B3YpQCCECkCSohRDCTZRSQ5VSs5RSYUAjzmoMB/As8BelVL+27ZKVUpe07fYBcJFS6nSlVCjOapFuJXq11sXAV8C/lFIxbYvJDFRKndnJQ5TSuYGyGWdfvnIgWCn1fzgrqIUQQgghhOi2XjSeng/0VUr9TCkVppQyK6VO607MQggRCCRBLYQQ7hMGPApU4Jz6lwI8DDwJzAO+UkpZgdU4F1dBa70D56Iv7+Ks/rABZTgrN7rjRiAU2Ilz8ZgPcPbF64wncfbyq1ZKPXWS7b7EuaDLXuAwzjcP+SfZXgghhBBCiM7oFeNprbUVOBvn4o0lQC4ws5vxCiGE31Nad3YGihBCCE9TSkUDNcBgrfVBg8MRQgghhBDCr8h4Wggh/I9UUAshhMGUUhcppSKVUlHAP4FtwCFjoxJCCCGEEMI/yHhaCCH8mySohRDCeJcARW1fg4FrtcHTW5RS05VStuN9GRmXEEIIIYQQxyHjaSGE8GPS4kMIIYQQQgghhBBCCCGEIaSCWgghhBBCCCGEEEIIIYQhJEEthBBCCCGEBymlMpVSS5RSO5VSO5RS97XdflXbzw6l1ITv7fOwUmqfUmqPUupcYyIXQgghhBDC84KNDgAgKSlJZ2dnGx2GT6mrqyMqKsroMAKWXN/eSZ53z5Lr61lyfT1Lrq//c9dzuGHDhgqtdbIbQmqvFfil1nqjUsoMbFBKLQK2A5cDz7XfWCk1ArgWGAmkAV8rpYZore0nOoGMp48l/689S65v7yTPu2fJ9fUsub6eJdfX/xk5nvaJBHV2djbr1683OgyfkpOTw4wZM4wOI2DJ9e2d5Hn3LLm+niXX17Pk+vo/dz2HSqnDPY/maFrrYqC47XurUmoXkK61XtR2zu/vcgnwrta6CTiolNoHTAJWnegcMp4+lvy/9iy5vr2TPO+eJdfXs+T6epZcX/9n5HhaWnwIIYQQQgjhJUqpbGA8sOYkm6UD+e1+Lmi7TQghhBBCiIDjExXUQgghhBBCBDqlVDTwIfAzrbXFDce7A7gDIDU1lZycnJ4eMqDYbDa5Jh4k17d3kufds+T6epZcX8+S6+v/jHwOJUEthBBCCCGEhymlQnAmp9/SWn/UweaFQGa7nzPabjuK1vp54HmACRMmaJlWezSZauxZcn17J3nePUuur2fJ9fUsub7+z8jn0GcT1C0tLRQUFNDY2Gh0KIaIjY1l165dnd4+PDycjIwMQkJCPBiVEEIIIYToKuVsMv0SsEtr/XgndpkHvK2UehznIomDgbVdPa+Mp2U8LYQQQgjhD3w2QV1QUIDZbCY7O/t4C8cEPKvVitls7tS2WmsqKyspKCigf//+Ho5MCCGEEEJ00VTgBmCbUmpz222/BsKA/wDJwOdKqc1a63O11juUUu8BO4FW4G6ttb2rJ5XxtIynhRBCCCH8gc8mqBsbG3vtYLqrlFIkJiZSXl5udChCCCGEEOJ7tNbLgRMNaj8+wT5/Af7Sk/PKeLrzZDwthBBCCGEck9EBnIwMpjtPrpUQQgghhPg+GSN2nlwrIYQQQghj+HSC2kg1NTU8/fTTXd7vggsuoKamxv0BCSGEEEII4WdkTC2EEEIIIToiCeoTONFgurW19aT7LViwgLi4OA9FJYQQQgghhP+QMbUQQgghhOiIz/agNtpDDz3E/v37GTduHCEhIYSHhxMfH8/u3bvZu3cvl156Kfn5+TQ2NnLfffdxxx13AJCdnc369eux2Wycf/75TJs2jZUrV5Kens6nn35KRESEwY9MCCGEEMKpua6Z0KhQo8MQAUzG1EIIIYQQ39Fa09rYSkhEiNGh+BS/SFD/4bMd7CyyuPWYI9Ji+P1FI094/6OPPsr27dvZvHkzOTk5XHjhhWzfvv3Iqt4vv/wyCQkJNDQ0MHHiRK644goSExOPOkZubi7vvPMOL7zwAldffTUffvghP/zhD936OIQQQgghumPbO9v4+Icfc/Oym8mammV0OMLDjBhPg4yphRBCCCHa2/jCRhb9ahG/KPgFodFSKOIiLT46adKkSUcG0gBPPfUUY8eOZfLkyeTn55Obm3vMPv3792fcuHEAnHrqqRw6dMhL0QohhBBCnFj+ynw+vflTtEOTu+DYMYwQniJjaiGEEEL0Zpte3kRTbROl20qNDsWn+EUFdUeVGd4QFRV15PucnBy+/vprVq1aRWRkJDNmzKCxsfGYfcLCwo58HxQURENDg1diFUIIIYQ4keoD1bx76bvE9oslODyYwzmHjQ5JeIEvjKdBxtRCCCGE6L1qDtVQuKYQgNKtpWROyTQ4It/RqQpqpVScUuoDpdRupdQupdQUpVSCUmqRUiq37d/4tm2VUuoppdQ+pdRWpdQpnn0InmE2m7Farce9r7a2lvj4eCIjI9m9ezerV6/2cnRCCCGEEF3XWNPI23PextHq4PrPr2fwhYMpXFtIc12z0aGJACVjaiGEEEIIpx3v7QAgKCyIsm1lBkfjWzrb4uNJ4Aut9TBgLLALeAhYrLUeDCxu+xngfGBw29cdwDNujdhLEhMTmTp1KqNGjeKBBx446r7zzjuP1tZWhg8fzkMPPcTkyZMNilIIIYQQonPsLXbev/p9qvZVcc3H15A4OJHsGdk4Wh3kr8w3OjwRoGRMLYQQQgjhtGPuDtImppF2ahqlW6XFR3sdtvhQSsUCZwA3A2itm4FmpdQlwIy2zV4DcoAHgUuA17XWGljdVn3dV2td7PboPeztt98+7u1hYWEsXLjwuPe5euIlJSWxffv2I7fff//9bo9PCCGEEKIztNYsvHchBxYd4JJXLiH7zGwAsqZmoYIUh3IOMfDsgcYGKQKWjKmFEEII0dtV7auieGMxZ//zbKr2VbHj3R1orVFKGR2aT+hMBXV/oBx4RSm1SSn1olIqCkhtl3QuAVLbvk8H2pfhFLTdJoQQQgghDLD6idVseG4D0x6exribxx25PTQ6lPSJ6dKHWgghhBBCCA9ytfcYedVIUken0ljTiKXAYnBUvqMziyQGA6cA92qt1yilnuS7dh4AaK21Ukp35cRKqTtwtgAhNTWVnJyco+6PjY09Yb+63sBut3f58Tc2Nh5zHcXx2Ww2uVa9kDzvniXX17Pk+npWIF/fihUV7PjdDpLOTMJ0lumYx6kGKArmFrB44WKCIoKMCdINAvk5FEIIIYQQ/m3H3B1kTMkgNiuW1DHOGt+ybWXEZsYaHJlv6EyCugAo0Fqvafv5A5wJ6lJX6w6lVF/A1d27EGi/DGVG221H0Vo/DzwPMGHCBD1jxoyj7t+1axdms7kLDyWwWK3WLj/+8PBwxo8f76GIAktOTg7ff82JwCfPu2fJ9fUsub6eFajXt3hTMSv/upK0CWncvOBmQiJDjtkmoymDt95+i+zgbAbO8N82H4H6HAohhBBCCP9WsbuC0q2lnPvEuQCkjEoBoHRbKYMvGGxkaD6jwxYfWusSIF8pNbTtptnATmAecFPbbTcBn7Z9Pw+4UTlNBmr9sf+0EEIIIYQ/sxRaeOeid4hIjODaT689bnIaju5DLYQQQgghhHCvHe/tAAUjrhwBQHhcOLFZsZRtLetgz96jMxXUAPcCbymlQoEDwC04k9vvKaVuAw4DV7dtuwC4ANgH1LdtK4QQQgghvKS5rpl3LnqHptombl1xK+a+J56VJX2ohRBCCCGE8Jwdc3eQNS2LmPSYI7eljE6hdFupgVH5lk4lqLXWm4EJx7lr9nG21cDdPQtLCCGEEEJ0h8Pu4KMffETpllKunXftkR53J9NvRj9W/XMVzXXNhEaFeiFKIYQQQgghAl/ZjjLKd5Zz/n/PP+r2lNEp7P9yP/ZmO0Gh/rsOjLt02OKjt6qpqeHpp5/u1r5PPPEE9fX1bo5ICCGEEKJjXz/0NXs+3cO5/z6XIRcO6dQ+2TOycbQ6yF+Z7+HoRG8jY2ohhBBC9GY75u5AmdSR9h4uqWNScbQ6qNhTYVBkvkUS1Ccgg2khhBBC+JsNL2xg1T9XMfHuiUy6d1Kn95M+1MJTZEwthBBCiN5Ka82OuTvInpFNdGr0UfeljnbOcizdKm0+oPM9qHudhx56iP379zNu3DjOPvtsUlJSeO+992hqauKyyy7jD3/4A3V1dVx99dUUFBRgt9v53e9+R2lpKUVFRcycOZOkpCSWLFli9EMRQgghRC9wYPEBFvxkAYPOG8R5T5yHUqrT+0ofauEpMqYWQgghRG9VuqWUyr2VTP7F5GPuSxyaiCnERNk2WSgR/CRB/cXPvqBkc4lbj9lnXB/Oe+K8E97/6KOPsn37djZv3sxXX33FBx98wNq1a9Fac/HFF7Ns2TLKy8tJS0vj888/B6C2tpbY2Fgef/xxlixZQlJSkltjFkIIIfxZzeEaQqNDiUyMNDqUgLTgJwtIGJTAlXOvxBTc9Uly0oc6sBkxngYZUwshhBCi99rx3g5UkGLEFSOOuS8oJIjk4cmSoG4jLT464auvvuKrr75i/PjxnHLKKezevZvc3FxGjx7NokWLePDBB/n222+JjY01OlQhhBDCJ1kKLTw79lnemfMOzvWUhTtV7q2kcm8lE++ZSFhMWLeOIX2ohafJmFoIIYQQvYWrvceA2QOITDp+gU7K6BRp8dHGLyqoO6rM8DStNQ8//DA//vGPj7lv48aNLFiwgN/+9rfMnj2b//u//zMgQiGEEMJ3aa357Eef0VTbRMHqAvJX5JM1LcvosALK3vl7ATq9KOLxtO9DPfDsge4KTfgIo8fTIGNqIYQQQvQexRuKqT5QzfTfTD/hNqljUtn21jYaqhuIiI/wYnS+RyqoT8BsNmO1WgE499xzefnll7HZbAAUFhZSVlZGUVERkZGR/PCHP+SBBx5g48aNx+wrhBBC9HabX9nMvoX7mP3obCISI1j52EqjQwo4uZ/nkjIqhbjsuG4fQ/pQC0+QMbUQQggheqMd7+3AFGxi2KXDTrhNyugUAGnzgZ9UUBshMTGRqVOnMmrUKM4//3yuv/56pkyZAkB0dDRvvvkm+/bt44EHHsBkMhESEsIzzzwDwB133MF5551HWlqaLOgihBCiV6vNr+XLn39JvzP7MfWBqbTUtbDsT8uo2FNB0lDpK+sOjbWNHF52mCm/nNLjY0kfauFuMqYWQgghRG+jtWbHezsYeM5AIhJOXBmdOiYVgNJtpfQ7o5+3wvNJkqA+ibfffvuon++7776jfh44cCDnnnvuMfvde++93HvvvR6NTQghhPB1Wms+u/0zHHYHl7x8CcqkmHTPJFY+tpJV/1rFRc9fZHSIAWH/V/txtDoYMqf77T1csmdks+LRFeSvzJc2H8JtZEwthBBCiN6kcE0htYdrmfnHmSfdzpxmJjw+XPpQIy0+hBBCCOEhG1/cyP6v9nP2P84mfkA8AFEpUYy9aSxbXt+CrdRmcISBIXd+LhEJEWRMzujxsTJPzzzSh1q4j1IqUym1RCm1Uym1Qyl1X9vtCUqpRUqp3LZ/49tuV0qpp5RS+5RSW5VSpxj7CIQQQgghRGdtn7udoNAghl4y9KTbKaVIHZMqLT6QBLUQQgghPKDmcA1f/eIr+s/qz4Q7Jxx135RfTMHebGftf9caFF3gcNgd5C7IZdD5gzAF93xYF2YOI21CmvShdr9W4Jda6xHAZOBupdQI4CFgsdZ6MLC47WeA84HBbV93AM94P2QhhBBCCNFV2qHZ+f5OBp03iPDY8A63TxmdQtn2MrRDeyE63yUJah9kaWjB3stfmEIIIfyX1pp5t80D4OKXLkaZ1FH3Jw5JZNglw1j/9Hqa65qNCDFgFK4tpL6i3i3tPVyyZ2RTuLZQnhs30loXa603tn1vBXYB6cAlwGttm70GXNr2/SXA69ppNRCnlOrr3aiFEEIIIURX5a/Mx1poZeQ1Izu1feroVJqtzdQcrvFsYD5OelD7mKYWO4cq64gMVsTFGh2NEEII0XUbntvAwcUHmfPcHOKy4467zZT7p7D7k91sfmUzk+6Z5N0AA8je+XtRQYqB57qvX3T2jGxW/N09fai11uyZt4d+Z/QjIv7EC8T0JkqpbGA8sAZI1VoXt91VAqS2fZ8O5LfbraDttuJ2t6GUugNnhTWpqank5OQcda7Y2FisVqt7H4AfsdvtXX78jY2Nx1xHcXw2m02uVS8kz7tnyfX1LLm+niXX1yn3qVxMoSZK40qpzKnscHtLqwWAxW8vJmmqsYvIG/kcSoLax1TVO6uV6ls1tsYWosNDDI5ICCGE6Lzqg9V8df9XDDh7AKf86MRtc7OmZpExJYNVj69iwl0TMAXJpK7uyJ2fS9a0LLcmfzOnfteHuqcJ6sNLDzP30rnM/ttspj00zU0R+i+lVDTwIfAzrbVFqe9mF2ittVKqS1PotNbPA88DTJgwQc+YMeOo+3ft2oXZbO5p2H7LarV2+fGHh4czfvx4D0UUWHJycvj+a04EPnnePUuur2fJ9fUsub7O9nsbrtvA0IuGctYFZ3Vqn6ZTm9h09yZSdApnzDjDwxGenJHPobwb9CEOramua8EcHkKwSVFc24jW0upDCCGEf9AOzbxb56FMiotfvJj2ybfjOf3+06k5WMOuj3Z5KcLAUptfS+nWUre29wD39qFe+selAJTvKO/xsfydUioEZ3L6La31R203l7pad7T961ohpxDIbLd7RtttQgghhBDCR+V9m4etxMbIqzvX3gOcY+/4AfG9fqFESVCfxFNPPcXw4cP5wQ9+4JXzWRpaaHU4SIoOJT5M0dBip6a+BYBPPvmEnTt3eiUOIYQQojvWPb2OQzmHOPff5xKb1XGfqqGXDCVhUAIrH1spH8h2Q+7nuQAMvnCw24/tjj7UecvzOLTkEKZgE+U7e3eCWjk/rXkJ2KW1frzdXfOAm9q+vwn4tN3tNyqnyUBtu1YgfsfbY+qTkTG1EEIIITxl+9zthESGdHl8njI6hdKtpR6Kyj9Igvoknn76aRYtWsRbb73V4batra09Pl9VXTOhQSaiw4KJCoGI0CBKLI04HFoG00IIIXxa1f4qvn7wawadN4jxt3ZuerwpyMTkX0ymaF0Red/meTjCwLN3/l7iB8STNMz9veqyZ2TjaHWQvzK/441PYNmflhGVEsW4W8ZRsbuit69MPhW4AZillNrc9nUB8ChwtlIqFzir7WeABcABYB/wAvATA2J2G2+PqU9GxtRCCCGE8ARHq4NdH+5iyEVDCI0K7dK+KaNTqMytpLXRs+MgXyYJ6hO48847OXDgAOeffz7/+te/uPTSSxkzZgyTJ09m69atADzyyCPccMMNTJ06lRtuuIHy8nKuuOIKJk6cyMSJE1mxYgXgbDJ+yy23MHr0aMaMGcOHH34IwF133cWECRMYOXIkv/nt77A1tZIQFcrDDz/MpEmTuGz26Tz6yG9YuDiHefPm8cADDzBu3Dj2799v2HURQgjRM4VrC1n252Wsf3Y9Oz/YyaGcQ5RtL8NWYsPeYjc6vG7RDs2nt3yKKcTERS9c1GFrj/bG3TSOyKRIVv5zpQcjDDwt9S0cXHyQwXMGd+l6d1b7PtTdUbCmgP1f7WfKL6eQNiGNlvoWavNr3RukH9FaL9daK631GK31uLavBVrrSq31bK31YK31WVrrqrbttdb6bq31QK31aK31eqMfQ3d5e0z9+9///si5f//73zNixAjGjBnD/fffz8qVK2VMLYQQQgiPOJRziPryekZe0/n2Hi6pY1LRdk35rt4761AWSTyBZ599li+++IIlS5bwhz/8gfHjx/PJJ5/wzTffcOONN7J582YAdu7cyfLly4mIiOD666/n5z//OdOmTSMvL49zzz2XXbt28ac//YnY2Fi2bdsGQHV1NQB/+ctfSEhIwG63M/3MmZxy5nmkjB3Cxx9/zLp164iJiWHr/kKCwqOZc9FFXHzRRVx55ZVGXRIhhBA9VH2wmtfPep1m64nbJoTFhhGVHEVkUuSRr+i+0ThOc3gx0q5Z85815H2bxyWvXEJMRkyX9g2JDGHi3RNZ+oellO8qJ3l4soeiDCwHvzlIa2Or2/tPu/S0D/WyPy0jIjGCiT+ZSPEmZ2eK8p3lxPWLc2OUwh94e0w9e/Zstm7dSnp6Op999hl79+5FKUVNTQ1xcXFcfPHFzJkzR8bUQgghhHCr7XO3ExodyqDzBnV539TRqQCUbi2l7/i+7g7NL/hPgvqRjntZdv2YnavkWb58+ZEKjVmzZlFZWYnFYgHg4osvJiIiAoCvv/76qCmDFosFm83G119/zbvvvnvk9vj4eADee+89nn/+eVpbWykoLKLoUC5JM08jPDycu+++m8suu4yzzj2fw9XNNLb4bmJCCCFExxytDj7+4ccopbhn7z2ERodSX15PfcWJvyyFFoo3FWMttDL4F4PhEqMfxbEqcytZ/PBiBl84mLE3je3WMSbePZEVf1/BqsdXcfELF7s5wsC0d/5eQqND6XdGP4+dI3tGNqv+tYrmuuYuTVMs3lhM7ue5zPzzTEKjQ4986FCxq4LB57u/X7boAgPH0+CdMXVxcTE7d+5kxIgRhIeHc9tttzFnzhzmzJnT44cqhBBCCHE89hY7uz/azdBLhhISEdLl/RMGJRAcHtyrF0r0owS1b04LjYqKOvK9w+Fg9erVhIeHd7jfwYMH+ec//8m6deswhUVx4003E4yd4OBg1q5dy2effcb8+fP573//yxsffk5Ti53mVklSCyGEv/r2b9+SvzKfy9+6nMTBiQCY+5o73M/R6uDPYX+mqbzJ0yF2mcPu4NNbPiU4LJiLnu9aa4/2opKjGHvzWDa/vJlZf5pFdJ9oN0caWLTW5H6ey8BzBhIc5rmhXPaMbFb8fQX5K/MZePbATu+37E/LCI8LZ9I9kwCOzATozVMWfYaPjqfBPWPq+Ph4br75ZhobGwkODmbJkiWsXbuWDz74gP/+97988803nnwIQgghhOilDi4+SENVQ7faewCYgk0kj0ju1QslSg/qTpg+ffqRRV1ycnJISkoiJubYKcznnHMO//nPf4787JqyePbZZ/O///3vyO3V1dVYLBaioqKIjY1lz8ECVuR8TXiwCZvNRm1tLeeeey7//ve/2bJlCykxYURHR1NYVuXZByqEEMIjCtYUsPQPSxl9/WhGXz+6S/uagk1E9432yQT1mifXkL8in/OeOg9zWsfJ9pOZ8osp2FvsrP3vWjdFF7hKt5ZiKbAweI5nq5FdfagPL+18m4/SraXs/mQ3p913GuGx3yUXk0ckU7GrwhNhCj/i6TF1aWkpCxcuBJz9qi0WCxdccMGRMTWA2WzGarV66iEKIYQQohfaMXcHYbFhDDyn80Ud35c6JrVXV1BLgroTHnnkETZs2MCYMWN46KGHeO2114673VNPPcX69esZM2YMI0aM4NlnnwXgt7/9LdXV1YwaNYqxY8eyZMkSxo4dy/jx4xk6bBj3/vgWTps8BaUUVquVOXPmMGXKFKZNm8bjjz9OSJCJ6667lmf/+wRjZUEXIYTwK03WJj76wUfEZMRwwf8u6NYxYjNjfS5BXZlbyTe/+YahFw9lzA/H9Ph4iYMTGXbpMNY9vY5m24l7dAtnew+AwRd4NkHt6kPdlYUSl/15GaHmUE6777Sjbk8ankT5znK01m6OUvgTT46phw0bxvXXX8/UqVMBsFqtXHXVVYwZM+bImBrg2muv5bHHHmP8+PEyphZCCCFEj7U2tbLr410Mu3RYj2Y3poxOwVZio668zo3R+Q//afFhgEOHDh35/pNPPjnm/kceeeSon5OSkpg7d+4x20VHRx93AP7qq69SUttAubWJYX1iCAl2fl6wdu1arFYrZvN31WgXnDWTgUvXEhykGJAsU5+FEMJffPGzL6g5WMNNOTcRHtfxdPXjicmIoWqtb82i2fvZXlobWzn/P+d3u7XH953+wOns/ng3m17ZxGn3ntbxDr1U7vxc0ielE53q+fFA9oxsVj3euT7U5bvK2fnBTqY9PI2I+Iij7ksankRjdSN1ZXVeiVv4Fm+MqY8nJyfnqPE0wNSpU4/qby2EEEII0RMHFh2gqbap2+09XFJGpwBQtq2M/rP6uyM0vyIV1AZyaE1VXQvm8JAjyekTMZkUfWLCaWi2U9vQ4qUIhRBC9MSuj3ax+eXNTH1oKv2md38xO3OGmcayRp+qPrUWWQmOCCYm89jp+d2VOSWTzNMzWf34ahyy7sJx1ZXVUbCmgMEXemexwewZ2ThaHBSsKuhw22//8i0hkSFM+fmUY+5LHvHdQolCCCGEEEIEih1zdxAeH86Aswb06DipY1IBKN3WO/tQSwW1gayNLbQ6HCRERXS8MRAXGUKFLYiS2kZiwkMwmdxTsSaEEML9LIUWPvvRZ6RNSGPGIzN6dKzYzFgcjQ6aapu6XYXtbtYiK+Y0s9uqp11Of+B05l42l10f7WLk1T2rQghEuQtzQcOQOUO8cj5XH+pDOYdOOuiuzK1k+zvbmfLLKUQmRR5zf/JwZ4K6fGc52TOyPRWuEEIIIYRo58DXB5h32zymPjiViT+ZaHQ4Pm/535ez+OHF0MW6oPG3jScoJKhH545OjSYyObLXLpQoCWoDVdW1EBJkwhzeuadBKUXf2HAOVNRRUddEitk3khRCCCGOph2aT276hNbGVi5/6/IeD1ZiMpxVyrX5tb6ToC60EpPuvupplyEXDSFhcAIrH1vJiKtGuD0B7u9y5+diTjPTZ3wfr5yvs32ol/91OUFhQUz55bHV0wDmdDOh5lDKd5V7IEohhBBCCNGe1prV/17NogcWYQo28cXPviBtQhrpk9KNDs2n7fpwF4mDExl5becLZUxBJsbdPM4t5+/NCyX6dIJaax2wb0ybW+1YG1tIjQnv0mOMDg8hJjyEcksTCZGhBAc5W4P40rRvIYTo7VY/sZqDiw8y5/k5JA5J7PHxXAlqS4GF1NGpPT6eO1iLrKRNSHP7cU1BJqb8cgqf3/k5h5cdJvvMbLefw1/Zm+3s+3Ifo64d5dXxUUd9qKsPVLPljS1MunfSCftLK6VIHp4sLT4MEMjjaXeT8bQQQohA0NLQwmc/+oxtb21j+OXDOfeJc3ll+it8cM0H/HjTj32m4MXXNNc1U7yxmGkPTWPmH2YaEkPK6BQ2PLcBh92BKah3dWX22UcbHh5OZWVlwA4Uq+paUEB85MkXHDqePrHhODSUWZsA52C6srKS8HD5JSOEED3y1e9gw6s9OkTJlhIWP7yYoZcM5ZTbT3FLWK4+z5YCi1uO11Naa6xFVqLTPLPY3dgbxxKZHMnKx1Z65Pj+Km95Hs3WZq+193DpqA/18keXYwo2MfWBqSc9TtLwJMp3SgW1NwX6eNqdZDwthBAiENTm1fLKtFfY9vY2Zv55Jld9cBWxmbFcOfdKLAUWPr31UxkXnEDhmkK0XZM5NdOwGFJHp9La0Er1gWrDYjCKz1ZQZ2RkUFBQQHl54L2R0VpTYmkiNEix3xp23G0aGxtPOkC21jdTmmenMiaM4CAT4eHhZGRkeCpkIYQIfLWFsPF1MAVBxkRI7Xr/45aGFj76wUdEJERw8YsXu61q0dzXDCaw5PtGgrrJ0kRLfQvmNHPnd2quhwUPwIAZMOaqk24aEhHCpHsmkfP7HMp3lh9ZYK+32zt/L0FhQfSf7d1VvU/Wh7o2r5bNr27m1DtO7fD1kDQ8iS2vbaGxtpHwWEkCekMgj6c7o6Px9PfJeFoIIYQ/O7T0EO9f9T72JjvXzbvuqKKGjNMymP3obBbdv4h1/1vHpHsmGRipb8pbkQfKuXC7UY4slLi1lMTBPZ+J6098NkEdEhJC//7efQPmLV/tKOGOTzbw4o0TGD78+FO1c3JyGD9+/AmPUWZtZOZjOUwfnMyzN5zqqVCFEKL3WP00jP+hMzH9wW1wxxII6dwiti5fP/g15TvK+cEXPzjuQnHdZQo2EZoQ6jMV1NYiK0DnE9SWYnj3Oggzwzd/hJGXQdDJhyATfzKR5Y8uZ+W/VnLJS5f0NOSAsHf+XvrP6n/cNhuedLI+1Mv/vhyAqQ+evHoavlsosWJXBRmTJQnoDYE8nu6MjsbTQgghRCDQWrPuf+v48udfEj8wnms/vZakoUnHbDfl51M4tOQQX/3yKzJPz6TvKX0NiNZ35S/PJ3V0qqEtUJJHJIOCsm1ljLhihGFxGMFnW3wEsnfW5pEaE8aMod2vCEsxh3PnmQP5YkcJ6w5VuTE6IYTohRqqYdObMPkuGHsdpAx3tvvogn1f7GPtf9Zy2n2nMejcQW4PMSw5zD8T1EWb4cXZMOxCuHEexGbB9g873C0yKZJxt4xj25vbqNgtfYsr91ZSlVvl9fYeLtkzsilcW0hzXfOR2yyFFja9uIlxt4wjNjO2w2O4KuFloUQhhBBCCPdobWxl3u3zWHjvQgadP4jb19x+3OQ0gDIpLn3tUqJSonj/6vdpsjR5OVrf5bA7yF+Vb2h7D4CQyBASByf2yoUSJUHtZYU1DeTsLeeaCZlHFjjsrtunDyA1Jow/f75LeggJIURPrH8Zhp4PsRmgFMz5N+z9EvZ80and68rr+OTmT0gZlcJZj57lkRDDksN8psVHpxPUO+fBm5fDuX+FMx5wXtvpv4Dlj4PD0eF5pv5qKmGxYbw89WUOf3vYHaH7rb3z9wIw+MLBhpz/eH2oVz62Eu3QTH94eqeOEdc/jqCwIOlDLYQQQgjhBpZCC6/OeJXNL2/mjP87g2s/ubbDNmqRiZFc8e4V1Byq4bMffSa5pDZl28potjaTNS3L6FBIGZ1C6dZSo8PwOklQe9ncdfkAXD2x55/KRIQGcf85Q9mSX8P8rcU9Pp4QQvRKLY2w5jk4/aff3RYRB5c/B/PuBWvJSXfXWvPZ7Z/RWN3I5W9dTnC4Z7pnhaWEUZtf6xODyCMJ6r4nSFBrDd/+C754CH74IYy89Lv7Bs6C4HDYs6DD88T1i+P21bcTlRLFG2e9wda3trohev+0d/5eUkalENcvzpDzt+9DDWArsbHhuQ2MuWEMcdmdi8kUZCJxSCIVu6QiXgghhBCiJ/JX5vPChBco31HO1R9dzcw/zESZOrf+TdbULGb9eRY73tvBhuc2eDhS/5C3PA/A8ApqcPahrtpfddTMxd5AEtRe1Gp38N66fM4ckkxGvHt6k15+SgbD+8bw9y92U9fU6pZjCiFEr7LlHeg7DlK/1+Or3+lw6s3wyV0nrfbd8PwG9szbw+xHZx9Z1MITwpLDaKlroanW+Kl41iIrYTFhhEYfpxdyaxN8fKezevr2ryHte/1flYLpv3QmsDuRbI8fEM+tK28l8/RMPv7hxyz78zKfSNJ7U2NtI3nf5jF4jjHV03BsH+qV/1qJvdnO9F93rnraJXlEsiSohRBCCCF6YMMLG3h1xquERody2+rbGH7Z8C4fY+qvpjLw3IF88bMvKNl88oKc3iB/RT4xGTHEZnXcts7TUkangIbyHb1r1qHPLpIYiHL2lFNiaeQPl4x02zGDTIpHLhrBdS+s5oEPtvC/609Bqc59aiaEEL1dfZmVkMWPczD6Fxz85ZdU7qmk2frdJ9VK9eH88Qc49MUt7CyYedxjFK4rZMDZA5h832SPxhqWFAaApcBi6MIdALYiG+b041RP28ph7g8gOhVuWQihJ/gwdtgc+OZPcHApDJjR4fki4iP44Zc/ZN7t81jyuyVU769mznNzCAoN6tkD8RP7v9qPo9VhWP9pl+wZ2ax6fBU1h2tY//R6Rl8/moRBCV06RtLwJHa8t4OWhhZCIkI8FKkQQgghRGBa9fgqvvrlVww6bxCXv305EfFdW9TdRZkUl71+Gc+Oe5YPrvmAH63/EWHmMDdH6x+01hz+9jD9pvfziXxa6mhn0VPptlLSJ6UbHI33SAW1F72zNo8UcxizhqW49binDUjkwfOGsWBbCc8uPeDWYwshhL9z2B1U7a9i7+d7Wfmvlcz70Txemf4K/0j6B/Nn3EnJ3hbeuecw659ejyXfgjKpI1+oYL7dfRNj+i0iwVx41H2ur8EXDObSVy/t9JS67gpL+S5BbTRLoeXY/tOlO+HFWZA9Ha567cTJaQCTCab93FlF3UlBoUFc+tqlnPnImWx+dTNvnf8WjTWN3XwE/iV3fi4RCRFkTM4wNA5XH+oPr/uQloYWpv+ma9XTAMnDk0FD5Z5KD0QohBBCCBHYNjy/gazpWVw3/7puJ6ddolKiuOKdK6jaV8Xnd33e62YputTm1WIttPpEew9wziANiQzpdX2opYLaS4pqGliyp4yfzBhESA8XRzyeO84YwNbCWv7x5W5GpMVw5pBkt59DCCH8SeHaQj674zMqdldgb7IfuT0yOZLk4ckMv2IYMzPexzLgF/z0t1cRmxWL6US/n7ekc3HaP+GOpSdPvHpQWLIzQV2bX2vI+duzFlnpd0a/727Y+5WzFcp5f4MxV3fuIKOvgiV/hfx1kDmxU7sopZjx+xnED4hn3m3zeOn0l/jBgh90ugeyP3LYHeQuyGXwBYNP/Pr0Elcf6oJVBYy8ZiRJw46/QvzJJI9wjk/Kd5XTZ1wfd4cohBBCCBGwqg9WU7mnkgl3TXDbuDD7zGzOfORMcv4vh+yZ2Zxy2yluOa4/yV/hXCvOFxZIBGd1e8qoFMq2lRkdildJgtpL3lufjwauccPiiMejlOKxK8ewv8zGT9/ZxGf3TCMr0ZgkihBC+ILchbmUbillyv1TSB6eTNKwJBKHJhLp+t148FuY7yD6utvA1EGriLHXwL6v4ctfw0VPeDz24wlNDAVlfAW11hprkdVZQa01rH4aVjwF170DmZM6f6CgEJh6Hyx/3LlvF4y9YSyxmbHMvWwuL572Itd9dl3ATn8rXFtIfUW9of2nXVx9qAvXFHLGb8/o1jESBiegTEr6UAshhBBCdNG+hfsAGHyBe8eF0389ncNLD7Pw3oVknJZByij3zvr3dXnL8wg1hzp7P/uIlDEp7P54N1prn2g74g3S4sML7A7N3HX5TB+cTGaC55LGkaHBPHfDqWitueON9dQ3y6KJQojey1ZsIzI5knMeO4fxt44n8/TM75LTACuehNN/2nFy2uXCf8L+b2DXfM8E3AFTsAlzX7PhCeqGygYcLQ7MfaNg/s9g01tw+6KuJaddxv8QCjdA6Y4u75o9I5vbVt1GSFQIr854lV0f7+r6+f3A3vl7UUGKQecOMjoUAKb/ZjpnP3Z2t9+4BIcFEz8wnvKdvWvRFyGEEEKInspdkEv8wHgSBye69bimIBOXv3k5YTFhvH/1+zTXNXe8UwDJW55H5pRMw2crtpc6OpWGygZsJTajQ/GaTl19pdQhpdQ2pdRmpdT6ttseUUoVtt22WSl1QbvtH1ZK7VNK7VFKneup4P3F0r1lFNc2cv0kz/ez6ZcYxVPXjWdPqZWHPtzWa3sICSGErcRGdJ/o499Zsh1KtsGYazp/wPBYuPwFZ1LWUuSWGLsqJiMGS76xCWprkRWApIRS2PcN3PYlxHVzOlxIBEy+C5b/u1u7Jw1L4vbVt5M6JpX3rniPVY+vCri/e7nzc+k3vZ/hC2O6DL1oKKfff3qPjpE8PFkqqIUQQgghuqC1sZWD3xxk0PmeKVqI7hPN5W9dTsXuChbes9Aj5/BFjTWNlG0vI3Oab/Sfdkkd41wosTe1+ejKxwMztdbjtNYT2t3277bbxmmtFwAopUYA1wIjgfOAp5VSnSxPC0xvr8knKTqM2cNTvXK+GUNTuP+coczbUsRLyw965ZxCCOFrTpqgXvkUnPZjCOli0i/rNJj4I/j4TnA4eh5kF8VkxhheQe1KUMfE1EPiQAgzd7BHBybcBvsWQ1X3FvmNSonipiU3Mfzy4Xz1y69YcM8CHK3ef248oTavltKtpQy+0Pj2Hu6UNCKJytxK7C32jjcWQgghhBAcWnqI1oZWt7f3aG/A7AGc8dsz2PzqZra8vsVj5/El+avyQftO/2kXV7uR3rRQoifq1y8B3tVaN2mtDwL7gG7M+w0MJbWNfLO7lKsnZHhkccQT+cmMgZw/qg9/XbCLlfukSkkI0fvYim2Y+x4neVqTB7lfwYRbu3fg6b+E1iZY9Z+eBdgNrgpqI6uEXQnqqMg6iHZDn7bwGOdzseLJbh8iJCKEq967itMfOJ31T69n3m3zeh6XD8hdkAvAkDlDDI7EvZKHJ+NocVC9v9roULxKKfWyUqpMKbW93W1jlVKr2mYqfqaUiml3n8xIFEIIIQTg7D8dHB5M9oxsj57nzN+fSb8z+/H5Tz6nsabRo+fyBfkr8lFByufWs4lMjCS6b7RUUB+HBr5SSm1QSt3R7vZ7lFJb2wbc8W23pQP57bYpaLutV/pwYwEODddO9O6nMUopHrtqLAOTo7n77Y0UVNd79fxCCGEkrTW2EhtRfaKOvXP1M87exxFx3Tt4UDBc/rxzYcCiTT2Ks6tiMmJotjXTZGny6nnbcyWow0Is7klQg7PNx46PwVLc7UMok+Lsf5zN5J9PZuubW7EUGltp7g575+919hkc6t4+g0ZLGp4EQPmuXteH+lWcswvbexF4SGs9GvgYeABkRqIQQgghjrZv4T6yZ2QTEhHi0fOYgkyc/djZtNS1sOO9rq8T42/ylufR95S+hEaFGh3KMVLHpPaqCurgTm43TWtdqJRKARYppXYDzwB/wpm8/hPwL6DT5Whtie47AFJTU8nJyelK3H5j+dZGkiMUB7atpSuTl202m1uuyW1DHfxhVQs/eGYpvzktnNCg3rH6Z0fcdX2Ff5Hn3bN86fq2WFuwN9sptZUeFVNwi5XT1r/OuolP0dzDWFP63UT2G9ezfsK/cQR5vj+wzWaj3uL8sHHxR4uJ6n+c5LsX5K7LJTgmmKJ9m2kOTSDfTc/5oMQz0O89xP5Bt/ToOI5THWiH5pM/fELW9Z3/cNiXXr8A9kY7+xftp+9FfVm6dKnR4bhVa71zEee1n6+lNN59g25few6/T2u9TCmV/b2bhwDL2r5fBHwJ/I52MxKBg0op14zEVV4KVwghhBA+omp/FZV7K5l4z0SvnC9tQhpJw5PY8toWTr3jVK+c0wj2ZjuFawo59U7ffIwpo1NYm7MWR6sDU7DvLODoKZ1KUGutC9v+LVNKfQxM0lq7BtMopV4A5rf9WAi07y6e0Xbb94/5PPA8wIQJE/SMGTO6E7/Pe2n/GjJCWpkxY2qX9svJycFd1yRlYCm3vbaeLyri+dfVY1FKktTuvL7Cf8jz7lm+dH3Ld5azkpWMmz6OUTNGfXfH0sdg1KWcfu4VbjjLDPi4iDNqP4LzHoXIBDcc88RycnIYc+4Ydv1pF0P7DmXQDM8skNKRkidKsGfbyYwLhcFTGDh2hnsOPH4QPDOVzOv/3eNrWfJcCZZlFs587sxO/83zpdcvONt7LG9ezqw7ZzFgxgCjw3G7bZnbMDea3XrNfe057KQdOJPRnwBX8d0YOh1Y3W67Xj0jUQghhOjN9i3cB8Dg872zLolSinE3j+PrB7+mcm8liUMCazafS/GmYlobW32u/7RL6phU7E12KnMrSR6ebHQ4HtdhglopFQWYtNbWtu/PAf6olOqrtXbNxb0McPXTmwe8rZR6HEgDBgNr3R+6fyi3NpERH2loDLOGpfLzs4bw+KK9jMmI5eap/Q2NRwghPM1WYgM4epHElgZY+zzcPP8Ee3XDBY/BJz+BJ8ZA37Ew9DwYeoFz8UAPiMlwtqc1cqFEa6EVc5oZ6sogyo0DpdgMGH4RrHkOZj7co0ONu3kc826bR+GaQjImZ7gpQO+q3FsJQN9T+hociWckD0+mYpeskYFz9uFTSqnf4RxDN3dl594yI7G7fL2q3t/J9e2d5Hn3LLm+nuWv13fbm9uIyIhga8FW50fWXtA0oAlMMO9P8+h/W+dySP52ffPfc3YnLlAFlOX4Xq9nW5PzPe2Sd5aQMstNrRU7OqeBz2FnKqhTgY/bKpCCgbe11l8opd5QSo3D2eLjEPBjAK31DqXUe8BOoBW4W2vda5dpr6xrZlxmnNFhcM/MQWwrrOVPn+9iWN8YJg8IzE/AhBAC2iWo+7ZLUG9+CzImQPJQ950ozAzXvOFMfh9YCnsWwMoLnLcPPd/5lTHJ2bfaDcxpZlAGJ6iLrKSMSQFbOUSnuvfg034OL50Np9/jvIbdNOKqESy8dyGbX93stwlqa7GVoLAgwuM93z7GCEkjktj4/Ea0Q6NMvXdml9Z6N87iD5RSQ4AL2+6SGYlu4KdV9X5Drm/vJM+7Z8n19Sx/vL4tDS2s2LKCU+44xeuxV5xTQdnSMs587cxOjdf87frOfXIu8QPjOefyc4wO5bhap7Sy8c6NJDmSvHZdjXwOO2xiorU+oLUe2/Y1Umv9l7bbb9Baj9Zaj9FaX9yumhqt9V+01gO11kO11gs9+QB8mcOhqaprJjHa+GbrJpPi8avH0i8xkrvf2khRTYPRIQkhhMdYi50L+R2poHbYYeV/YOp9njlhSISzevrip+AXu+Dy5yA4HBb8Cv45GD76sXMRwMaeJZaDQoKI7hNNbX6tmwLvGofdga3E5kyU20rdt0iiS+JA6H8mrH+lR4cJM4cx/IrhbH93Oy0NLW4KzrtsxTai+0R33KJEa6jIhU1vwfyfwy43zhDwoOThybTUtxj2WvYVbeu7oJQyAb8Fnm27ax5wrVIqTCnVn14+I1EIIYTorQ4vPUxrY6vX2nu0N/amsVjyLRxcctDr5/Y0rTV5K/J8tr0HQHBYMElDk3rNQomB32XbQLUNLdgdmsSoMKNDAcAcHsLzN0ygqdXBXW9uoLGl1xa2CyECnK3ERnB4MGExbb9/d81zVvtmTfb8yU0mSD8VZv0G7loOP17mrNze+AY8PhxevxR2L+j24WMzY7EWWN0XbxfUldWhHZqYvhHQWAuRHpiNM+3nsOp/0NLYo8OMu3kcTbVN7Pl0j5sC8y5bie3oFjUujRbY/w0s/Qe8eSX8oz+8cTns+xrisuDzX8Cuz7wfcBclDU8CnP3iewul1Ds4FzkcqpQqUErdBlynlNoL7AaKgFfAOSMRcM1I/IJePiNRCCGE6K1yF+QSHBFMvzP7ef3cQy8ZSlhsGFte2+L1c3taVW4V9eX1Pp2gBudCiWXbfK/9iCe4Z86xOK7KuiYAn6igdhmUEs3jV4/ljjc28OfPd/LnS0cbHZIQQrhdXUkd0X3bqk+1huVPwJkPGhNMXCZM+pHzq8nqTCR+8ZAzyXjOnyGkay0cYjJiKN9lTFLPWuRMjMeltEJdIpiC3H+SvmOcX5vfgom3dfsw2TOyic2KZfOrmxl17aiOd/AxtmIbCYPioGw3FKyDgrVQsB6qDzuvT8ZEOPUmuOS/YO7z3Y4DZsKbV0BwBAw+y7D4O+Ja6KViV4UhFUFG0Fpfd4K7njzB9n8B/uK5iIQQQgjh6/Yt3Ef/mf0JiQjx+rlDIkIYec1Itr25jQv+dwFhZt8ovnSHvOV5AGROzexgS2Oljkllx9wdNFmaviu+ClBSQe1BFTbnOjdJ0b71IjpnZB9um9afN1fnsfZgldHhCCGE21mLrd9Vnx5cBi31MOQ8Y4MCZ1/lkZc5q6rryuCls6BiX5cOYc4wG9aD2pWgjolrdH97j/am/xJWPAH21q7v22iBhmqUSTH2prEcWHQAS6FxPbu7q6W6lEtGPQTvXAMHl0LqaLjkf/DQYbj1CzjnT85FJdsnpwHSxsF178DHP4aD3xoSe2dEJkUSmRxp2IctQgghhBC+rjK3kqp9VQw6f5BhMYy7aRwt9S3s/GCnYTF4Qt6KPCISI0galmR0KCeVMtr5nqtse+BXUUuC2oMq2xLUvlRB7fLLc4aQER/Bwx9tlVYfQoiAc1R7hBVPwuk/dbbe8BURcXDVa3DqLfDyObDl3U7vGpsZS7O1mSZLk+fiOwFXgjo6uh6ikj13oqzJEJsJ2z/s3PaV+51tQV67CB4fAU+OhXk/ZfwlkWiHZusbWz0XqwfYm+1EqWKag5Lhvi1wxYtw2h2QfgoEdaJ6JnMSXPUKvH8z5K/zeLzdlTw8mYqdFUaHIYQQQgjhk/YtdBayDL7AuNlmGVMySBicEHBtPvKX55N5embH670YLHWMc1H60m2B34fah96tB54jLT58pAd1e5Ghwfz1stHsL6/j6SVdq94TQghfZyu2Ed03Goq3QtlOGHO10SEdSylnC4sbP4Vl/4SP74ImW4e7xWTEABiyuJy1yAoKwkOszp7enjT9F7D83+BwHHufvcVZGf/lb+A/p8IrF0D5HjjtLrh/D9yzAWLSifvmh9x2zwKqvngffbzj+ChbqQ2z2YY9vAfXuP8ZcNmz8O51UOybbyiShidRvqscrbXRoQghhBBC+Jx9C/eROCSR+AHxhsWglHNW4uGlh6k+WG1YHO5UV15H5d5Kn+8/DRCbFUtYTFivWChREtQeVGFrRimIj/R+r6DOOGNIMpeNT+eZpfvZW2rMgltCCOFurU2tNFQ1OCuoVz4Fk++CYN/7oPCIPqPhjhzn9y/MhJLtJ93claA2os2HtchKdGo0poZyiPZgBTXAwNkQHAp7Fzp/rqt0Vpq/fzM8NhAW/R7CYuCKl+CXu+Hip2DYBRAa5YxtxoPws23YB1/CacPn0/r4BNjwKrQ0eDZuN7AV24iJsUFMWs8ONPhsuPBxeOsqZy9rH5M8IpnG6kbqyuqMDkUIIYQQwqe01LdwcMlBBl1gXHsPl7E3jAUFW173zaKHrspfkQ/gFwlqpRQpo3rHQomSoPagSlsTCZGhBAf57mX+7YXDiQ4L5qEPt+Jw+F8F01trDjP5r4t5anEutfUtRocjhPABrmRXfHKDc0HCU282NqDOCIuGy55x9l5+/WJY95JzccfjiMk0LkFtK7JhTjeDrQyiPNiDGpwV5tN/CV/9Fl46F54aB7s+g4Gz4O61cMcSZxI6bZxz2+MJCafPLb/kpddvZX3e1bB7ATwxGr75M1h9twrBWmzFbLYRlJDR84ONuNi5GOcblzlbofiQpOHOnn/lO6UPtRBCCOGLmuuaWfzrxdRX1BsdSq9zKOcQ9ia7TywmHZsVS/9Z/dny2ha0H+aNvi9veR5BYUH0PbWv0aF0SsqYFEq3lgb8rEPfzZwGgEpbs0/2n24vMTqM380Zwca8Gt5cc9jocLpsw+Fqym1NPL5oL6c/upi/fL6TUkuj0WEJIQxkK3a2yUgwlzurk8NjDY6oC8ZeC7d+Cevb+gc31ByziTnNDAos+d5PUFsKLc7z28o8u0iiy7CL4JQb4cwH4P5cuPYt58/fXxjwJMLMYQy/YgRLX4eWy9+CWxZCfRX8byJ8fKezDYyPcVZQWwnp46aqjjFXO5P5r18KNXnuOaYbJA93VuFX7JI+1EIIIYQvOpRziOV/W87HN3wcEIlJf5K7IJeQyBD6ndHP6FAAGHvTWGoO1pC33HfGkt2VvyKf9InpBIcFGx1Kp6SOTqWptsmQAiVvkgS1B1XWNflk/+nvu2x8OtMHJ/GPL/ZQXOv7U5/bK7c2MSo9loX3TeesEam8tPwg0/++hIc+3MrBCpkyLERvZCtxJqijIi1g7mGLBCMkDYbbv3YuQvjcGVCw4ai7g0KCiO4TbViLD3OaGeq8lKA2mWDaz2HQWRAS3u3DjL1pLE21Tez5dI/z+s55HH66GZKGwNvXwGsXE9TqO3//bCU2zDE2wtL7u++gp94MU34Cr18C1hL3HbcHzOlmQs2hlO+SCmohhBDCF7kKIvZ9sY8Vj60wOJreQ2vNvoX76D+rP8HhvpFEHX75cEKjQ9n82majQ+mRlvoWijYUkTkt0+hQOs21UGKgt/mQBLUH+UMFNTh72vzl0tG0Ohz87pMdfjVtoNzaRHJ0GMP7xvDktePJuX8mV0/M4KNNhcz6Vw53v7WR7YXeX0gsUGit/bL1i/A+X/q94UpQR4TUdKnS1qeEhMOF/3S2Znj7alj536PujsmI8XoFtb3ZTn15/XcV1J5u8eFG/Wf2JyYzhs2vbv7uxsgE50KMP9sKDVVE1R0yKrxjWIutxMbVY4pPd++BJ98F437gTFLXGV+1rJQieXiyVFALIYQQPqo2vxYVpBh+xXC++c035K3w/+pZf1CVW0X1gWoGnW98/2mX0KhQRlw1gp3v7aS5rtnocLqtcF0hjhYHWVN9v/+0S8oo5/uuQF8oURLUHlRhayIp2vcrqAGyEiP5xdlD+HpXKQu3+0ZlVWdU2JpINn93jbMSI/nzpaNZ/uBM7jxzIMv2ljPnP8u54aU1rNpf6VNJNH/w4rcHOf3Rb2hothsdivBRDruDZX9Zxt/Mf8Oy0zemHFmLnYu+huoqMPtHX7ETGnEx/OgbWP5vIuqLj9wckxHj9QpqV+Lfqy0+3ESZnKuPH1h0AEvh965bUAgkDiK80XeqeG3FVszRVs+8fs+4H4Zd6OxJfZwWMt6WNDxJelALIYQQPsqSbyEmPYaLX7qYuH5xfHjth9RXSj9qT8tdkAvgUwlqcM5KbLY1s/tj31t8u7NcCyRmnu4/FdThceHEZsVSstl/cnXdIQlqD2ludWBpbCUxyvcrqF1undqfUekx/H7eDr9YcLDV7qCyrvmoBLVLijmcB88bxoqHZ/Gr84ayq9jCdS+s5rKnV/LljhIckqjukNaaN1YfpsTSyIJtxR3vIHqd6oPVvHrmqyz57RJa6lp8JkFtK7ERmRSJqa4EYvw8QQ0Q3w9SRxLe2C5Bnen9BLW1yJn4N/eJgCYLRCZ69fw9Ne6mcWiHZusbx+k5HZtJeKPvTJlrqSzHoUOci2d6wqzfQb+p8NaV0GT1zDk6KWl4ErZiG421sn6EEEII4Wss+RZiMmIIjw3nyveuxFZq49ObP5XCLw/bt3AfScOSiO8fb3QoR+k3vR9x/ePY8toWo0PptrzleSSPTCYiIcLoULokfVI6hWsKjQ7DoyRB7SFVbVMeEv2kghogOMjEo5ePoaqumb8t3GV0OB2qrGtGa46boHaJCQ/hJzMGsfzBWfzp0lFU2Jr48RsbeH2n/05J8ZYNh6vJq6onyKR4Z61M5RLf0Vqz5Y0tPDv2Wcq2lXHZG5cREhlCY6lvJJjqSuqI7hMN1mL/r6B2ie93VAI1JiOGJksTTZYmr4XgSlDHJjZDRAKYgrx2bndIGJRA1rQsNr+6+dg3VXFZhDX5ThWvshbR6Ejw4AkUnPc3SBkBb14Je76AJpvnzncSySNkoUQhhBDCV9Xm1xKTGQNA2qlpnPPPc9g7fy+rHl9lcGSBq7mumUM5h3yuehraZiXeOJYDiw9Qm+9/rVS1Q5O/Mp/Mqf5TPe2SPjmdmkM1R2a1BiJJUHtIhc2ZNPCHHtTtjUqP5fZp/Xl3XT6rD1QaHc5JlVud1zjlJAlql/CQIG6Y3I+c+2dw69T+5OS38unmwP70qac+2lRIeIiJe2YOYv3havaWGltlJ3xDQ3UDH177IZ/c+Al9xvXhzi13MuaHY4jtF0tTqfeSpSdjLbYS3TfauRCcv/ag/r64LCIavus5FpPhfKPgzSrqIxXUMfV+1d6jvbE3j6VyTyWFa7/3+z8202dafGiHJqi5jJbgJM+eSCmY829nG5lV/4V/DYVXLoCljzkX5nR4p7VT8nBnglrafAghhPCWlf9aycKfLjQ6DJ+ntcZSYDmSoAaYdO8khl02jMUPLaZgTYGB0QWuQ0sOYW+2+2SCGmDsjWNBc/xZiT6ubEcZTbVNZE3zn/7TLhmTMwAC+v+dJKg9pLKtgjrJzxLUAD87awhZCZH8+qNtNLb4bu9hV4L6ZBXU3xccZOLXFwxjcJyJX3+0jf3lgfvpU080tdr5fGsx547sw02nZxMaZJIqasHBJQd5dsyz7PpoF7P+MoubltxEXHYcAHH94mgs8Y0KaluJjeg+kW19kgMlQZ1NeON3CerYzFjA+wlqU4iJ8GCr3yaoR141kuCI4KMXSwSI850WH/WV9URHWnGEp3r+ZKYgmHI33Dwf7t8L034ODdUw7x74xwCYewOsfwWqD3kshLj+cQSFBVG+SxLUQgghvGPn+ztZ+5+15C2X9zcnU19Rj73JfmTcCc4Fji9+6WJiMmL44JoPaKhuMDDCwJS7MJeQyBD6ndHP6FCOK35APP3O6Hf8WYk+zvV/3p8WSHTpe0pfTCEmClZLglp0UaWrgjrKf1p8uESEBvGXy0ZxoKKO/36zz+hwTuhIgrqLbVSCg0zcNS6M0GATd7+10aeT8EZZsruM2oYWLhufTkJUKOeO6sNHGwvlWvVSrU2tLPrVIl6f/TohkSHctuo2pv96Oqag7/6ExGbH+kSLD601thIbCX3tEB4Lwf73IeFxHafFB+DVqXXWIivmvmZUfTlE+WeCOiwmjBFXjGD7O9tpbWz97g5XBbUPDLJtJTZiYmwQk+bdE4dGweCz4by/wk9WwU9Ww9AL4PBKePFseHIczP8F7PrMre1ATEEmkoYmSYsPIYQQXlOb5xw/ff3Q136XYPMmS76zEKJ9BTVARHwEV7x7BdZCK/NunSfX0I201uxbsI/+s/sTHBZsdDgnNPamsVTlVvldsjR/RT7RfaOJ6x9ndChdFhIRQp9xfShcHbidACRB7SGVNlcPav9MjkwfnMzlp6Tz7NL97C7xjYXPvq/c1vUKapeEcBOPXzOO3SVW/vDZTneH5vc+2lhIsjmMaYOcU8yvm5RJbUMLC7fLYom9Tfmucl6a/BIrH1vJqXecyh0b7yBtwrGJs7h+cbRaWmmyGtvmo7GmEXuTnfjkxsDpPw0Ql3VUgtqcZgbl/Qpqc5oZbKUQney187rb2JvH0lTbxO5P260+Hh6DwxTkrB42mK3YhtlsIyjJ4N54MX1h3HVwxQvO6upr3oT4bFjzHLx8HjTXu+1UScMlQS2EEMI77M12bCU24gfEk78in9wFuUaH5LNchRDtK6hdMk7L4Ky/n8XuT3az9j9rvR1awKrcU0nNoRoGXzDY6FBOasRVIwiJDPG7xRLzlueRNS0LpZTRoXRLxuQMCtcV4mh1GB2KR0iC2kMq6poIDTYR7cOfenXktxeOICYihIc+3Ibd4XufipZZGjGHBxMe0r2FumYOTeHOMwfyzto86UfdTnVdM0v2lHHJ2DSC2ypkpwxIJDsxknfW5BscnfAWrTVr/7eW5095HkuBhWs/vZY5z84hNOr4H7rF9nMOXGsPG7tYhmvRiJjY+sDpPw0QnUqQveFI5WpQaBDRqdFHKlu8wVrYlqCu898KaoD+M/sTkxnDllePHlA3haVAjfFTfa3FVsxmGyF9fGjqoVLQZxRM/Snc9BmkDIP5P3dbxXnS8CSqD1bT0tDiluMJIYQQJ2IptICGqQ9OJX5gPIsfXozDHpjJnp46UQW1y+SfT2bIRUP46v6vKFpf5M3QAlbuQucHJr7af9olzBzG8MuHs/3d7X4zfrMUWKg9XOuXCyS6ZEzOoKWuhbIdvtGa0N0kQe0hlbZmkqJC/faTGYCEqFD+b84INufX8MaqQ0aHc4xyW1O3qqfb++U5Q5jQL176Ubczf2sRLXbNZaekH7lNKcV1k7JYe6iKfWWyWGKgs5XaeGfOOyy8ZyHZM7O5a9tdDL146En3cfWirjlc4/kAT8KVoI6OsjorQAOFUjSGH51AjcmI8XoFdXRadFtvby/0R/YQZVKMvWks+7/a73yT2qYxPBlqjf8Qztniw0p4Vn+jQzk+peCiJ6F0O6x70S2HTB6RDNpZNSSEEEJ4kqu9R/yAeGb9eRZl28rY/s52g6PyTbX5tQSFBhGVHHXc+5VSXPrqpUT3ieaDaz6gsdb4dn/+bt+CfSQNTyKuX5zRoXRo7E3OWYl75u0xOpROyVvR1n/aDxdIdDmyUOIq/2qt0lmSoPaQSlsTiV3sjeyLLhmXxhlDkvnHl3sorPGtBRDKrU2k9DBBHRJk4qnrxks/6nY+2lTI0FQzI/oe/Un5FadmEBKkeGet8Qkc4TnaoXnr/Lc4+M1Bzv/v+Vz/+fVE94nucD/XIMrwCupiZ4I6MqQ2sFp8wLEJ6kzvJahb6ltorGkMiBYfAONuGod2aLa++d3q443hyVBj/O83W7GNmNg6QlJ8c2EcwNmv+po3IOdRyFvd48MlD3e+nmShRCGEEJ7mSlDHZsUy8uqR9BnfhyW/W4K9Wd4Hfp8l30JMRgzKdOKiu4iECK5890pqDtfw2e2fST/qHmi2NXN42WGfb+/hkj0z+7izEn1V3vI8QqJC6DPWf2fZxvWPIzI50u96f3eWJKg9pMLW7Lf9p9tTSvGXS0ehNfzuk+0+9Qen3NpEsjm8x8dJi4vg8aulHzXAwYo6NuXVcPkp6cdU/ydFh3HOyD58uLFAEvnuUnUQXrsYFjwAG9+A4i3Q2mxoSNvnbqdkUwkXvXgRk+6e1OlZINF9olEhippDNZ4NsAOuCupQVRVYLT6AxvBUqDl85OeYjBivtfiwFjtnTgRCiw+AhEEJZE3LYsurW478XWsK840K6vqSasJCmyEyyehQTi5hAFz6NLx/C1hLe3aowQkok6J8pySohRBCeJYrQR2T6Uy8zv7bbGoO1bDh+Q0GR+Z7LPmWE7b3aC/z9Exm/WUWOz/Yyfpn13shssB08JuD2JvtPt/ew8UUZGLMDWPY/9V+rEW+P8s6f0U+GZMzMAX7bxpUKUXG5AxJUIuuqbQ1kRjl/xXUAJkJkfz87MF8s7uM7YW+s2BiubWJZDdVqc8cJv2oAT7eVIhScMm49OPef/2kLGrqW/hyR4mXIwtQJduguQ7isuDQt/DRj+HRLHh2Gnxyt3MxssOroMk7f/DtzXaW/HYJqWNSGX3d6C7tq0yK8JRw4yuoS2wEhwcT1FgG5mMXc/RnjeEpUH10grrJ0kSTxfMLU7oGnc4Kav9u8eEy9uaxVOyuoHCt83f+9yvUjWKvKqChORZMfjBEG3IunHoTvH8T2LvffzA4LJj4gfGyUKIQQgiPq82rJTI5kpCIEAAGnjOQ7BnZLPvTMpptxhaK+Jra/NrjLpB4PFMfmMqg8wfx5c+/pGSzvFfsjtyFuYREhfhVC4ojsxLf2trxxgZqsjRRuqXUr67tiWRMzqByTyUNVb7V4cAd/HcFPx+mtaairpmkAKigdpk5NIW/LtjNgQobozM690fKk+qaWqlrtve4B3V7vzxnCOsPVfHrj7YxKj2WgckdtzUIJFprPt5UwNSBSfSJPX5l+pQBifRLjOTtNXknTGKLLrAWQ9+xcPq9393W0gClO6FkCxRvha1zoWyXsxq4zxjoOwZCzdDaAC2N3/u37au18eh/tcOZUIzNgNhMiE3/7vuYNAiJAGDjSxupPlDN9Z9ff9KpfCcSlhpmfA/qYpuzmttaEqAV1N/N8nBVtFgKLSTHeLblxpEEdZ9waLJAZIJHz+cNI68aycJ7F7L51c1knJbhbPFRbHwFtamuhEadgN/8BTrjV1C4Eb76LZz/924fJnlEsiSohRBCeJwl30Js1nfvZ5VyVlG/NOUlVv17FWf+7kwDo/MdDrvDuUB2hrlT2yuT4tLXLuW5cc/x/tXvc8eGOwhz43v1QKe1Zt/CfQw4awDBYf6TpksckkjGlAy2vLqF0+8/3ehwTqhgdQHaof16gUSXjCnOPtSFawsZdJ5/VNt3lv+88v2IramV5lZHQLT4cEmPdyawCqp941OacquzYtCdCWpXP+oLn/qWu9/ayCd3TyU8JKhbxyqsaSA6LJjYtk/m/cH6w9XkVzXws9lDTriNyaS4dmIWf/9iN/vLbb0uie92lqJjF/ILiYCMU51fLvZWqMx1JqxLtjr3Cw53bhsa7Wy3EBIOwRFH/xsS6dxOmcBa4mxfYCmEQ8uhtqDt52IIM+MwpxO3upGrbk1lUGw87NjelszOcB6/E9Wc4X3CqdlQ495r1EW2EmeCGmtxYPagLlp45OeYjLYEdb7lSA9fTzmSoI5rgogEMHXvd6MvCYsJY8QVI9j+znbO+/d5bRXUxieog5vLaAn28fYe7ZlMcPlz8PxMSJ8AY67q1mGShieR+3ku9hY7Qd382yuEEEJ0pDavlsTBiUfdljE5g2GXDWPlYyuZeNdEIpMiDYrOd9SV1uFodXS6ghogKjmKK965gtdmvsZb57/F2BvHMuCsAcQPiPdgpIGhYlcFtYdrmfbwNKND6bKxN43l8zs/p3hDsdGhnFDeijyUSR1ZZNCfpU1IQ5kUBasLJEEtOlbZNjUoUFp8AESGBpMUHeo7CWqb+xPU8F0/6lteXccf5+/kr5d1vs1BY4udhduLeWdtPmsPVhEfGcLfLh/DeaP8o4rzo42FRIQEdRjvladm8K+v9vDu2jx+c+EIL0UXoKwlkHRGx9sFBUPKcOfX2Gu6d64+o45/u8MBdeVseeozctct4ezfDkdZi6FgnTOBXVsAjRZnpfWRCuwM51dcZlsVdjqERhKeGk5JaQktDS1Hpk16m63ERtIQMzTWQpR/L+T3fQ0RqVDdbpFEV4LaCwslWousBIcHEx5UGxDtPVzG3jyWrW9uZfenu2lJiYWWemfbndDjr1bvac22ZiJCanBE+Nk1joiHa96E1y92/p460e+bk0genoyj1UH1/mqShvlRgl4IIYTf0FpTe7iW/rP7H3PfrD/PYs+ne/j2r99y7uPnGhCdb6nN/65Xd1f0O6MfFz5zIUv/uJT5P54PQPyAeAacPYABZw+g/8z+RCREuD1ef5e7MBeAwef7xwKJ7Y26ZhRf3PcFm1/dTOSVvvnhTv7yfPqM6xMQVf1h5jBSRqUEZB9qSVB7QGWdM3kaSBXUAOnxkRRU1xsdBvBdBXWKB37BuPpRP7t0P6f1T+iwlcXOIgtz1+Xx8aZCLI2t9EuM5BdnD2HRzlLufHMDV0/I4PcXjSTKh6fqNLbY+XxrEeeN6tNhnMnmMM4ZmcoHGwq4/9yhhAVLpVu3WY9TQe1tJhMNrTF89c9KsqbPIf76647dpqUBagu/S1jXFkD+Gtj+QdvPhRCZSFTqrwBnZUrSUGMSTNZiK0PPjIDozlV9+5PWYLOzXUtDDUTEEZPuvQS1rciGOd2MqquA6MBJ/Pef2f/I6uPpD7a1vqnJh5RhhsRjK7ERE2NDxY405Pw90mcUnPd3mPsDuCPHmbTuguQRztdV+a5ySVALIYTwiKbaJpptzUe1+HBJHpHM2JvGsu5/65j8s8nH3aY3cY0vu1JB7XLqHadyyo9OoWJ3BQe+PsCBRQfY9tY2Njy3AWVS9D21LwPOHsDAsweSMSXDr1paeMq+BftIHpnsl6+78Lhwhl06jO3vbGfCxROMDucY9hY7BasLGH/beKNDcZv0yensfG8n2qG71ZrTV8lvAg+oaKugTnLTAn6+IiM+gp1FvrFIoidafLTXvh/16PRYBnyvlYW1sYXPthTz7ro8thbUEhps4vxRfbhmYiaT+ydiMinuPHMgT3y9l2eW7mfNwSqeuGYc47N8c3rTkt1lWBpbuWx85/pKXzcpiwXbSvhyRykXjw2shei8ylLsEwv5rfj7ChprG5n1l1nH3yAkApIGOb+Ox+GAZ6eRmOSstKg9bEyC2t5sp6GygfjkpoDrPw2AUs4FNWsOQ0QcQaFBRKVGHalw8SRrkbVtgcRSZ8uXAKFMirE3jWX5X5eTdGuSc0ZArXEJamuxFbPZRlCSny7gMuYqKNwAH90B183t0odErqR0xa4KuMxTAQohhOjNavOcY6YTJQFnPDKDbW9vI+eRHC55+RJvhgZAwZoCWmq7v+iwO1nyne/7u1pB7aKUInl4MsnDkznt3tOwt9gpXFvIgUXOhPWKv69g+V+XExIZQr8z+tF/dv8ut1ZJHplM+kT/XxepydrE4W8Pc9p9pxkdSreNu3kcO+buoHJ1JZxjdDRHK91SSkt9S0AskOiSMTmDjc9vpGJPhcdbPXqTJKg94EiLjwCroM6Mj2TRjlIcDo3J4E9pyq1NBJkU8ZGeucZH9aN+exMf/+R0woJNbMyrYe66POZvLaa+2c7QVDO/v2gEl41PJ+57sYQGm/jVecOYMTSFn8/dzJXPruKnswZz98yBBAf5VmXnhxsLSTGHMXVQ55KKUwcmkZkQwTtr8iRB3RPWYsMrqC2FFtY8uYYxPxxD6uhuthUwmSA+m7gQ56DfqIUS68rqAIiJrwu4/tNHxPeD6sPOxTVxVrVYC6weP62l0ELfU/qCLc9ZnR5AxvxwDN/++VsqV1XCjEyoyet4Jw+xFdswm22E9u1nWAw9ds6f4LWLYenfYebDnd4tNDqUmMwYyneWezA4YymlXgbmAGVa61Ftt40DngXCgVbgJ1rrtUopBTwJXADUAzdrrTcaErgQQgQI14f6J0pQx2bFMvHuiax5Yg2n33/6kdk93lC0oYiXT3+Z9KvSwfu58WPU5tcSHBHstnYcQSFBZE3NImtqFjMemUFjbSOHlx5m/6L9HFh0gH0P7OvyMZVJcefWO0kZ6d9j04PfHMTR4mDwBf7X3sNlwNkDiEyOpGK57y14nbfcObYPhAUSXVy9tAtWF0iCWpxcZVt/5ISowEpQZ8RH0Gx3UGZtok9suKGxlFubSIwKJciDifL2/ah/9Pp6Si2N7C21ERkaxEVj0rh2UibjMuNwvoc8sUn9E1j4s+n83yfb+ffXe1m6t4wnrhlPVqJv9GeqqmsmZ08Zt0zN7vT1dC2W+NiXezhQbjumwlx0QqMFtIaw7lUluMuyPy3DYXcw4w8zenaguCzMzdWooARqDtW4IbKusxY7E7XRUbbATVDH9TsqgRqTEUNlbqVHT6m1xlpkZcicIVBX7uxHHkAShyQSEhVC/eF6iM1yVlAbxFpsJT3GRljWAMNi6LGgELjqVXh+BqSfAkM638czeXiys4I6cL0K/Bd4vd1t/wD+oLVeqJS6oO3nGcD5wOC2r9OAZ9r+FUII0U0dVVADTH94Ohtf2Mg3v/mGaz7u5tovXeSwO5j/4/loh6b+kG+01LTkW4jNjO3wvW53hceGM/TioQy9eCjgLDRpqe989XizrZmXp77Mkt8u8drz5Cm5C3IJjQ4la6r/VviagkxkTskkb5NxhR4nkrc8j7js79ojBoKkoUmExYY5W5fcEjitS3yrjDNAVNY1ExMeHHC9eTPinZ+e+kIf6jJro8fae7Q3c1gKd80YyLe5FUSEBvO3y0ez9jdn8fcrxzA+K77Tf7BjwkN44trxPHntOHLLbJz/5DLeX5+P1trDj6Bj87cW0erQXH5K11a0vWpCBsEmxdx1xiVz/JqretpDg77OqMytZOOLG5lw5wTi+/ew/Ux8P8Kby4jJiKH2sOdbThyPrcQGQGRobWC2+IDvWny0MWeYPd6DutnaTEtdS0C2+ADnFNTEIYnU59c7F/6sMe53mq3EgtlsIzwr27AY3MKc6kxSf3o3VO7v9G5JI5Ko2F2Bdhj/t9ETtNbLgKrv3wy43jHFAkVt318CvK6dVgNxSqkA/eRNCCG8ozavFlOIiejUExfXRCZFcvoDp7P7k91eW4Rs3f/WUbyhmOg+0dTnGf9eG5wJ6u629+iOqJQo4rLjOv2VMirF68+TJ2it2bdwHwPOGkBQqH/nj9ImptGQ30BjTaPRoRyhtSZ/RX5AtfcA5+yBjNMyKFxdaHQobiUJag+osDUFXP9pgIx4Z8VvQXWDwZFAua3JKwlqgF+dO5TVD8/m07unct2kLKJ7sIjDJePS+eJnZzAqPZYHPtjK3W9vpLqu2Y3Rdt1HGwsZ1sfM8L5dG4CkmMOZPTyF9zcU0NRq91B0AcxSZHiV75LfLSE4PJjpv5ne84PFZRHeWEZcvzjjEtTFzgR1mKo2/Np6jKvFR5vYzFiaaptoauvL7wnWImdlujNBXRZQiyS6JA1NoiG/4bse1AZpKS2muSUMFRIAq9tnnQZnPghzb4Dmuk7tkjw8mZb6liMVbr3Ez4DHlFL5wD8BV1+UdKD9i7Gg7TYh/IbdodmSX8P/luzj2udXMfqRL/l0c2C9mRb+xZJnISYjpsNFxab8fApRKVF8/dDXHi8oshRa+Oa33zDwnIGc+uNTaSxppLWx1aPn7Iza/NpuLZDoTZN/Ntlrz5OnVO6pxJJvYdD5J1jrx4+kTXTOsizaUNTBlt5Tc6gGW4ktoNp7uGRMyaBse5lH3wd6m7T48IBKW3PA9Z+G7yqo86uM/1S33NrEiC4mVLtLKeXWlibpcRG8/aPJPL/sAI8v2sOGw9X866pxTBvs/UXl9pfb2Jxfw68v6N6CYNdNyuLLHaUs2lnKnDGBNe3f46zFhrZKKN5YzI65Ozjjd2ectIqk01wJ6uw4Dn5zsOfH6wZXBXVIS7nhvb09Jq7fURXUMRnO34OWAovH+o8dlaDeUQ7R3exV7sMShyayfe52WiPSCDawglrXFFIfF08ApKedJt4OBevhs/vg8hc6nDGSNNz5d7B8Vzlx2XFeCNAn3AX8XGv9oVLqauAl4KzO7qyUugO4AyA1NZWcnByPBOmvbDabXBMPOt71Lat3sKPCzo5KO7uq7NS1zdjPNJuIC4Gfz93Mwb27GJcib0P9lT//vzq87TAqRnUq/r7X9mXfU/v4+LGPSZiU4LGYdjyyg9amVhJvTKRsTxlo+OLtL4geYFwLRW3XWIutVNmrfP657urz5GuvX1fP5kJHIdYcz68r40ktjc5f+MvnLicvyDdafVStdU5cK2guwJZjMzga96qKrEI7NAteXED8+B7Ohm7HyP8jMjLwgMq6JgYkBV5P3vCQIJLNYYZXUDscmgpbs9cqqD0hyKS4a8ZApg9O4qfvbuKHL63h9mn9uf/coYSHeG9qzyebCjEpZ2V3d0wfnEx6XATvrM2TBHVXWYoMbUOx+NeLiUiMYMovp7jngHFZhDeWEtsvBmuRFXuLnSAvvpbBmaCOTIpE1ZUEbgV1XJazB7XWoJT3E9RrygKuxQc4E9RoqCoNI6WuHFqbIdj7HzSruhKatOfeBHudUjDn3/D0ZCja5OxJfRKuxagqdlUw+Hz/XSioi24C7mv7/n3gxbbvC4H25T4ZbbcdRWv9PPA8wIQJE/SMGTM8Fqg/ysnJQa6J5+Tk5DB24ums3F/J8n3lLN9XQX6V831CWmw4F47ty9RBSUwdlERSdBjWxhZ+8OIantlq5bVbxzN5QKLBj0B0hz//v9pcu5l+Z/brVPz20+3897P/Uv5OOZfdf1mHVdfdkbsgl6VLlzLzzzM54wdnULK5hF1/2kV/c39Gzhjp9vN1Vm1eLcscyxgzfQynzjjVsDg6o6vPk6+9ftdsXcMOdjDrslnuKRoy2Ma0jYRXhvvMNV6/ez3b2Masy2cded8UKBrGNLDtwW0kNSYxfYYbZkS3MfL/iLT48IBAraAGZxV1QY2xFdTV9c3YHZrkAGijMio9ls/vnc4Nk/vx4vKDXPq/Fewp8c4npw6H5uNNhUwdlERqTPcqxINMimsnZrJiXyWHKzs3hVu0sRaDuetJ/dKtpdQcrunRqQ8uOcj+L/cz/dfTCXfX7IDwWLQKJiFDoR3a432Rj8dWbCO6TzRYSwK3B3V4DASHQZ2z2sLVG9CT19uVoI5OCYMmC0QGUAK1TdJQZ+VuRW6N87VjMWYKelBzGS0hAdZCJTQSMidB+e4ON41MjCQyOZLyneVeCMxnFAFntn0/C8ht+34ecKNymgzUaq2LjQhQiOP5YnsJf1jZwCl/XsTdb29k/pZihvWJ4Y+XjGTxL89kxUOz+MeVY7lkXPqR1ofm8BBevWUSGfER3P7aerYV9Kp2PsJgDrsDS6HlpAskthcUGsTMP82kZHMJO97b4fZ4WupbWHD3ApKGJzH1gamAc+FmgIrdxi4YXJvv/L/pDwk9Tz9PnlabV0tweDBRKVFGh+IW5qFmCtf5Tiun6oPVBIUGOQttAkxEQgSJQxMDqg+1JKjdzO7QVNU3kxgAydPjyYyPNLyCutzm7LGTbHZf2w0jRYQG8adLR/HyzROosDVx0X+X8/Lygzg8vEjU+sPVFFQ3cPkpPWtpedWETIJMindlscSusRR3qw3FW+e/xdMjn2bjixu71WtNa83ihxcTkxHDxJ9M7PL+J9MYnkJiinPqVM2hGrceuzNsJTbi0kLA3gLhcV4/v9e0a/PhGmxZ8j2boA41hxJmskBkIpj8ewGX40kY7Ey6V+6pNKwPtb3FTriqwhEZgB+uJA2F8j2d2jR5eDIVu4x9Y+4pSql3gFXAUKVUgVLqNuBHwL+UUluAv9LWrgNYABwA9gEvAD8xIGQhjktrzf99uh1bi+Zns4fw4V1T2PR/Z/PCjRO4cUo2A5OjT7iQeEJUKG/efhqxESHc9Mpa9pUF1pRr4btsxTa0XXdp4b/R140mdUwq3/z2G+wt7l1zZ+kfl1JzqIY5z845sjheSGQIYalhzvGIgVzjSl/vQe1y1PPU7F9rI9UeriU2K/aEvzP9jXmYGUu+BVupb/xurz1US2y/WI/MgPAFGZMzKFhd4Lc92L9PEtRuVl3fjNaQFMAV1EU1Ddg9nDw9mTKLK0EdWB8CzBqWysL7zmDaoCT+OH8nN72yljKL51bA/XhTAZGhQZw7smfJkD6x4cwalsL76/NpbnW4KbpeoBsV1PZmO9YiK6YgE5/96DPeu/w96iu6NqNhz6d7KFxTyJmPnElwuHu7PDWGpxBrdlZcGLFQoq3ERlJGi7MCNkAGeccV/12COjjMWXHh6QrqmPQY5wKJAdjeAyDMHEZoUqjzDWFcJhjQh7qutA6z2YaKDcD2NEmDoSK34+2ApBFJlO8qD5iBdnta6+u01n211iFa6wyt9Uta6+Va61O11mO11qdprTe0bau11ndrrQdqrUdrrdcbHb8QLvvKbJRZm5gzMIT7zhrMqf0SCA7q/NvKvrERvHn7aZgU3PDSGgqqjV/fRgQ+1wK8na2gBlAmxay/zqJ6fzUbX9zotljKtpex6l+rGHfLOPqd0e+o+yIzI32ngroLyXwjHfU8veS+58kbag7XENvPPz4I6AzzUGfxTNE631gosfpgNfH93def2ddkTM6grqyOmoM1RofiFpKgdrNKWzMAiVGBlTx1yYiPpMWuKfVg4rQj5dbATFCD8zG9dNME/nTpKNYdquLcJ5bx5Y4St5+nscXO/K3FnDeyD5GhPU9SXj8piwpbM4t3lbohul7C2vUKatcigGf9/SzO+dc55C7I5ZnRz7Dvy32d2t9hd7D414tJHJrIuJvGdTXiDjWGpxIZ4hxQe7uCWmvnYi7xyY2B23/aJS4LqtstlJgZ4/EKanOa2Zmgjg6w9hPtRGZGUrGnwrAKaluJjZgYG8FJWV4/t8clDYGKzldQN1Y3UlcmbaOE8FXL9zn/1o9M7P6Mmv5JUbx+62nYmlq54aW1VLTNkBTCU7qToAYYfMFgsqZnseyPy2iua+5xHNqhmf/j+YTFhnH2P84+5v7ILGeC2sgPai0FFkLNoe5rBegF7n6evMVVQR0ozEPMKJPymTYfNQdriOsfZ3QYHpMxOQOAgtUFBkfiHpKgdrPKtsFVoPagzkyIADC0zYerxUdKACaoAZRS3DC5H/PvnU56fAQ/fmMDD324lbqmVredY/GuMqyNrVx+SoZbjnfGkGTSYsN5e61vrNbr8+ytzh7C0ald2s2VoDanm5nyiyncvvZ2IhIjeOu8t1h430JaGlpOuv/WN7ZSsauCWX+ZhSnY/b/+G8NTCLLmY04ze72Cuqm2CXuTndj4+sDtP+3SrsUHOPsDerSCurAtQV1X1uXXrD+JyIygck8lOtaYCmprsRWz2UZIWrbXz+1xiQOd17S14zeMScOd/cB7WR9qIfzK8twK+idFkRTRs7HEiLQYXrl5IsW1Ddz40lpqOxjHCNETRxLUXWxboZTirEfPwlZi450571BX3rMPUDe+tJH8lfmc889ziEyKPOb+yKxIWupasBZ6Z12i47HkW/ymvYeLUorZf5uNrcTGmifXGB1Op7Q0tFBXVhdQFdRBEUEkj0j2iQrqZlsz9RX1AZ2gThmVQkhUiCSoxfFVtH1aF7gtPpx/RPOrjJuKV25tIjI0iKgw97Yn8DWDUqL56K6p3DVjIHPX53PhU9+yOb/GLcf+eFMBqTFhTBnontXTg0yKayZm8W1uhaGvDb9RV+ZcaC4opEu7WYudA1VzX+fUqT5j+/CjdT/itPtOY+1Ta3lh4guUbDl+xX1rYys5v88hbUIawy8f3rP4T6AxPAVq8ojtF9vjhRy7ypW8j462QUzXF5/0K/HZUPPdh0ExmZ5LUGutsRZZiU6LbmvxEdgV1I01jTSpZGMqqIudFdQR/QZ4/dweFxwGselQfbDDTZOHO19jgdqHWgh/12J3sPpAJVMHuWcMOSE7gWd/eCq5ZVZuf20dDX7WP1b4j9r8WsLjwgmL6XqRU+bpmVz6+qXkr8rnhYkvULype2vW1pXV8fWDX9PvzH6MvWnscbeJyHQWhFXsMe7voCXf4jftPdrLmprFkIuGsOLvK6iv9P33pK4ZkHH94owNxM3SJqZRtK7I8HZt1QerAQK6xYcp2ET6xHRJUIvjO1JBHaAtPtLinNN8DK2gtjYFZHuP4wkNNvHgecN450eTabFrrnhmJU8tzqXV3v1ez5W2JnL2lHPpuHSC3LhYwNUTMzApeHedVFF3yFLcrTYUtuK2JGzf6CO3hUSEcN4T5/GDL35AQ2UDL056kZX/Won+Xp/49c+upzavltmPzvbYIhyuBHVcdpzXW3y4kveRobW9oIL6ey0+MmJorGmk2eb+6YwNVQ3Ym+3tWnwEZg9q+O4NYVVFtCEJ6vricoKCWonK7NnCtT6rkwslmtPNhJpDKd8lFdRC+KIt+TXUNduZNijJbcecMTSFf18zjvWHq7nrrQ2yponwCEtez5KuY28Yy63Lb0XbNS9PfZlt72zr8jG++uVXNNuamfPsnBOOxyOznAVhRvahrs2v9csENcDsv86mydrEir+vMDqUDrkKegKpghqcCer6inpD1iRqz9WXOS47ztA4PC19cjolm0o6nE3tDyRB7WaVtmaCTIrYiK5VRvqLsOAgUmPCDF3MpNzaRHJ070hQu0wekMiC+6YzZ0xfHl+0l2ufX93tSuX5W4tpdWguO8W9SZC+sRHMGpbCe+sLaOlBAr1XsBZ1q8rXVmIDBVEpUcfcN+jcQdy17S4GXzCYRfcv4o1z3jhSVdtkbeLbv3zLgLMGMGC256ozv6ugdvZEdnjxdeCqoA4zVfeOHtS1BeBwXt+YDOcbCE9UUVuL2qr2XS0+AnSRRIDIDOcbwtK8UKgtPHJ9vaW1PA9bfQxBgTo7KGkwVOztcDOlFMnDk6nYKRXUQvii5fsqUAqmDHBfghpgzpg0/nrZaHL2lPOL9zYbuiC7CEy1eT3v9Zs2IY0frf8Raaem8dH1H7HowUWdHu8eWHyArW9uZeqDU0kaduL/P6GJoYSaQw1LULc2tVJXWud3LT5cUkalMPaGsaz9z1qPtsBzB1cCN5B6UAOkT3TmGYzuQ+2qoA7kFh/g7EPtaHVQssn9a5d5W6cS1EqpQ0qpbUqpzUqp9W23JSilFimlctv+jW+7XSmlnlJK7VNKbVVKneLJB+BrKuuaSIgKxeTGylRfkxkfSb6BCeoya2OvqaBuLzYihCevHc+T145jT4mV85/8lueX7WdXsaVLg/iPNhYwom8Mw/q4/1Px6yZlUW5t4u01efLG4mS6WUFtLbYSmRRJUMjxFyWKTIrk6o+u5qIXLqJgVQHPjHmGHe/vYNXjq6ivqGfWX2f1NPKTsgdHQnA4SRngaHUcqfj2BleCOtReEfgJ6pAIiIhzLrTJd70UPZ6gDvAK6vA+4QSFBlGRa4PwGGdC3ot0TRENzXFePadXJQ/tVIIanH2opYJaCN+0Yl8FY9JjiY10fzHOdZOyeOj8YczfWszvPt1u+PRwEVjckaAGiE6N5sbFNzLhJxNY+Y+VvH3B2zRUnXx2cWtjK5/f9TnxA+OZ/uvpJ91WKUXSsCQqd1f2ONbucPW+9tcKaoAZf5iBw+4g5w85RodyUrV5tSiTOlJsEihSx6QSFBpkeB/qmoM1hESFHLfXeyDJOC1wFkrsSgX1TK31OK31hLafHwIWa60HA4vbfgY4Hxjc9nUH8Iy7gvUHFbZmEqMCs/+0S0Z8hLT4MNAl49JZ+LPpjEyL4a8LdnP+k98y7o9fcfMra/nfkn2sPVhFY8vx+/ftL7expaCWy91cPe1y5pBkhvUx8/t5OzjjH0t44uu9FNW497VSZm3k7TV5fLTRj38BW4u63eLD1X/6RJRSnHL7Kfx4849JGJTAB1d/wLI/LWPElSOOfJrtUXFZJKY6F4/xZpsPW7GNoLAgVH1p4Lf4gLaFEp3tdFyD2tp890+jO7qCujygE9QqSJEwKIHKPZVgwEKJproSmnBPT1eflDSk0wnq5BHJNFQ1eKRtjRCi+2xNrWzKq2GqG9t7fN+dZw7kzjMH8vaaPB77suO2QEJ0RrOtmYaqBrdVqgaFBnHh/y7kohcu4uCSg7ww6QXKtp/4g+3ljy6nKreKC5+5kJBOzLROGppkWA9q13jSXyuowdnSYcJdE9j88mZDW6V0pPZwLeY08wmLj/xVUGgQqWNTfSJBHd8/3mPtLX1FdJ9o4rLjel2C+vsuAV5r+/414NJ2t7+unVYDcUqpAC9n+06FrYmkAG8/kREfSXFtY4/6IHdXY4sdS2MrKb04QQ3O5+DdOybz7a9m8vjVY5kzJo3C6gYe+3IPVz+3ijGPfMUVz6zk0YW7WbyrlJp655v8jzcWYlJw8VjPLCIXHGTi03um8r/rT2FAchRPfJ3L1L9/w82vrOWL7SXdbv1xqKKO55bu54pnVnLaXxfz64+3MW+L8SsDd5ulGGK6l6CO7hPd8YZA4uBEbl1xK9N/O52YjBhm/nlml8/XLfH9iDXXAHh1oURbiY3oPlEoa0ngV1CDs81HjbMPtTnd+aGFRyuo+5rBVhrQLT4AEocmUrm3EuIyoda7/fSDW8ppDQng65s0GCpyoRMVkZPuncSv635NaIAuOC2Ev1pzoJJWh3Zr/+njefC8oVw3KYunc/bz3NL9Hj2X6B2OJF3d3ErhlNtP4ealN9NS38KLk19k10e7jtmmYk8Fy/+2nFHXjWLg2QM7ddzEYYlY8i2GfFDrWrjPnyuoAc74zRmERIaw5HdLjA7lhGoO1wRc/2mXtIlpFG0oOmZdJG+qPlgd8O09XDImZ1Cwyv8T1J1tdKiBr5RSGnhOa/08kKq1di1fWwKktn2fDrQvOypou+2opW6VUnfgrLAmNTWVnJycbj0AX1NQXs/AOFOPH4/NZvPZa1JX3oLdofn4yxySI73bxryiwZngrCw6RE5O93sa+fL17aoE4NwE55etOZLcGjt7qx3kVtfywrJqnl3q3C49WlHTpBmRGMTOjavZ6cGYooDbBsLFfSNYVtjKt4cqyNlTTkwoTEsP4YyMYPpEnfi1o7XmsMXBhlI7G8taKbQ5/7D1izFx6cAQTkkNJiO6rsvPoa8872PzdpLHMKpruxZL5eFK4hLjuvQYTLNNjJs9ju3F27/3W9j9bDYbeVZFs3UdkMKmJZuoSq/y7Enb5O/KJzS+jhYVzIqVa71yTm9r//rtbwHHphwOVzurxUPiQ9izZg86x72DwNx1uQTHBLNiZQ7TGy0sW7cVVGBVebjYbDbqIuqo3FdJXi20bFxKfoV3Kpq11kRRQWVzNoU+8DvKU07XwWz48kOawj2T3PKV3/FCBKrl+yoIDzFxSr94j55HKcWfLx2FtbGFvy3cTUxECNdNyvLoOUVg82TSNXNKJnesv4O5l8/lvSveY/pvpzPzDzNRJoXWmgU/WUBwRDDnPn5up4/p6lFdubeSvqd4t/DClcz397YTUSlRTPnlFJb+YSmF6wq9M5O0i2oP15J5eqbRYXhE+sR01j+9noo9FSQPT/b6+bXW1ByqIXtmttfPbYT0yelsf3c7lgKLX//f7WyCeprWulAplQIsUkrtbn+n1lq3Ja87rS3J/TzAhAkT9IwZM7qyu8+q/+YLRgzIYsaMET06Tk5ODr56TUL2VfDK9jVkDB3LlIHenY68Ka8alq5k+oQxzBiW2vEOJ+DL19edGlvsbM6vYf2hKtYdqmZHkYVfzBndo2vXVVcBrXYHy3LLeWdtPl/uLmPBwRZO65/AdZOyOG9UH8JDgmixO1h3sIovd5SwaGcpRbWNBJkUk7ITuH1mKmePSCUjvmf9o3zmed/eSPy08yBleKd30Q7Nt9XfMmj8IN94DMeRk5NDVso0KNtJZHIkCaYEr8W6q3EX/UdFEBKf6bPXp6eOev2aD0P+Wvq3/by3/16iHFFuf+ylT5bS2q+VMyeMgI1JzJg5263H9yU5OTlknJ1B/tv5JPYdR5QqZKCXXkv1lfUcjrISlD2KIQH6+gXg0GimDE6AgTM8cnif+R0vRIBasa+CidkJhHthOnqQSfH41eOwNrby64+3ERMewoVjesEMKeERtXmeXYzOnGbm5qU38/lPPufbP39L6eZSLnvzMvbM28PBbw5y4TMXdnoWJHyXoK7YXeH1BLUl30J4fDihAdC2dMovprDuf+tY/PBibvz6RqPDOYrD7nAmE7P8N5l4MmkTnTO2i9YVGZKgbqhqoNnaTHx/z36g6isyJrf1oV5TwIiMnuUijdSpBLXWurDt3zKl1MfAJKBUKdVXa13c1sLD1XSpEGj/MVBG220Br6HZTl2zncQAn5KaER8BQEF1PXi5X2a5tQmA5Ohwr57XX4WHBDF5QCKTBxjb1zQ4yMSsYanMGpZKmaWR9zcUMHddPj+bu5mYT4OZ1D+RdYeqqG1oITzExBmDk/nFOUOZPSyF+AAYHB2jG4sk1lfW42h1dNiD2nBxWbD3C+L6jTiyMrU32EpsxM9q6R39p8F5nbe9f+THmMwYqg9Uu/001iJr2wKJgd/eA5wtPgBqasxEKe/1oLaV2IiJsdGYHJhVNEe42nwM9OyCrUII9yuzNLK31MYVp2R47ZyhwSae/eGp3PDSGn42dxPR4cGcOcT7iQ7h/1yL0ZnTPDeODg4L5uIXLybt1DS+uO8LXjztRRqqGsiYnMGpd5zapWMlDEpAmZQhfagtBRa/7j/dXlhMGNN/O50vf/YlB74+wICzBhgd0hG2YhuOVgdx/eKMDsUjkoYlERIVQuG6QsbeONbr5685WAPQa1p89B3fl6CwIApWFzDiCv9NUHfYn0EpFaWUMru+B84BtgPzgJvaNrsJ+LTt+3nAjcppMlDbrhVIQKuscyZPkwI8Qd03NgKTwpCFEstcCepe3oPan6XEhHP3zEHk3D+Dt390GjOGprCr2MJZw1N57oZT2fS7c3j+xglceWpGYCanm6yg7RDetYGfrcQG0KXqC0O0Ld4Xlx3ntUUS7S126ivqiUuoB7Nn+qv7nPh+UH34yI8xGTFHpq+6k6XQ0pagDuwFEl0ShzgT1OVFEVDrxQR1sQ2z2UZYerbXzmmIpKFQLoueCeGPVux3Jso8uUDi8USEBvHSzRMZlGLmzjc2sOGwd1qHicBSm+edxeiUUkz8yURuXHwjDVUNNFQ1MOe5OShT1xZpCw4LJq5/HJW7Kz0U6YlZ8i1+33+6vQl3TiA2K5avH/ra0H7I3+daqydQe1CbgkyknZpm2EKJ1QedhTu9pYI6KDSIvqf0pXC1f9cGd6aBcCqwXCm1BVgLfK61/gJ4FDhbKZULnNX2M8AC4ACwD3gB+Inbo/ZRlW2LGCRGBXbyNDTYRJ+YcPKr671+7nJrE0oR8FXqvYHJpDh9YBJPXTeeFQ/N4l9Xj+XckX2ICA3M/rZHuKqnu7iasK24LUHd19cT1JlQk0dsvxhq82rRnVgQrafqSusAiI629Z4K6thMsJWAvRVwJqgbaxrdupiOw+7AVmJzJqjrynpFgjoyMZKIxAiK9wdDTX6nFvRzB2tRNVFRDUT0y/bK+QyTNBgq9hodhRCiG5bnVhIfGcKIvt5PXMVGhPD6rZPoExvOLa+sY1ex+z+QFYGtNq/WY+09jqffGf24c8ud3LbqNlLHdK+1YtKwJCp2e7+Cuja/NqAS1MFhwcz44wyKNxSz80NPrsLUNa6ZpoFaQQ3ONh8lm0uwN9u9fu4jFdTZcV4/t1EyJmdQtL4Ie4v3r7e7dJig1lof0FqPbfsaqbX+S9vtlVrr2VrrwVrrs7TWVW23a6313VrrgVrr0Vrr9Z5+EL7CVUHdG5KnGfGRhlRQl9uaSIgMJSTIu4szCj/ncMDyf4N2GB0JWIsgputVvtZiK4Dvt/gIjYLQaJIyHbQ2tlJXVufxU7qqyyPDLF1uneK3gkIgOhUsztWaXW8kLIXue9NeX16Ptut2LT56x7TqpKFJlO5pdH6I1FjjlXM2FxVQXx9BdFqAV3kkD5UEtRB+SGvNin0VnD4oCVMXK0HdJdkcxhu3TSIyNJgbXlrLoQrPjy9E4DCiKtjc19yjhfmShiVRubfSq1W/LfUtNFQ2BEyLD5cxPxxD8shkvvnNNzhafeD9IO0qqL34wYm3pU1Mw95kp2x7Wccbu1n1wWoiEiIIiwns4tH2MiZn0NrYSunWUqND6TbJ8rlRRVvlWlJ04P8nyEiIoNCIBLW1Sdp7iK4zmWDti4Q3ev+P4zG60X8a2lVQ+3qLD4C4LBJTnG8cvdHmw5WgDg+q7j0V1ODsQ93W5sO1WrM723xYi9o+FOlFLT7A2Ye6ck+ls0q9xjttPuyV+djqzIQF+t+3mHRoskFDjdGRCHGMmvpm7nt3E8W13h/f+rr95TZKLI1M83J7j+/LiI/kzdsn4dCaH7y4hpLaRkPjEf5BOzS1+d6toHaHxKGJtDa2Hlng0RssBc5xZCBVUIOz3cTsv86mKreK0q98I3lXm1dLREIEoQFc3Oj6gKZwnffbTtQcrOk1/addjiyUuLrA4Ei6TxLUbnSkxUcA/5JxyYiPpLi2gRa7dz+BlAS16LbUEUTbDhkdRVsFdTcS1CU2QqND/WMQE9+PuBjnYNobCyW6qstD7BXdqk73W3H9oOZ7CeoCDyWo68qcFdu9QOLQRGwlNuzR6V7rQ61rimhoifPKuQyl1HcLJQrhY77NreDTzUU89oX0Sf++5bnONgNGJ6gBBqWYee2WSdQ2tPDDl9ZQVee+1lYiMNWV12FvsvtdgjppmPP/mzfbfNTmO8ftgVZBDTDkoiHEZMRQs6nG6FAA53ukQO0/7RLXP46IxAhD+lDXHKzpNf2nXWIyY4juG+3XfaglQe1GlbYmIkODiAwNNjoUj8uIj8ChobjGu5UL5dYmkntBhbrwgNSRRNUd7ng7T7MUd2shP1uxzff7T7vEZREZ6hxMu6aveZKrgjqosbx3VVDHOxekBIhJdyaoXW8s3OHoCuqyXtXiA6DBnui1CmpVX0KTSvTKuQyXNETafAiftLOtr/HHmwvZXSI9jttbvq+SfomRZCZEGh0KAKMzYnnhxgnkVdVzyytrsTW1Gh2S8GGuCmRJUHfMNRMv0CqowbmAZeLQRBoKfGOWTO3h2oDuPw3Oa542wfsLJWqHpuZQ76ugVkqRMTmD/FXeW+jd3SRB7UaVdc29onoanAlqgAIvLpSotZYKatF9qaOIqjtkdBRgLe5WEtVabPX9/tMucVmENBYRHhfunRYfxTYik8JQ9RW9psoXOKrFR3B4MJHJke6voFYQlRrlTFD3lhYfQ5yJYqst1msV1CEt5bSG9o7rS/IQqJAKVeF7dhVbyEqIJDosmH9+Ka9Rl1a7g9UHKpnqA9XT7U0ZmMjT15/C9iILP3ptPY1+vCiU8Cx/TVBHJkUSkRBhSAW1a2ZeoEkYnEBDkfEJaq01NYdrAr6CGpx9qMt2lNFS3+K1c1qLrdib7b0uQQ3ONh/V+6upK/fPdRokQe1GFbYmEqN6R/I0M95ZQZHvxQS1paGVZrtDEtSie1JH+kaLD0v3Fkm0ldj8o/80QFw21OQR2y/WKy0+bCU2kvsBEfHOxQN7i3YtPsA5HdNaYHXb4a1FVqJTowkKCepVLT7iB8ajTIrK8qgjFeqeFqYq0VG9pPo/aYi0+BA+aWeRhQnZ8dx55kC+3lXGukNVRofkE7YU1GJravWJ9h7fd9aIVP551RhWHajk3nc20erl1oPCP/hrgtpV8Vu5p9Jr57TkW4hKiSI4LDBnhCcOTqTV0kpDlbFJ6sbqRlrqWvzuNdkd6RPT0XZN8aZir52z5mANQK9r8QGQMcXZh7pwjX+2+ZAEtRtV2ppJ6iUV1H1jwwkyKQq8uFBiuc3ZTkQS1KJbEgcR1lQBzd77UOW4rN1fJNGfWnxQfZi47DivLZKYnNnau9p7wFEtPsBZ7eLuFh/mNDO0NkOTFSIS3HZsXxYcFkxc/zjKDod5pYK6pb6FqPBaVFy6x8/lE5KGQrlUpwrfUmFroszaxIi+Mdw6tT8p5jD+vnA3WmujQzPcin0VKAVTBvhmG6LLxmfwh4tHsmhnKb/6cCsOhzxn4miWfAshkSGEx4cbHUqXJQ1L8nqLj0CtngZnBTVAZa73kv7H42qB2FsqqAGvtvlwvf/sjRXUaaemoYKU3y6UKAlqN6qs6z0V1MFBJvrEhHs1QV1mbQIkQS26KSiEhoh0KN9lXAwOO9RVdDmR2mxrptnW7EcJ6kyoLSC2n5naw7Uef4NvK7aRkNLcrcS/XzP3hfpKaHF+eGfOMLu9xYdzgcRyiEwEU+8ZMiQNTaJgt/JKD2prsZWYGBvByZkeP5dPSBgAtQXQ2mR0JEIcsaut//SItBgiQoP46ezBrD9czZI9ZQZHZrzl+yoYlRZLfJTvFuHcdHo2vzh7CB9tLOSP83fKBwviKLV5tcRmxaKUMjqULksaloStxEajl9Z9qs2vDcj+0y4Jg5wJ6qpcY2fIuGaYBnoPagBzXzPmdLNXE9TVB6uB3nF9vy8kMoQ+Y/tIgrq301pTaes9PagBMhMivNqDurwtQZ0iCWrRTbboflC608AAyrrVhsJa3LZYnb/0oA6JgPBYkjM1zbZmGqs9N6jWWmMrsRGbUAcxvSxBbQqCmPQjVb6xmbE0VjfSXNfslsNbC61Ep0W3tffoJf2R2yQOTSR/WzO6yerxWRe24v9n777j27rr/Y+/juQ9ZMmS93biESddaZKmO92D0gUtLVBWoXDZl3n5weUOLvdeuOxNWQXKaindlO40XelMR+IMO/Helq1pW7al8/vjSM7yknRkWdLn+XjkkViWjr45ljU+53PeHzf5+R4yKmpjej+rRlqGdhBr7FC8VyLEnNb+YIG6TCvMvGNzFTXWHL75j/0p3ZHr9c2yq3t81eVPz+cT56/l5rPquO25Tu57fWUHconVLVSgTkRzgxL3r0wXtavXldQFaku9BQww1h7fAnUqdVCDFvPR99LKRU44Ohzkl+eTlpWcUTVLqdhaQd+LfQQSMPZKCtQ6cU3OMhtQsealTvG00pJDzwrmN4UK1EV5iXd6llgdvLm1MLQnfgtw90dURPUMegASJ4MawFKDrUQbzhDLmA+fy8fs1CymfG/qdVBDMOZDy6EOnZKpRxe1f8aPd9irdVB7RiA39QrUs5N+ArllWrdvDE30DaKqBvKqUujxa2uE0QPxXoUQc1oHXJQXZGHO0RpN0o0GPntxE/sG3dz7emLmOOrhxY4xZvwqZzes/gK1oih8+fJ1WHLSea49vqfvi9XF2e3EVJ2YRVdrkxatsxI51D63D5/TR0FV8hZN0zLTyCrOWhUd1GnZaeTYcuK6jpVSvrmcsbaxFTsTwNHhwFxrXpH7Wo0qt1Yy7Z5mdO/KxQPpRQrUOhn1asXTVMmgBqi0ZDPknsI3uzJTs0fcPjKMBkzZqXkkTERP66DeHb8FuAYgP4IBiQPBAnWiRHwAmKspMDmAw10CsRDaNzlZrtTLoAZtUOK4/gXq0EERLeIj9TqobU1aMcanFIMztoMSp/s7cbnyEusAVLRsjTAiBWqxerT2u2gpP7qAdcUJZawvN/HtRw4wPZt4XUh6eKZ9lMw0A6fWJMagKYNBoaXcROuAfnFXIrHN+mbxDnkTtoPaUm/BkGZYkRxqV4/2e5PMHdQAWRVZcc+gTuTYmUjM5VC/vDJnt4x3jKdk/nRI5VZtUGIixnxIpU8ndo92SnWqZFADVFlyUFUYcExRa8uN+f2NuH0U5WemzBO50J83txba9oCqQjweR+6BiDqoEy7iA8BcTe6s9uYvlLMWC6FCapbRkZod1Obqwx3UwQ8UoQ8Y0XD3Bx9z5fngGUq5ArW1UetY8k4VkhPjHGr/aC9uTx62FOmiAbQC9aHt8V6FEABMzfg5NOrl0g1HH+Q0GBS+cGkz7/31i/zpxW7ee0atLvf1s6cOcuVJ5dQXrf6DUs+2j7K5tpCsdGO8l7JsLWUmfvt8F7P+AGnG1dGL5ZiY5kdPtLOuzMRZDTZKTPqeDTrsmuLZg6O81DmObya8gyl5mUb+46oNuq5nNQkdtE/UrmBjupHCtYUrUqAODdpO1H21XDkVOYw9Hf8O6lTKRy7fpBWo+17qo/7C+pjel3/Gj6vHldIF6sK1hWQXZtO7s5eNH9wY7+WERQrUOrF7tA7qVMqgrrRkA9AzPrEyBWqPTwYkiqhMZ1i0wrRnKD7dtq7+yDqoBz0Y0gxkF2bHYFExYq4mvW8X6bllMY34CBWoMwKjqVmgttTC3vsBMFXo10F9VIF6cAQKKqPeZiLJK8sjIy8Dx3g+Rc4YD0p09TE5Y0ExpNDB16ImePHn8V7FilMU5dfAFcCwqqobgpf9BWgKXsUMOFRVPTn4vS8BNwN+4JOqqj680mtOBQeG3PgD6lz+9JHOabCxtb6QHz7RxttPrSQ3M/KPTjP+AB//46s8tneY+17v5/6PnxXV9mJt2D3FvkE3X7y0It5LCcu6MhPTswEOjXppLFkdB/YfbR3il890zH3dUJzHWQ02zm6wsaXOSl6YjwOvb5YXO8Z4um2UZ9tH2T+kvWabstLIzwpvzoklN7zrJxpnd7DomqAd1KDlUK9ExEeqdFBnV2YzNT7FhH2CHGt8mgMcXQ5KT0mdMz+zLdkUri1ckUGJrh4XakDFUpcYZ/7EgqIoVG6tpPd56aBOWaPBoVQpVaAu1J7Qe8dXJod6xO2jqjCFOsyE/hQFStZrMR/xKFC7B6D2rLBv5hnwkFeal1gFLHMNyp57MNesi2kHdai73OgbSc0CtbkGHFoERVqWlmWne4H64DBUJNbR92gpioK1ycpIfx8NMe6gNkwMMa1YY3ofq46tAUbbIRAAw+rocFwhtwE/An4XukBV1XeE/q0oyrcBZ/DfLcANwHqgHHhMUZRGVVVXJlcthcwNSCw/viijKApfvLSZa37yHL96poNPXtAQ0X0EAipf+OsbPLZ3mBu3VPPnl7r513t28+3rT1q1ZwY+f1AriJ2VAAMSjxT6Obb2u1ZNgbrT7iXNoPC3j57B8wftPNM+yh9f6OY3z3aSZlDYWG3hrAYbZ661cVJlwXGd37P+AG/2OXmmbZSn20fZ1T3OjF8lI83AltpCrtlYwVlrbbSUmTAk0nvFFZAMBWprk5UDDx4gMBvAkBa710xnjxOU4Hu/JJZVoZ3BMNY2FpcC9czEDBMjEykzIDGkfHM53U/HNjYPtHgPIKU7qAEqT6+k7e9tTDmmyDInzgw3KVDrJNRBXZiTOgXqUlMWaQaF3vGJFbm/EbePjQmSgSdWl8HXB3nglgcofm8x1G/QBiWuvXDlF+Lqj6gw7hnwJFb+NMwVTs215thmUA96yMhRYdoNOSlW5IOjIj5A63rRK+LDkGYgtygXPMOQWxT1NhONrclGf7sRYtxBnTY7wmRmXUzvY9XJKoDMfG1wbAp156uqukNRlNr5vqdoVcrrgfODF10F/FlVVR/QoShKO7AFeH4l1ppK9g64yM0wUmWZv1BxSrWFS9aXcOuOQ7x7aw2FueG911dVlf98oJW7d/XxuYsb+fj5DRTnZ/L9x9vYusbK9Zuq9Phv6O7ptlHMOenzFu5XszVFeWQYDewdcHH1Kauj+7tzdIKqwhxOrDRzYqWZD5+7hqkZP690jfN02yjPtI/w3ccO8J1HD5CfmcbWNVbObrChKArPtI3w3EE77qlZANaXm/jAWXWcvbaITbWWhIpfiYdQgTo0pyMR2ZptBGYCjHeMY22I3XtdV4+L/LJ8jEn+mMqp1J7rx9rH5rJ6V9JclEoCHzSJRPnmcnb/aTeeQU9M5644OhwAKd1BDYdzqPte6mPNRWvivJrlkwK1TuyeaSw56asm62wlGA0K5eZsesZi30E94w8wNjFNUZ5EfIjwpWen0/diH3nn58HWFuh8Oj4LcUc2JNE94E68F9mCSnD1U1CTT8/zsSvweQe9lNSpKPmlqdaJqckrhukJ8HkgMw9TpUmXjnVPv3ZQRDEoWoE6r0SHxSYWa5OV1x4yoo53E8t+tCxlDG/eGTG8h1XK1gAj+1OqQL2Es4EhVVXbgl9XADuP+H5v8DKhs9YBF+uW6Dz9/CVNPNq6g5882c5XrmgJa/vffayN257r5INn1fGx89YC8MkLGnixY4yv3rubU6rMNKySTt8QVVV5tn2UM9ZYMSZYR2660UBjad6qGpTYMeql5phOzax0I2eu1bqmoZkx7zTPHRzVuqTbRnm0dQiACnM2l28o46wGG2essWKVz0JhcXY7yS3JJS0rccsetmbtLIbRfaMxL1Ane7wHQFZpFopBidugxND79FTKoAao2Ky9hel7qY+mtzYtce3IjXeMoxiVhD4opYfyzeWgaIMSpUCdguxeX0q+Yai0ZK9IB7XdM42qIhnUIiIFNQWgwNTAFJScCC/EKfvUFdmQRM+gh8rTE6yIk54FOYUUVfuZGp/C5/KRadL/99c94KaocjY+kS2rgaIEu6i7oaQFU5WJnmejPyDg7ncfPsXTO5xyQxJBK1C7nHlagd4/A0b9czoDswFyMp2MW1Kw7mhrhNE2WHtBvFeyWtwI/CncGymKcgtwC0BJSQnbt2/XeVmJzePxLLpPAqrKmz0TnFmRtuS+O7M8jdue7WCdcRBr9vIOiD7cOcOf9k1zdkUaZ+YO8dRTw3Pfe0d1gD29Ad73i6f56unZZBpXTyF4wBNgwDnFJYGxRffLUvs3Xiz4eK3LxZNPPhn3CBVVVTk0PEFFxtKPsTzgUitcUqgwMplNQIWSHAVFGYPxMd58eUWWvKTV+nOfT+drnRjMhoRZLxy/f2fcMwC8+PcXGcgfiNn9DuwfILc+N6H2VSQmpifILM5k3zP7ULav/PPDwCPaz3Bv/146tncsce3Es9Dzg3/SDwZ47s7nYvo4PvDCATKLM9nxzI6Y3UeiyKnJ4Y0H30A9Ww3rdvF8jpcCtU5G3dNYwzzlLxlUWrLZvn8k5vcz4tYiVKRALSKRlpmGqdLEVP8UFDWDvS1mBacF+dwQmIUsc1g388/4mRiZIL9sdXVXLYu5GptBG2Lo6HJQcoL+XbieQQ/1p0ynboEaDsd8lLRgqjQxOTbJzMQM6TmRP77d/W4KGwphdlp77GYX6rjgxGBttBIIGJk1Wkh39YOlRvf78A57MZncDBWtzlP8Y6qoCUb2xXsVq4KiKGnAtcCpR1zcBxz5wKgMXnYUVVVvBW4F2LRpk7pt27bYLTQBbd++ncX2Sbd9gqmHn+SiTevYtqV60W01nDzJed/azk6Plf+77KQl7/vOl3v40743uHR9KT965ynznmVpXTPCe379Io+PF/LNty+9zZXyu+c7gT184PIzqV4ko3Wp/RsvHekdPH1/Ky2nnk6JKb7Zm8PuKaYefpyzTmpi2xm1cV2LXlbrz30+e7x7KF1fmjDrhfn37+vFr1MwUxCz/4eqqjxnf441b1uTUPsqEtu3b6f8hHKmHFNx+b8+8dgTtBnauPjtF8c0UzxeFnt+OLD+ABkjGTHd7wf/30HK1pUl/eN4OVwXuNh39z7OPffcsA7WxvM5Pvl+I+Jk1OvDloId1FWWHIbdPqZmYjuzZ8QzBUCxFKhFhCz1FiYHJiEjBwqqtM69leQe1Lqnw+zk8Q55ARIvgxrAXI3ZpJ1iG6tBiZ5BD2bbRETRKUnDUgPjWg516HS2aAcluvpcWge1dwRybCkZn2Jt1E6jnfBbY5ZD7e61k5XlI6siBQvUtoaVfx5evS4E9qmqeuS49fuAGxRFyVQUpQ5oAF6My+qSWOuA9tq0rmzpU4ErzNm8Z2sNd73aS9uQe9HrPrxnkC/e9QZnrbXx/RtPXjAC8OyGIj62bS13vNzL3bt6571OPDzTNkpVYfaixenVrCX481wNMR+do9qZpsdGfIjYU1UVZ7cTU3Xin+pva7Yxum80ZtufckwxMzFDQVVq5CIXNhQy1jaGqobXWaoHZ5eT/Ir8pCxOL6V8czl9L/XFdL87OhwU1KbG43gplVsrmRybZKx9LN5LWbbU+62IEbtnGmteCnZQF2YD0OeIbQ61dFCLaFnqLVrEB0BJizYocSW5+iMqonoGtQ7kWA6TiBlzNbmZWr5bLAYlznWX53tTvINaG0gJzH2wCA1gicTM5AxT41PBAvUw5KXegESAjNwMTJUmXK4CcMSmQD3V24nHk0NeeQq+kbY1aRnUKURRlD+hDTlsUhSlV1GUm4PfuoFj4j1UVd0D3AG0Av8APqaqamy7AVJQa78LgwJNpcs7S+lj560lNyON/3t44cfus+2jfOKPuzix0szPbzqVzLTFB459+sIGttQW8uW7d3NwxBPW+mNh1h/g+UN2zlpri/dSItYcKlD3r4ICtV1rNKiz5cZ5JalnanyKGe9MUgyjszZbY1qgDg3YToUMagBrg5UpxxST9tjP0jqWs9uZcvnTIRWbK5i0T+LodMRk+zOTM3gGPYk3uylGqs+u5sSbTkQNrPyBmEhJgVoH07MBnJMzWHNTr3haGZx43ju+MgXqVOxSF/qw1FuYtk8zMzEDJRtgaPfKLsAdWf60e0Dr0krMiI8aMmYHMWYaY/JGxDusfejLzXZDfvj7NmlYarSID/TpoPYMaAWS/PJ88IxAburlT4dYm6zYh3Nj1kE9M9CFy5WfmAegomUqh5kJmByP90pWjKqqN6qqWqaqarqqqpWqqv4qePn7VFX92TzX/7qqqmtUVW1SVfWhlV9x8msdcLGmKI+s9MWLyCGW3AxuOaeeR1qHeLX7+Mfuru5xPvS7l6mz5XLb+zeTm7l0mmKa0cD3bzyZzDQDH/vDqzE/K3Epb/Y5cU/NBof3JaaC7HQqLdmrpIPaS5pBocKcHe+lpBxnt3awPhkK1LZmG5P2SSZGYzP7KdTYkDId1Gu16Lp4DEp0dDm0+UgpqHyz1qzV/1J/TLYf+rxprjPHZPuJxtZk45rfXYOtKXFez6VArYPxiWmAlOygrporUMd2UOKI24cpK23ZHyCEOJalXjuS6uh0QMl6GG5d2QW4+iMqooaKhYka8aE4uiioLohJxEeouzzLOB5R8T9pmKvnIj7yK7QDGdEUqN39wYMi5fngGYI8/bPDE4W1ycpgZzpqsENdb/7RXtzuvNQsUCuKxHyIuNs74F5WvMeRPnBWHba8DL7x0L6jTlPeP+jm/be9hC0vk9/fvAVzzvI/F5QVZPOdd5zMvkE3//nACr8/OcYzbVqX5hlrEucD7XxaykzsXQ0FaruXqsKcBWNeROzMFaiToOgaKjCN7o9NF3WqdVAXNmgF6pWOPgjMBnD1ulK2QF1yQgnGDCN9Lx03UkMXjg4HgHRQJzB5pdTBqCfU3Zt6Beri/EzSjQo9Y7HtoB52+yTeQ0QlVKAePzSuFahXOuLDPaB1DIZ9M61YmFeSgAUsczU4ujHXmmNToA4W7zNUe2p3UJuDHdSqSnp2Ojm2nLkPGpE4qkCdwhEfoH0gHB3Ixj/SGZs7cPcxMW0mbRldlknJ1gijB+K9CpGiHBPT9DkmaSkPryCTm5nGJ85v4IWOMXYEi7k9YxPc9KsXyDAauP3m0yiOYDDfeU3FfPjcev74Qjf3vx6b7rLleKZ9lPXlJgoTfPh7S7mJjlEvE9OzcV1H5+gEtZI/HRdzXcFJ0kENxCzmw9njxJBmSJkD5pY6C4pBYaxtZQvU7n43ql9N2YgPY4aR0pNLY9ZBPd6hndkkHdSJSwrUOrB7Qh3UqVdANQRPWVuJDmopUItoHFWgLqiGKRdMrOCbkkg7qAc9ZFuzMWYk4NkDBZXgHsBckxeTiI9QB3Xa9EhqZ1BnB7sEphyAFvOhXwd1ikd8NFpxOk2o9th0UBsnh5k2WGOy7YRga0y5HGqxeoTiH1rC7KAGuHFLNVWF2XzjoX0MuaZ41y9fwDcb4Pc3nxbVYMHPXdzEqTUWvvS3N+kc9Ua8nUhNTM/yavc4ZzUkdvc0aIMvVRX2DS4+0DKWVFWl0+6lVvKn48LZ7cSYYSS3OPH3f0FNAcZMY8wK1K4ebTi2IUU6/Y0ZRgpqCla8QJ1MsTORKt9czsArAwT8Ad237ehwkJaVljIHWpJRajwDxZjdq3VQWxO80yBSlZac2GdQe3wU54ffjSJESE5RDoYsg1agNhigeN3KxnxE2EHtGfAkZv40QFom5BZRXO3HO+xlZnJG1817Bj1kZEwDKmSmximJ81KUo2I+TFXRF6jTstLIsmQFIz5SuEDdpBWojZMDEIOJ4+mzI/gzU3f/ah3UEvEh4mNv8AylcCM+ADLSDHz2oiZaB1xc/v2nGfX4uO39m5c9bHEh6UYDP7jxFIwGhY//6VV8syubR/1ixxgzfjWhBySGhA48xDPmY8TtY2LaLwMS48TV7cJUZUIxKPFeStQMRgPWRiv2/bHJTHb1uFIm3iPE2mBd8YiP0ND4VI34AK1APe2Zjslj2dHhwFxrRlES/3c+VUmBWgep3EENUFUoHdRi9VMUhezybK1ADcGYjxUsULsGIury9Qx4EjN/OsRcja1U6wILdQ3oxT3gpqhqBiW/TCvSpjLz0YMSo434yC/P197ceUdSukBdUF1AwJDFrJqp7QudZRrGIC+F42mKmmBUOqhFfLT2uyjKz4z4/eWVJ5XTXJqPe2qWW2/axCnV+mReVpiz+dZ1J7G7z8V/P7hXl20u17Pto2SkGdhcW7ii9xsLlZZs8rPSaO2PX4G6I9gFX2OVAnU8OLudSdWpamuyxTTiIxmyusNR2FCIvc1+1CyBWAtFHkb9uJye0D5bJqCKzRUAMcmhHu8Yl3iPBCcFah2MeqbJMBowZaVmhmSlJYdRzzST07Hp8vD6ZpmY9kuBWkQtqyzrmAL17pW544A/WOiLoEA96Ens05TM1RQUaG/G9I758A56Karyp3b+dIilBoKD/EyVJibHJpmZiKxjPVSgBsAznNIRHwajAWuDFfeEBRw9um5bVVVyMp0ohZW6bjehWOrA2QezvnivRKSg1gFXRPEeIQaDwm8/sIX7P3GW7pEYF7WUcPNZdfz2+S4eenPlihDPtNvZVGNJiqHkiqKwrsw0F+USD112rYGnTgrUceHsTq6iq7XZyvihcWZ9+uaqq6qKqzf1OqgL1xbic/qYGI1to92RHF0Ocmw5ZER75v0D/ww/PxtG2/VZ2AqyNlnJyMuISQ61o9MhBeoEJwVqHdg9Pqx5GSl7KkGlJRuAPkdsntxH3NoH16IU7VAX+gkVqFVVhZINKzco0TMM2WZIC+/NiKqqWoE6oTuoa8jL1E6f03tQomfQQ2HpdGrnT4ccE/EBRBzz4e47skCd2hEfoL2Rdozlg1PfHOqp8Uny8zykF1frut2EkpahPXbtB+O9EpFipmcDtA+7wx6QeKwSU1bUsR4L+eKlzZxUZeYLd71Bz1jsCyijHh97B1ycmQTxHiEtZSb2DbjxB1auQ/JIHXYv6UaFcrPEFK60wGwAd78bU3XyFF1tzTZUv8r4wXFdtzsxMoHf50+9AnWDdqbISsZ8uLpd0XdPd+yArmfhnM/D768BZ68+i1shBqOBslPLdC9QTzmnmBqfwlxr1nW7YmVJgVoHdu801rzUzJ8GrYMaoGcsNjnUw6ECtXRQiyhll2czOzmLd8gbzKDeCwH9BzQcxz0QUZfv5Ngk/ml/4mZQA5iryfQPYkgz6N5B7R5wY7FOgEk6qI+N+IAoCtT9bvLK82B2GqY9kJ34p3pHw9pkZaQ/i8BYl67b9XZ2MzOTRk55Cg9JhGAO9YF4r0KkmPZhDzN+NaL86ZWSkWbgRzeeAsAn/rQr5qehP9uuRQckQ/50SEu5ickZP132lR84CdA56qXKkkNakgyem3JM8YfL/sDQo0PxXsqS3P1u1ICaXBEfzdrv5uh+fWM+nD1aA0no/WOqsDZo779WclCio8sRXf70rA8e+Axc9g047cPan99dDd7YRL/ESvnmcgZfG8Sv4xn4jg4HAJY6feK2RHwkx6tlnNk9Pqy5qVs8rQp2UMcqh3pECtRCJ1llWgfL+KFxraM5pxAcnbG/4ygGJAIJ3kFdjeLswVRp0rWDOtRdnl/glYgPOC7iAyIrUPvcPqY901oHtXcEcmzaUNEUZmuy4RjPx9et72mUvt4OXK68xD4ApYciKVCLlReKfYgm4mMlVBXm8PlLmnitx8GBIU9M7+vZ9lEKstPZUJE8Bb3QzzdeMR+d9glqk2hAYmZBJoOvDTK2c2UHy0UiNPdEtwL1rA/2PQiDu1emuWUe1katoKp3DnXo/WIyxaEsh7nWjGJQsLfFZvDksVRVxdnljK5A/ewPwNYAzW/Rvj7j47D+arj9WpjS90zVWKrYXIF/2s/Qm/od7Brv0M4skIiPxJbanzp1MupJ7Q5qW14mGWkGesdj00E94p4CoFgK1CJK2eXawZSjc6hXIObD1R9REdUzGCxQJ3gGNY5uzLXmucnVevC5fMxOzpKb7ZaID5jbz6jqXIE61BETDne/GyBYoB6GvCJdl5mIrI1WHA4T/uFOXbc7PdiF252X2Aeg9CAd1CIO9g64yEo3UJcAxcOLWkoA2L5/OGb3oaoqz7SNcsYaK0ZD8kQWNpTkkWZQ4jIoUVVVuuxeapMof1pRFNZcWI1jlx01TrEpy6VbgXrKpRUFv38SPPcjuOMm+NZauOO98PKvtYiqFRqyl5mfSX5FPvZ9+hZUQ4O1Uy3iw5hhxFxrZrxd38iUhUzatfkw5hpzZBuwH4SdP9G6p4903peh6jT44w3a8MQEUL5Za9zSM+ZD1w7qSQf0vxb9dkTYpEAdJVVVsXt92FI4H9lgUKi0ZMeuQO3xYTQoWHJS9yCA0EdW6REd1LByBeoIO6jdA8FiYSJ3WBZUgmcQc02erhEfoeJ9dpoD8sPft0knMx/SssA7Qnp2OtnW7Ig6qI8qUHuGIa9E75UmHGuTFafThOLWN+MvYO/F5cpP7ANQerA1wcj+eK9CpJjWfhdNpaaEKMaWFWTTXJrP9v0jMbuPTvsE/c6ppMqfBshMM7K2OI+9ceigHnb7mJj2U2vLWfH7jqUL1v+I8oIOhnfH7oCJHuYK1JF2BXuG4bH/0ArTA6/DO++ADzwEn9wFtzwFjZdAz4tw2xXw3fVw90fgtT/GPA/Y1mzTvYPa2ePEmGEkt0ingyn+GXjq/+D2t2n7cM89MNaxYoX8cBQ2FK5YB3WoUSeiDmpVhb9/Ds76tNaUciRFgUu/AeYquPO9WkTfKmeuNZNtzabvpT7dtjneMU6mKZMsiw6Z/4//J/zqYvjTO+U96gqTAnWUJqb9TM0EsEY7iTXBVVpy6IlhxIctLwNDAnyIEKubIcNAfkX+4QJ1cQsM7Y79Hbsiy6BOiogPYzrklVBcM4O7361b1lioQJ2h2qWDOuSYmA93rzvsTRxXoM5N7QGJANmWbKbTSsiY1TdzU3UN4J00kWlK3QPcANjWgr09bqdMi9SjqiqtA65VH+9xpG1NxbzUOYZ7aiYm238q2J2dTPnTIS1lprhEfHSOarnXydRBDZDRcBpVVf0cfHR1D7d1djvJsmSREe5ZzvaDcP+n4UebweeGW56Et/8Kyk48fB1zFZz8TrjmZ/CZVnjPfVC5GQ48DD8/B35wiraN3X+DCX3jUGzNNkb3j+qaSe/qcWGqNKHo8Vl75IBW2Ot+Hja+F9Iy4Y2/wG1vgW/UaAX9R74Cb/4VRtvi/tpf2FDIWNtYzDP+Icqu/j13g3sQtn50/u8bDHDVj0Exwj0fgYB+2c6xoCgKFZsrdO+gNteZUZQoH8eOHth9F3zyVajeCr+5DO77pPZ5XsScFKijZPdoR6isKdxBDcS2g9rtk/xpoRtLveWIDuoNK9RB3R/RID/PoIf0nPTw31yvNuZqbKUToEY+uO9YWvFeJW1mVArUIeYaGO8EtI4hifjQT15tpfZmX8d8v7SpIaaNtujfSCe6rALtjyuxptCLxNXvnMI5OUNLeSIVqIuYDag82x6bTr9HWodYW5yXVHnJIevKTAy5fNg9vhW9387gYMZEiJEJR+a6s6hpGKbjsY54L2VRrh5XeIXA/l1abMevLoJcG3z8ZXjLt8BSu/jtFEU70Lr5Zrj+t/C5drj+91p81Rt/gZ9sha7novq/HMnaZMXn9GkD33Xi6nFFH+8RCMALP4ffXAqnvAvefRe0XAnb/gVu/JNWyP/4K1oHcLYFWu/VOqz/txp+fSk89C/w2p9gXN+B1EspXFuIz+VjYiT20RihWTxhR3xMueDhL8MV39UafxZiTIfrbtMaTB787KrsWD9S+eZyRvaMMO3Vp+Pb0eHQJ97j6W/Dqe/VzgI+85PwiVe096k/PR0e/5r28xAxIwXqKI16tTc7qZxBDVqBesw7jdc3q/u2h90+ilL8AIDQz1EFauta7WjodIynu7sGIoqh8Ax4yCvLS/wClrkac4H2pkyvmA/PoIfs7ClIz4X0bF22mfDM1eDQ3tibqk2MtY2Fvb/d/W4y8jPIzM+UDuojWJtsOF35WleFTtL9I/gzZf8C2sAfyaEWK2Rvf2hAYuLEZ51aYyE/My0mOdTOiRle6Bjj4pbkjHQKHYjYOxD+WUXR6BidIN2oUFagw+nmq0nVFirK+uja0clsDD736cXZ7Vy6QK2qcPAJ+O2V8Od3QdUW+NQbcP5XIj9AbzBA6QY4/aPwzr/A1T+Bv9wEr/4usu0dw9asneWgZ8yHs8cZ3YBEZy/cfg28eSfc/Chs/qBWuD9WXhGsvRDO/iy84/fw6Tfgn9+EbV/SohDbHoZfXqjFqtz3Ca3L2hO7aCMAa4M2eHKsPfaDPx1dDtJztBi+sDz5dVh7gdbNu5T0LO2AwMBr8Ph/RLTOlVK+uRw1oDK4azDqbamqiqPTEf2AREc3tN4DZ3zq8GXZFrj4a/Dhp7W5Uj/cCDt/lhBRKolICtRRCnVQ23JTu4BaZdHy1WLRRT3i9lGcn2Rv7kTcWOotuPvczE7NgjFNK4wM74vtnboHIurydQ+4Ezt/OsRcQ16W9sZPr0GJnkEPZusEFEj+9BxLzVznyZaPb8GYYeT2S27HO7L8AzCefo/WPQ2SQX0Ea5OVcXse0/36ndKcZRiPKPonKdmatNOChVgBrQMuFAWaShOngzrdaOCsBhvb94/ofir6E/uH8AfUuWGMyWZdMMqldUC/M2CWo3PUS1VhDmnGJPu4nV+KPy0XU/YwvTtX75kvCxaoVVWLlnjxF1ocxz++BCfdAJ98DU7/GGTqHKu39kL4wD/gme9pXcL+6Ir6eheoA/4A7j53ZB3Uqgpv3AE/Pxdqz4L3/wOsa8LbRrYF6s/VOlWvuw0+dwBu/DMUr9diFn54KvzkDO3ntP8h3btXCxsKAVYkh9rZ5aSgpiC8xqP+XVpUzEX/ufzbZObDu+7S9tcz3w1/oSukYnMFgC451N5hrzaAMtoC9Y5vwanvh1zr8d8zV8E1P4Wb7oH2x+DHm7WDKBJRp6ske8VceaHTxaSDWjsS2KtzDrU/oGL3TkvEh9CNpV479Weus7RkfWxzqH0e8E9rb8DCFOqgTnjmajIDQ6Do2EE94KG4yo8i8R6HmWvnMqiL1hVx4wM34ux28sfL/4jPvbxTm9397sMFau+IRHwEWRu1QYnedv0OZuVkOTEUVuq2vYRma5QOarFiWvtd1FpzyctMi/dSwrKtqYhB1xT7h/TtBH60dYji/ExOqjTrut3VojA3g1JTFq39K3tadqfdS12S5U+HuArXUV3Tz6HHDsV7KfPyuXxMOaYOF6hd/Vp8xN0fge+0wO+u1gp/530Z/ul5LU86LYaf5W0N8KHHYWQv/PE6mHREvClThYn03HRG9+tToPYOeQnMBsIvUHvt2kC+p78DN/0Nzvm81vgTLUWB4nWw9SNaJ/AXDsGVP4AcK+z8KXxnndZl/fjXoGMHzExFdXfmWjOKUWGsLfYd1Mvq6j9SwA8P/DNc+O+QUxjeneVa4aa74eXfwMu/Du+2KySvNA9TpUmXHGpHhwMguoiP8U7Yex+c8YnFr1e6Ad79V7jyh/D8j+EX58Gh7ZHfrzhKYr0zW4XswcycQhmSCOjfQT0+MY0/oEqBWugmVKAePzSudSGUrI9tDrU7OCAxgpgOz6CHNZeE2YmwGpmrMbh6yC9vnstfi5Zn0EN12bR0oB7JUjMX8QFQfWY11915HX+++s/cce0dvPPBd2LMMC66CVefi6ozqrQvPEMS8RFka7LR6zAx06fPh/EZl5P0tBkyS+QMAACKGrU8SiFWwN5BF+sTKH86ZFuT9nz85L4RmnXq/p6a8bN9/whXn1KR1MPIW8pNKxrxoaoqXfYJzkzCoZMAnsJ1NJ3yOs881gFfi/dqjuc62E1zcxvNGZ3wo09rB9xrz9Y6dc/5PBTWR/S+PCrZFq2r9ZEvawXWG/+sZVeHSTEoWBut2Pfp0/EbmlcSVsTHgYfh/k/BhrfBNbdqsRKxYkyDyk3an3M+pxWke16Ajqfgsf8AVx+89QfQeHFkm083Yq41r0jEh7PLSdmpYXxuefnXkJ6jHUCJhKkc3nMP/OZyyDTBCW+PbDsxVL65XJ8CdbABylxrjnwjO74Fm25e/sGAunPgQ09oAyzv/zQU1kFxi9aYNjulRYDMTh3xte/wH79PuywtW3teWnuh9hyVkRP5+pOEFKijNOrxkZ+ZRlb64h/6k50tL4OsdAM9Y/p2UI8Eu/6kQC30cmSBGtAK1Acejt0duge0NwhhmpmYwefyJUcHtaUGHN2Ya826FqgtWychv1qX7SWFgipw9mkdFwbtNanxikau/OWV3Pv+e7nnvfdw7R+uXXBKu6qqR3dQS8THHEu9BafbhDrercv2JjoOEnDnkVefBBE+erA1wuj+eK9CpAD31Axd9gmuOzXxzl4oMWWxrszE9v3D/NM2fQ5eP3/QzsS0P2nzp0Naykw8dWCEqRn/inxmG3L5mJzxU2tNzmKDs6CZdRUP0febPqacU2Sthpzt7hdg/9+h4ymsQwc49VQbhqK3wXmfgtITtWzoeDOmwWXf0Lpaf30JvO0XsOb8sDdja7bR+7w+8SquHu3MgmV1UPs8WoH94BPwtl9qsR4rLT1LK+jVnwsXoHVR3/Mx2H8+XPz1iCJarA3WmHdQT3unmRidWP6ARPcgbP8feN/fozuYUlivDaz83VVakTrCQn6slG8uZ9/d+5gcnyTbEvlMofEO7XN9xAXqsQ7Y96A2EDEcigIbroXmK7QM9gk7pGVqf4yZ8//7yK+nnNrv07Pfh79+QMvBX3shrL1IO/Mi0edQRUAK1FGye6ZTPt4DQFEUKi05undQS4Fa6C23JJe07LQjCtQbtIgPVY3Ni4BrIKIuX3ew0ycpMqjzy8E7jKUmj+7nBnTZpHvAjanAG1G2d9JKz9I6dNyDUFAxd/HJ7zsZ77CXx774GDlFOVz6/Uvnzb+bGp/C7/NrBerZaZj2RBRNk4yMGUYCuZWkTe3VZXu+ng4mXXnJcQBKD/llWlfUxFj4p7EKEYZ9g9pra0sCdlADnNdUxK07DuGamsGUlR719h5pHSQvM43T18yTt5lEWspN+AMqbUMeTqiMYhjcMnXatdkPtbbkjPjw5taSnWYnI32Szic7ab66Ob4LmhiD31+jZUhf/F+89rCR+7/6CJ/+n09Deex/3mHb9H6t+HTn+7Wu4C23hPUZxNZsY/efdzMzOUN6dnTPA67eYIG6connxO6dcPeHoeYs+MizkLVKnkPrzoF/egb+8f/gZ2fC1T+DmtPD2oRlrYXuZ7tRVTVmg+md3cFO9ZplPh4f/n+w8b1QrMPvVsl6uOFP8Kd3aAdEqk6Dys3aZ2A9YlmiUH2m1mjU8UQHLW9riXg7jg4HOUU5ZERal9vxLW24Z6TvQdMy4JR3RXbb8pPh7M9oxepDT2n51s//WGs2ChWr687RPx9/lVoFhxITm93rw5onxVPQcqh7Hfp2UA+HCtSyj4VOFEXBUm85XKDOKwbFqHU6x4K7H0zhF6g9gx5Ay+dKeMY0yC+lpGYGV6+LgD+6YRL+GT8ToxPk5rgl4uNYx8R8hJzx+TPY+pmtvPjDF3n6v5+e96bu/uBBkfJ87XTYHNvq6DhaJdJL68g26DNNfmaoG7c7LzkOQOlBUbQP66Nt8V6JSHJ7B7RiTEvZKixaLcO2pmJmAyrPtkWfPxsIqDzaOsy5TUVkpiX3maArPSixczRYoE7SDGrVYESp2EjtmpHVkUNtP6hFRZ3/Zag9C0fPJIpRWd2vsbVnwQcfhVdu0+IyZqeXfVNbsw1UdOn6dfY4SctOI7twke7VWR/c/ja45L/h6h+vnuJ0SFaBtq5L/lvLxX70q9qal8naYGXaPc3EiL51jCOFCtTL6qA++AT0vqTF0eilajPcsh3qzoWB17WDDd+ogduu0KJS9v9DyxVfYVVnVJFtzWb/PdGdRefocESeP20/qJ19cfpHo1pD1LIKoOVKLXP9n/fAO+8ASx288FP4dhP89q3w7A+0MxmS2LIPmSiKYgReBvpUVb1CUZTbgHOB0Cv9+1RVfU3RDjt9H7gcmAhe/qq+y149Rt3T1CTp6VvhqrLksKvboes2pYNaxMJRBWo4nEMdQRTHklwDYKkN+2aegWCBOlk6LM012IwTBGYDuPvd4WXdHWNiZAJUyE53RlT8T2rmahjvgpozjrpYURQu/r+LmRie4MmvPElucS6nfujUo65zVIHaM6QdvBFzcurryUibRJ2eRMmI/DREAP9YL253HrXJcABKL0VN2qDE6tPivRKRxFr7XVhy0ikxJeb7yo3VZvKz0ti+f4TLToju9W9Xj4NRjy/p4z0AagpzyMkwrlgOdYfdS4bRQLk5uteK1Uyp3kLLGfvYsSoK1O1gPZzn7Ox2YqowYUhb5QfZLbVw8yNw14fg91fD9b/XhtstwdqkXWd03yglJ0b3++vqcVFQVbB45/B4l/aesPktUd1XzDW/BSq3wAOfhlvPg2t+BmUnLnmzwgata9beZie3ODYHlUIRh0sOSZyZggc/C5d/S/88YnM1bLxJ+wMwOQ69r0Dvi/DCz+BvH4LcIq3Dumqz9retUTujcsoFPtfRf085wec8+rJpD3mmS4Fty1qSIc1A4xWN7L9vP/4ZP8YII5jGO8Yp3xTh5/gd/6edxbCazhoNDQstXgdnflIrSnfsgKe/DWlZcNot8V5hzITT0/8pYC9w5CGzz6uq+tdjrncZ0BD8cxrw0+DfScnu9bGxZhU9mOOo0pKNc3JGt9MOQStQ52YYyU2wSetidbPUW+h4ouPwqVwlG7QCdcNF+t+Zuz/sU80gySI+AMw1FBi0N2eOTkdUBerQvslU7dJBfSyzlvc9H8WgcOWvr2TCPsGDH3mQHFsO665ZN/f9ozuo90qB+hjWpiJcb+aRtncvppM2RrUtxT2Ay51PTpEc4J5ja5AcahFzrQMuWspNMTuNO9bSjAbOaShi+4HhqE9Hf7R1iDSDMjd8MZkZDArryky09rtW5P66RieoKszGmMSDJ6k6jeqaJ7H/0o6zxxnV+7qozVegXk6m8mqQmQ83/AGe+Br84jxteOISrA1WULQCdbRcPa6l99XYIS3LOBHkFcE7bofX/6wV/U//GJzxqUWjLKwNWsF/rG1sLnJCb44uh9bVX77E57pnvqs1TjVeEpN1HCXbAg0Xan9Am2Ezsg96XtQ6uJ//sfazz8jXuuYzTfP/nW3RzuDMLIDWe7CMvxHWMpqvbub1375O99Pd1J1fF/Z/I+AP4Ox20nJdBBEho+3aLKpP7gr/tispMw+aL9feJ89zpmwyWVbVT1GUSuAtwNeBzyxx9auA36mqqgI7FUUxK4pSpqpqjM6fjx9/QGXMO41NMqgBqLRoH7T7xicxlelUoPb4pHta6M5Sb2HGO8PEyIR2pLxkPRzaHps7cw1oGcxh8gx4UIwKObYkKWCZq8mftgNZWhfB2ZFvyjPoQVECGP1OyE3+D9ZhsdRoOYELMKYbue7O6/j9hb/nrhvv4t0Pv5vac2uBwwXqvLI82Dss+/YY1kYrzmdMZO6PvkBtnBpm2lCNwbjKu7tWkq0Jdv0+3qsQSWzWH2DfoJv3nl4T76VE5dymIh58c4C9A+6osrQfaR1ka72VgigzbBPFurJ87t3VH9Oc2ZBOu5e6JM2fnlO5GRNtKMq5dDzewcnvOzl+axk7CE2Hu3ud3U4qtybQIFSDES78dyhaB7+9gpz1/7Ho1dNz0jHXmHUpUDt7nKy5aImhq+MdWtRAolAUOPlGLUbl3o9q8RXX/Ays8/8/C2oKUIwKY+2xG5To7HJiqlyiq3+0HV68FT7yTMzWsSiDUftMXLJey0mH8Gc0TTnI3vVoWHdbf1E9aVlp7Lt3X0QFanefm8BMILKIjx3fhK3/BNnm8G8bDwVV0P9avFcRU8v9ZPQ94AvAscGhX1cU5Q1FUb6rKEqoilgB9Bxxnd7gZUnHMTFNQAVrrhSoQeugBnQdlDjinpICtdCdpV57ATs8KDEY8REL7oGIM6jzSvJQkqX7xlxNFsOA1kUQDc+gh7w8L2qWJe7DPVadUMTHIjJyM7jxgRux1Fv485V/ZvD1QUArUGcXZmsDdyTi4zi2JhsOh4mpruhzkjMCIwSykv+0+rDYGmFEOqhF7HSMepmeDczlESeqbY1FAGw/MBzxNtqHPRwa8XLx+tR5HmopK8Dtm9V9oPuxAgGVTruXmiTNn56Ta0UpKKW6aSL+OdT29rnioxpQcfW6lo5SWI1Oegesv4bCsaXTUW3NNuz7o8sMDswG8Ax4kquD+kjmKrjpXtjwNvjlhfDSL7WC6zGM6UYsdRZdMr0X4uxyLp4/rarw4Ge0oZkFq6h0Fu7BvMI6sqYGw7pJRm4Gay5ew/579qPO8/NZyniH9nneXGcO74ajbdpAwtM+EvZ9xk1BJTh7472KmFryk72iKFcAw6qqvqIoyrYjvvUlYBDIAG4Fvgj853LvWFGUW4BbAEpKSti+ffuyF71a9Lm1ev1Q90G2z+jbau/xeBJun7intSeUJ198g/RhfboxuoYmqMgz6L4vEnH/iuiFfu7e4PCaZx94lpKpEgx+H2eOtvHME4+iGnTsJFL9nOMe4ulX96Mawnvz3rWnCzVPTajH6WK/VwWOMep795BuWcPe5/cS2B75oMSu57rIz/fgMZh4NYH2T7SW87yVNTnIyYP72bmM/bLm39fw2sdf4zfn/4aTf3gyHW90YCjQnm/Xtu1iKquYXtm/c1RVxThZgHrozah/L09Vxhj3ZyfU73esKYFZznb08szjjxAwRnbgX17bxWJaQwMSo+g6Xg2KTVmsLzexfd8IH922dukbzOPR1iEALlyXQgXq4M99T7+LqsLYnZ025J5iaiZAbbJ3UANK5RZO2jbF43cfWpHO9HmpKtgPzRWoPUMeAjOBxCxQA5RvJL9rGTEfTVa6dnShBtSIm1nc/W7UgLq8AvWaCyK6j7gzGGDrR2DN+dpgwH0PklZ683FXK2woxN4WuyGBzm4nNecscvbOm3+FiTHY8uGYrWFFWOrIngw/OKHpqib237efodeHKD25NKzbOjocwbsOs4P6qW9o3dOrbejnYgqqwNmz9PUS2HJaz84ErlQU5XIgCzApinK7qqrvDn7fpyjKb4DPBb/uA6qOuH1l8LKjqKp6K1phm02bNqnbtm2L7H8QR88dHIVnX+DsLSdzxhqbrtvevn07ibZPVFXli888TJa1gm3bIsgAmodn+8Osr69g27YNumwvJBH3r4he6Oc+MzHDy+9/mbKsMs7Zdo72zb21nNtSBqU6Ptbcg/CSmXPPDz/bep9vH0WNRQn1OF3098q5Fg7+iOKGYjKnM6P6f/39r39nqnwGU0VjQu2faC3recs/Ay9/gm1nnwnGpQ+2nLrhVH5z9m9o/7d2FKNCaUOpdh8jv4WmM1h74hL3l0SWs3+f+uEfKVA62RjN4y7gx/+4B+uaDSn1+F2W1jrO2VChndUSgdX+2q4oyq+BUOPHhiMu/wTwMcAPPKiq6heCl38JuDl4+SdVVX145VedPFr7XWQYDawpSvzhpNuaivjZU4dwTs5EFNHxaOsgJ1QUJPUQv2M1leRjULQDFZduCK8AEo7O0QkA6pK9gxqgagvV9Q/hHbIxvHuYkhPicMDDPQAZuZClFaSd3cscRrdalZ9CvvtrS17N1mxjZmIGV58r4vxvZ09wXy11+0TtoD5SUSPc/Cj8+UaKRp5Deyk+rHBtId1Pd8fkQEtgNqD9nGoW2M+qCo/+qzYkM9HPDDVXk+kbh9lpSFt+s0HjWxtRDAr77tkXdoF6vGMcFMLLnR/ZDwefhLd8J6z7irv8Uu1AxqwP0pIzZWDJiA9VVb+kqmqlqqq1wA3AE6qqvltRlDIARfsNvhrYHbzJfcB7FM1WwJmM+dMAds80ALa85HxwhEtRFCot2fSOT+iyvakZP+6pWYpNWbpsT4iQ9Jx08sryDkd8gFYQGW7V945c/RHFe0AwxqIs8T9Ez8kvg4lRLLU5ODodUW3KM+jBWjatvUiLoxnTIa902ad/FbUUceMDN+Lqc2Hfbz88vMUzrA2aEUcx2GrJ9A9FtY2Aa4jJySxyy8z6LCqZ2Bph9EC8VxFLtwGXHnmBoijnoc1vOUlV1fXAt4KXt6C9714fvM1PFEWJbLy9ALTCZENJHulJkP2+rakYf0Dl2fbwM2iH3VPs6nFwUUvqdE8DZGcYqbPlsncgtoMSO+3aWXo11iSZIbKYqi2YjdpzdtxiPo6I94DDBeqEGZJ4rKImMqbHYXJ80avZmrXmuGhyqF092u/CovvKP6u9p7QkdnY/oBV/67eR5+k47luFDYVMe6bxDnt1v1tXnwvVry5coHYPaAMKqzbrft8rzpiOL9O64MD2heQW5VJ1RhX77w0/6s3Z6cRUYSItM4zi/lPfgNM/mljd06DlhJvKwHVc/2/SiOYd2h8URXkTeBOwAf8VvPzvwCGgHfgF8NGoVriK2T0+QDKoj1RlyaFHp2y3Ebe2f4vkAICIAUu95fgC9dDuhW8QCXdkAxIDswG8w17ySpOoQG0wgqmckpoZnN1O1ED4GWMhngEPFtsUmMLftynBXB3WhOeq06u4/q/XoxgVzPVm7ULvMOSlVvFiOTKr1pKXPc60dzribUx1d+B25yXX77debI0wkrwFalVVdwDHhlz+E/C/qqr6gtcJBQtfBfxZVVWfqqodaO+rt6zYYpOMqqq09rtoSfD86ZBTqsyYstJ4cl/4OdSP7x1GVUmp/OmQlvICWvtjXKAe9ZJhNKRGd3pRM0afnYoTsuh47Pii34qwH5y3QJ2wHdQGI568eujftejVQgXqaHKol9VB7ezR3g8mS7dm6QnzFqitDVaAmORQO7u0/bxgBvXIPihq0v1+42Uyu1QbrBmmpqubGHxtMOxGpvGO8fDyp4f3QscO2HJLWPezahRUgSN5Yz7COodAVdXtwPbgv89f4Doq2mmKSc/uncaggCVHCtQhlZZsXuzU54l9JHgAQIYkiliw1Fvo3N55+ILi9fDyr/S9kwgHJHqHvaCSXB3UAOYabIEJ/D5/VAV4z6CHgtMmpIN6IZaasDsXGi5v4OP7P350B3WuDEk8Vl5jE/m7PYwcGKb0lMqItjHVewiXK4/8snydV5cEbI3awJrU0gicrSjK14Ep4HOqqr6ENmB85xHXm3foeDLMdImlUC65YyqA3TtNhnc4afZRs1nl0d19PGkbC+uU9D+9MkVRtsLA3lcY3BfdqeyJlvueNTlNn2OGBx99ktz02OQlv7x/CluWytM7norJ9leDI3/uJ+bUU3XKAC/eMc0Tjz6BIX1lz1BY076d6QwTPcH1tD/fjjHbyM7XdsYnE1sHVVk1jD1zF909C+9LVVUx5hp5/fHXmdgQ2dnL7c+3Y8w18vyrzy94HcvYLqoVC68n0O/5YtJm3Jzm6WD7k0+Acnj/Ttq1Brvn7n+OQ7P6ng0w9Kh25t3+wf30bD++sFjR+yA50/m0Jck+rk2zYX/hYfr6woufmizVfgYPfPsBKt+2/PfYQ/uGMJ9iXvZrUcueb+IuuYye518Ja32rRfNUOo4XHmOwO/Jmr6XE87U9wUNu4mvUM01hbiaGCAcTJKNKSw7uqdmIM/GONNdBLQVqEQOWegtv3P4Gs75Z7ZSgkvUwtEffO3FF1kHtHnADJF8By1yNJaB1Ljk6HREVqFVVxTPoITfHrcWGiOOZa2A8/MG9hWsKtX/M+mDaA9lhDhtJAYXNpXhfyMbVuj/iAvXsUDdudx4lyXYASg9FjbDzx/FexUpLAwqBrcBm4A5FUZYd9pkMM11iKZRLvn3/MGx/iSvP2chp9dZ4L0sXo/m9fO7O1ylu2sj68uV1i3p8s+x77FFu2lrLeedFPy9mtee+H6dsmDsPvERh/YmcviY2j4P/2bWDluoctm3bFJPtrwZH/dzVS9mU3s/O3wVYk7WGmrNXOAqi/2dwysWsWaetZ+gHQ0zXTXPeeeet7Dp01Dq0gxZ1P/VL/G4dXH+QDHdGxL+DQz8YYrpmevHbv9gG6RsT6/d8CVMv57LtpDoorJu7LDAb4OX3vUxRmv7zf3Y8u4N97OOit19Ees489ZH774bG86nYou/9xkt7z700WI00RLAfO/6nA/8eP9t+uLzbzvpmeWr0KZpPb17ez21oD7zURvEH72BNZoK+D/c/TakxneYY/k7G87U98UPY4sju8WHLk+7pI1UVaqez9YxFn0MtBWoRS5Z6C6iHT7vCXA3TXm3wgF4i7KD2DHoAki8CwFxDXpZ2KqKjyxHRJqbd08xMzJCd4ZQC9ULCjPg4jncEcou0yefiKNYGK06niYmD4WfkhQTG+yTiYyHWBu107UAg3itZSb3A31TNi0AALTpvWUPHxfK0BnOHm5Mk4gPg3EZtTsD2/SPLvs2OAyNMzwZSLn86pKVc+/nHKoc6EFDptHupTYX86ZCqLVjS21EMSnxyqO3tYF0796Wz25m48R5BLlMD9L265PVszbaoM6iXzOoe7wRL3eLXSTDe3LrjYh0NaQbMdeaYRXzkFOXMX5wGbWBfUbPu9xsvk9mlMBZZ5E/TVU107ehicmx5kbHObieoLD/iY/v/whmfgEQtTgMUVGrRO0lKPn1Gwe6dxioF6qNUWrQ3ZL065FAPu30oimR8i9iw1GvdoXM51IoCxS36dlG7+iPqoPYMBAvUydZhaa4mC+2D9NyBgTCFiveZ2KVAvZAIIj6O4hnWCtTiOOk56UzMWJnpj/xDuOIekIiPhWSZIMuc1G+853EPcB6AoiiNQAYwijZ0/AZFUTIVRakDGoAX47XIRNfa76LSkh312X2rSVF+JhsqTFp3+DI92jqEJSedTTWpeYZMcX4WtrzMuQMWehtyT+GbDVBry43J9lelyk0Yhl+nYkvJyudQ+2e19ztHFFCd3U5M1Yl9IGoqqxRmJ8E9uOj1rM1W3H1ufMGmrnA5e5xLF6jHDkHhsk/qSQievDoYfPO4ywvXFsasQL1g/rSqapnISVWgLtMeNxFovroZ1a9y4MHlzSNxdDgAsNQt4zVt8E3oeQE23xzR2laNgiptcGmSkgJ1FOweH9Zc6e49UqVF66DuHdeng9qam0FaEkxbF6vPcQVqgBKdC9QRdlCHIj6SrsPSUoPR20uWJSvsARgh7gE3aWkzGNUpyCnUd33JIsKIjzneEciT/OmFzGSURVVANfqGmQoUkpYlKWvzsjXAaFu8VxETiqL8CXgeaFIUpVdRlJuBXwP1iqLsBv4MvDfYTb0HuANoBf4BfExVVX+81p7o9g4kz4DEI53XVMwrXeM4J2aWvO6MP8Dje4c4v7kkpd9bryvLj9mgxI5RLwB1qVSgzioASw0nXmCg94VeppxTK3ffzm5tgF96FgAzkzNMjEwsPvQvESgKlJ+y9KDEpuCgxAPhD0qc9c3iHfIuva+StkC9+7jLCxsKGWsfQxupph9Hl4OCmgX2s3dE+3nn2nS9z3iayirR3icHwn/LUn5qOfnl+ey/d3lnKo53aJ/jl9VBvf1/4YxPQkaCPz+bk3tIYuq+O9GB3SMd1McqyE4nLzNNlw7qEbcPW54cABCxkVeaR1pW2twLGxDMoT7+DUvEXAMRdfl6BjxkF2Zr2djJJBg9Ya41R9VBnZfnJZBTor2hE8fLL4XJcZiJ8HnYM6R94BPzM1eR5huI+ANMhjpKIFv274KKmmA08giV1UxV1RtVVS1TVTVdVdVKVVV/parqtKqq71ZVdYOqqhtVVX3iiOt/XVXVNaqqNqmq+lA8157IJqZnOTTqZV0SFqi3NRURUOHp9qVjPl7qGMM1NcvF61P7+ael3ET7sIfpWf2jhDpHtQadmlSK+ACo3Ex98wiqX6XrqSgOkIfLfhCsa+a+dPVoBx4SPeID0ArUS8R82Jq1omYkMR/uPq0ZZtEO6kBAi/goTK6ID09eLQwd30FtbbAy7ZnGO+TV7b5UVV08dmZkn9Y9nUSfaQLGTMguBFf4qWSKQaHpqiba/9HO7NTsktd3dDgwpBsOD3lfyMAb0PsybPpA2GtadUwV2r7V+UDKaiEF6ghNzfhx+2algHoMRVGotGTr00Ht8Un+tIgZxaBgrjPjOOQ4fGHJBhhu1ecOpr3g90U0aM4z6Em+7mmAvFKYdGCtzYk4g9oz6MFk8kTUmZ4yDEYoqIj86LpEfCwqvbye/BxHxB9gso3jqBJPszBbI4wu79ROIZZj/6AbVT2cP5xMTq6yUJCdvqwc6kdah8hMM3B2Q/J06kWipczEtD/AwRGP7tvutHvJSDNQXpCt+7ZXtarTsGS0k56TvrI51MfmT/dozQ/JUaDeCP2LF6gtaywoRiWiAvXcvlqsg9o9oHXIJ3rH6TEms0vBa4dJx1GXFzZoZ2ba28LvSF/IxOgEs5OzC3dQj+zXDswnm8L6qHKoZ7wzHHp86ecSR4eDguoCDEudFfTUN+DMT0FGEhw8zMyD9GzwRp4/v5pJgTpCY95pQPKR51NpydGlg3rULQVqEVuWesvRER/F62B4X0SnJB3HNaB1skZwRNwz4Em+/GnQhu4VVFBSO4Oj0xFRB6pnwEOBZRKDJfxs75RijiKHWiI+FpVd34TZ7GJ0fwRvDKdcoAbIKpb9uyBbI4xIgVroJ5Q3nIwRH0aDwjmNRWzfP0IgsPBrqqqqPNo6xNkNReRkJNnZWWFaHzxQEYuYj85RLzWFORgMydMNuSxVWzD0vUTNOTUrXKA+uoPa2Z1EBeqKjVoH9SLvldMy07DUW7DvD7+gGuo2X7SDOgnjPQBQjPPGOhau1QrUY+365VCHzhhdMIM6yQYkzimsjTiHuu68OjJNmey7Z9+S1x3vGF86f9o/C22PwqnvjWg9q1JBlRZxlISkQB0huydYoJYO6uNoHdSTUeU3qarKiBSoRYyFCtRzj9WsAsixaqezRcsd2YBE0HKWk3aAmrkGW9kEM96ZZU9oPpJn0IO1bBpFOlAXZ6kBR2dkt/UMQ64UUBdi2rCeggI39gg6llRXPy53HnnJ+vutB+mgFjrbO+AiPyttbk5KstnWWMSox7fo4L89/S76HJNc3JLa8R4AtdZcMtMM7I3BoMROu5caa3J1my6LdS1Me2g838To3lFcfbHJ+D7OsR3U3U5QIL8iCV5jTeVgzADH4pEptiZb7Dqok7VADdpZs8fEOpprzBjSDLoOSgydMbpwB/W+JO6gjqxAbcwwsvaytRy47wAB/+JRTI4Ox9L5044uyC9JrjMBknhQohSoIzTq1ablSgb18aoKc/D4ZnEsY2DLQpyTM0z7AxTJAQARQ5Z6Cz6X7+hCqV451K7IBiSqqopn0ENuaRK9iB7JXI3ZrL0pjmRQomfQg6VoKqJs75Riro58UKJnWDqoF1FQX87MbBqutvDfeM8MduFy5iVnhI9e8kvBPw0T+n1AFKmttd/FujITShJlfB7pnEYtkmn7/uEFr/No6xAGBS5YJ8/taUYDzaX5ixb0IxEIqHTZJ6izJcEp5OFSFKjczNr12vN2x+ORndoftnk6qPNK8pJnhkuoi3oR1mYr9gP2JQt5x3L1uMguzCY9J33hK40dSrr86TmlG2Dw6BxqQ5oBS71F1wJ1qKs/5TqoLXUwHvnzQNNVTXiHvfS9sHCO9bRnmonRiaUL1PZ2sDZEvJZVySwFanGMUAe1LVcKqMcKdahEE/Mx4tYOABSbsnRZkxDzsdRrpwQdFfNRsv64U74i4u6PqIg65ZjC7/MncQd1NfnZ2v6OZFCiZ8BDgXlCCtRLsdRGnqfulQL1YhSDgtdXiK+7Pezb+vo6cbnykjPCRy+KArYG6aIWugioKvsG3UkZ7xFSlJ/JiZUFPLlIDvUjrUOcWmORMz+DWspNtA64ojrb81iDril8swFqbUnaYLCUqi2YDQfIKcpZmZiPmSltqHNB9dxFrm5XcsR7hCwjh7piSwV+n5+7bryL6WAE6XK4elyLx3uAVmC0JGmBuuSE4wrUoMV86JlB7exykp6bTpZlnprGxBjMJmnTTRQZ1AANlzdgSDew796FYz5CjU5LRnyMtmnvK5NJQWXks4ZWOSlQR8jukQ7qhRwuUEc+KDFUoJYOahFLsS1QD2qn54XJM6AN7UnaApallixF6/KKZFCiZ9BDXp5H67IUC2u8VOvK6NgR/m0l4mNJ04YSAqPhZ7/NDHXhducl7wEovdiatMevEFEanlCZmPYn5YDEI21rLGJX9ziOieMLVD1jE+wdcHFxi7xuhqwrM+GYmGHAOaXbNjtHtcG5takY8QFQtQWl90XqL6jn0GOHdC3+z2u8QztbzHi4W9rZ40yuAnXFKdC3a9GrtLy9hYv+7yL23rWXX53+q6M/0yzC1etaPN4Dkjzio0V7n+GfPeriwoZCxtrHdHv8OrucmGvM85/BM7JfizVLxrN7Cuu0AnWE+zGrIIvabbXsv2fh94LjHdpjfekO6rajooCSQkElOKVALY5g906TlW4gJ8MY76WsOpUW7dS2nmgK1MEDAJJBLWIp9IJ2dIF6gz4FaldkHdTuATdA8hawzNUYJ/rIyMsIO+IjMBvAO+IlO8MRUfE/pWTkwqX/Cw9+FmaX31HDrA+mvZC9RDdCqrNUY5zsp+2htrBupjr6cLulg3pJ0kEtdNLt1k57T+YOaoBtzcUEVNjRdnwW7aOtQwBcJPnTc0KPBz1zqDvswQJ1qnZQl2+Eod3UX1CBZ8DDSOvCHf26OCZ/WlVVnN1OTNVJ9LtevhEGXofAwvEdiqJwxufO4F0PvQtXr4tfbP7FsjrYnT1O8isX+ayhqlqBMVkjPjLztShG+9FnwxU2FDLjncEz6NHlbhxdjiXyp5Mw3gO0uU7pWVrTS4Sar27GfsC+YMa6o8MBLKeDuj0JC9TVUqAWRxv1+LDmZiZtnl00CrLTMWWl6RLxIQVqEUsZuRnkluQeXaAurNe6n31RvjFxD0TWQR18Q5S0GbXmahRHF+Zac9gRH95hL6gqmcq4dFAvR/NbtFMzn//R8m/jHYFcGxjk7cFiSs/dRNmaGe55zz24epdf4FA8g1rER7L+fuulqEk7JVOIKHW7AqQZFNYWJ/fv3EmVZiw56fPmUD/aOkRjSV7qFk7n0RwsULf261eg7rJPkJlmoCxV4wkz88C6lrUnaYX6mMd82NuPyp+etE8yOzmbXB3UOYWQa9U6QJew5uI1fOilD5Ffns/tl9zO8995fsEu4JmJGSbtk4t3UHtHtSGNydywMM+gxMK1hQC65VA7u50LF6hHDyTngMSQwvrocqiv1PbNvnvmj/kY7xgnPSednKIlcv/tSRrxIRnU4kh2zzQ2ifdYUKUlJ+oCdUaaAVNWkgy5EKuWpd6C45Dj8AXGNChqhOG90W3YNRBRB3XSR3zkFoPPTWFdNuMHx8M6hc4z6CEzcxoUg9b5IBanKHDZN+C5H4JjmXEUnmHILYrtupKAsaiOdad5UWY93HXjXQRmlzecyOgbxjtlIsucogWM5arcAps+EO9ViCTQ4w6wtjiPrPTkPuPRaFA4u6GIHQdGCAQOv646JqZ5sXNMuqePkZeZRq01R9dBiR2jXmqsORgMKdy8VHUa+TN7KWwopOOxGA9KPKaDOjSMbsnYikRTfsqSgxJDCtcUcvPzN9N8dTOPfPYR7r7pbmYmZo67XujA+qIZ1Mk8IDGk9AQYfOOoi6wNVgDG2qMvUE97p7UDAQsdNEnmDmrQmmTGIj9QZao0Ub6pnP33zh/z4ehwYK5bID4lZMqlNZ3lJ9mZt7lF2v9rOvLEgtVKCtQRGvX4ZNDIIiot2fSMRf4LM+z2UZQnHeoi9iz1luPz2ko2wHAUMR+BgDa4JcKIj7TsNDJNSfr8YjBAQRX1m9MZ3j3M7Rffvuw3gZ5BD/n5HgLZ8kF72QrrYOtH4aF/Wd71PcOQJ/t3SWsvJL3qBD752T+TPrCDJ7/65LJulqnaCeSUyWvbUvKKoOnSeK9CJIFuV4B1SR7vEXJecxGjnml29x8+O+mJfcP4A6rkT89jXZlJ14iPzlEvNamaPx1StQV6XqD+wno6t3fin/HH7r7sB4/qoJ4rUCdTBzUsa1DikTLyMrjur9dx3n+dx5t/fJNfn/Xr42a+OHuWUcxP5vzpkNITYPDoDuqC6gIM6QZdBiWGzhQ115jnv8LI/uTvoI6iQA3QdFUTvTt75yIwj+TocGCuNS++AXs7WOuT78xQgwEKKpKyizrJflIrx+6ZxporHdQLqSrUOqgjHTAw4vZRnKwFOrGqWOotOLudR7+JjnZQondEy95KC/85wjvoJa80L7kLWOZqNl1v4/KfXE7fi338ZMNP2PH1HfinF/8g4x5wk58vAxLDduYntS6N/Q8tfV3vMOTJgMQlpWfD1T8m44Yfc+0NO7C2foVDD7yy+G38M2QY3BgK5ACAECthzDvNuE9N+vzpkHMailAU2L7/cPbvI3uGKDFlckJFkhXtdNBSZqLTPoHHN7v0lZcQCKh0jU1Ql+oxKlVboPcl6i+oY9ozTd+LfbG7L/vB+Tuok61AXbFx2R3UIYqicM6Xz+HG+25k/OA4v9j0Czq3d85939Wz3A7qJC9QzxPxYUgzYKmz6BLxETowMG/Ex5QLJh1QUBX1/axaoUGJUWi+WuswP3D/0XNJVFVlvGN8GQMSkzB/OiRJByVKgToCqqpi90oH9WIqLdlMzvgZ84YxnOsII8EOaiFizVJvQQ2oc29sAShuia5A7Y5sQCIEi7DJOiAxxFyN4uxm8z9t5mP7PkbTlU08+ZUn+fnGn9P97MJRFFoHtRejtWIFF5sE0jLhLd+Ch76w9KlgEvERnrUXkv65lzDmF1C0/Somnv7Lwtd1DzLhyyO3NMk+PAuxSoW6Y1vKU6NAbc3L5MSKgrkc6qkZPzvaRriopSS1YycWEHpc7NOhi3rANcX0bIDaVO+gNtdAwE/dpjRQYphDPeXUBjof8V7b2ePEmGlcOo820ZSdBMOt4Q28Dmq8opEPvvhBsq3Z/O7C3/Hij17UhkkGO6hNlYs8N453JH+BuqASZqeOG+RX2FCoS8THoh3Uowe0XORk6+w9kg4d1EXri7DUW47LoZ4cm2TaPb2MAYltYE2y/OmQgmrpoBYa19QsM35VMqgXUWnR3hxEmkM94vHJgESxIiz12gvbUTEfoSPqEZ4BgGtAmwwdAc+AJ3nzp0PM1XOZyPll+Vx3x3Xc+MCNTHum+c1Zv+H+D9/P5DzPHZ5BD5biKQwFSZYjthLWnA8Vm+Dpby9+Pe+IdFCHKd1cSNlXbufu+69k5r4vo/7lPfNPLXcP4HLmJv/vtxCrRGgAXqpEfABsaypmV4+Dce80z7aPMjHt5yKJ95hX6HGhR8xH56g2GLDWmmTF0XApClRtIcv1BuWbyjn0aIwK1PaD2mn7R5xt6Op2UVBdkHxnIGbma++bh1sjurmtycYHX/ggDZc38NAnHuK+m+9jvH2c3OJc0jIXmfU0dkjLEE5migIlJ8Dgm0ddHCpQR3omeIiz24khzTD/+76Rfckd7wFRD0kE7WyApqub6Hi8A5/bN3e5o8MBsIwO6iQckBgiHdQixO7RfjmsUqBeUFVhNgA94+HnUM/4A4x5p6VALVbEvAXqvCIwZoKrP7KNRtlBnfQFLEvNcUP7Gt/SyEf3fJTTP3s6u365ix+v+zG7/7L7qDeHngEPhcVTYJICdUQu+W94+ddaN8FCPEOSQR0BW5ONk7/6EX70vRvo2m2An54Br//5qINc/rFenOM5yX+GhBCrROuAC0umQmEKRfJtaypCVWFH2wiPtg6Rn5nG6fXWeC9rVSoryMKck67LoMSOUIE61SM+IJhD/SL1F9bTu7MXn8u39G3CZT8IhWuOusjZ7Uy+AYkhYeZQHyurIIsb7rmBc756Dq/95jVe/93ri8d7QGpEfICWQ31MzIe1wcqMd2ZucH2knF1OTJUmDMZ5Sm6pUKDOsYJ/FibHl77uIpqvasY/7af9H+1zlzk6HQDL6KBO9ogP6aAWgD0YW2HNlQLqQirMWoE6kg7q0eABAClQi5WQX56PMcM4z6DEKHKoXQMRFVFnJmfwOX3klSZ5gdpcA46u4y7OyM3g4m9dzIde/hAFVQXcdcNd/PHyPzLeof1sPIMeCiyTkkEdKVMZnPN5ePCzC58d4BmRiI8InfiuEznx/afx2/+qo6fuu/DcD+EP1829efT1deJ25yf/77cQq8DUjJ/nD9qpMaXWR50TK81YctJ5Yt8wj+0d4tymIjLSUmsfLJeiKLSUmeY67aPRZfeSmWag1JSlw8oSXNVp0KsVqFW/SteO49/vRW3s4HFFJ2e3M/nyp0MiyKE+lmJQOO8/zuP6v11PRl4GxesXOVtuclwrLObaorrPhFC64bhBiYVrCwGijvlwdDnmz5+G4IDE5qi2v+opii451FVnVJFjy2H/vfvnLgt9Nly0gzoQmPe5ImmYq6RAnUxUVeWeXX388YWF804XIh3US8vPSseck05vBB3UI8HTNySDWqwExaBgrjPjOOQ4+hsl6487or5s7sGIOqg9g9qR+qTvsDwi4mM+ZaeUcfPOm7n0+5fS/Uw3P1n/E579v2dx97nJy/VE3J0ugC23wIQddt81//dlSGJULv3+pRSfUMyf/2kfrsvv1TrJfn4OvPQr/MNduFx5yX+GhBCrwO07uxh0TXFxbXq8l7KijAaFcxuLeOCNAUY901y8Xg7oLqalzMS+QTez/kBU2+kYnaDGmiNZ3wBlJ8PIfqo2W0nLTotNDvUxg8/8037cA25M1Uka51O+Efpf02VT665Zx6e7Ps1lP7xs4SuNdWiFxWSLS5nPPIMSCxu0ArW9zR7Vpp1dzvnzpyE1CtQQLFBH9xxgSDPQeEUjbQ+24Z/xA1rER5Yli6yCRQ4Kuvu1iJysJH1eKKha9PN0okrZArWiKNz/ej//9WAr/Y7wunxHPVoHtU0KqIuqsuTQMxZ+B3WoQF0sXQhihVjqLcd3UFdtgb33Q8Af/gbd/RF1UIdOJUv6AlZukTasz7fwqXMGo4HTPnkaH239KGsuXsNjX3gMR6eDnEyHFKijYUyDt3wHHvmKNmToWBLxEZX07HSuu/M6ZiZnuOvd9xM483PwvgfhtT+S13U7bnde8h+AEiLO3FMz/PjJds5usNFiNcZ7OStuW1Mx/oBKulFhW5OcEbOYdWUmfLMBOu3eqLbTaffKgMSQ9CwobiHN/iY1Z9esSIHa3e8GleTtoC7doP2flxp0vUzZhdlkmhapY4wd0gqLqaCoWfv/zkzNXVRQXYAh3cBYW+Qd1P4ZP+5+9/wd1NNebVaJuSbi7SeMwvqoO6gBmq5uYsoxNXdGhqPDkdoDEgFMFeAeiKxWsYqlbIEa4N+vXI8/oPK1B8IbOmAPFqhTKdMuEidWFvDcwVH2DYZ36txcB7VEfIgVMm+BuvmtYMzQMnvD5RqIqoM66SMAFEXrol7GYIeCqgJuuOcG3nH3Oyg5sYgso1MiPqJVfRqsvRCe/J+jL5/1aR9+ssxxWVaysDXZuOLnV9D9TDdPfvVJKF4HNz9CZ/6nOXiwJvl/v4WIs1/sOMT4xAxfuCQFutPmcU5jEYoCW+utmLJSq4M8XC3lWmfdnihiPvwBlW77BHWSP31Y1RboeYG6C+sY2TOCe8Ct37ZVNTgk8XAGdf/L2syYpM2gTsuEosbjhvnFzFhHauRPg3ZApbBey4QOMhgNWOotURWo3X1u1IA6/0GT0Tbt8WtcZEhlsrDURT0oEWDNRWtIy05j3z3az2m8Y3wZAxLbwZak8R6gPXazzPMPZk9gKV2grirM4ePnreWh3YM8dWBk2beze32Yc9JJny/wXsz57MVNFGSn89k7XmcmjFPnQgVqm0SoiBViqbcw5Zhi8sjMdIMB3vp92P4/4Q9LjLCDOvQGPiU6LM3VML78XMLmq5v5yLPXoWSZtDfqIjoX/gfs/isMvHH4Mu+IljdokNe2aJ34rhPZ+KGNPPM/z2hDXQxGOh1n4Z3IJbdYihhCxMqI28cvn+ngLSeWcUJlkharllCYm8HXrtrAZy9O8gFcOlhTlEeG0RDVoMQB5yTT/oAMSDxS1RbofYn6C7UiZ8fj0Reo5nhHwWCEHC2Gof+Vfu79wL3Y1tmoOrNKv/tZbaIclBiWVBmQGDJPzIe1wRpVBrWjywEwfwf1yP7kH5AYUlgfdcQHQHpOOmsuXsP+e/ejBlQcnY6lC9TJ3kENwUGJSzd8JZKU/xR6y7n11Nly+bd7dzM1s7z2eLtnGqt0Ty+pMDeD/7r6BPb0u/jp9oPLvt2Ix0dBdjqZaal3WqaID0u9dorQcV3Uxc2w6QPw0BeWv7HpCa0TNXuJ047m4RnwoBgUcopywr5twlkih3pe7siGT4p55Frh/H+FBz+jDRGBYLyH5E/rJZRHffdNd+PqdeEecJNbnItBBpYJETM/frId32yAz17UGO+lxNW7t9ZwcpU53stY9TLSDKwtzmNvFB2+naNa7EKNNQXeuy1XpdZBXXpiCdnWbA49qmPMxxHxHqP7RvnDpX8guzCbmx65iYxk/nyuw6DEZRtPoQ5qmH9QYkMhY+1jqAsNFV+Cs0uL0Zs3g3pkH9hSpUAd/ZDEkKarmnD1uGh7qA2/z4+51rz4DeztYEvyArW5SgrUySYzzch/XrWeTvsEP39qeS+eox4fVsmfXpZLN5Ry1cnl/ODxNvb0z5N3Oo9hl0/iPcSKWrBADXD252CoFfb9fXkbcw9oERQRDBZxD7jJLcnFkApnZ1hqwBHmZPfQvhX6OOUm7e9dv9f+9oxArhSo9XJUHvWNd+HudafG2RFCxEm3fYI/vNDF9ZuqqC+SKB2xPC3lJlqX+RllPh3B/GqJ+DhCQQWkZaM4Oqi/oJ5Djx2aG24WtWCB2tHl4PcX/R7FqHDTozdhqkzSQWghK91BbUmRDGrQOqiPiU8pXFvIzMSMlm8egbkO6vkiPlKpgzq/HKYcWu52lBqvaEQxKLzwvRcAls6gtrcdlVWflAqqwCEF6qRzdkMRbzmhjJ9sb6fbvvTwAbt3WuInwvDvb12POSeDz935BtOzS0d9jHh8FMkBALGCQqcIzVugTs+Ct34P/v558C3jTYqrP+Ihft5Bb+rk01ZthVd/B7+5HJ77IYy2L30bKVDry2DQBiY+8TXw2sE7LB3UOjsyj7r9H+2p8/stRBx897EDGBSFT1+Y5B1TQlebaiyMeqZ5pm00ott3jXrJSjdQki/D3Y9StRl6XqTluhbc/W5uv/h2vCPRF6mwt+PLrOL3F/0en9vHux9+N9YGa/TbXe2KmrUZN5OO2N6PzwNTrtQaSF56Agy9qeWbBxU2aBEykcZ8OLud5JbkkpY1T870yD7t55kKDAaw1MJ4Z9Sbyi3KperMqrnBq4tGfMxMgnso+QdRFlSCszfeq9CVFKiD/vWKFtIMCv923+4lT+Wwe3xYc6WAulyW3Az++5oN7B1w8aMnly5Cjbh9FC82WVgInWXmZ5JTlDN/gRqg7hyoPxee+PrSG3NHNiBRu2kKdVhWnwafa4MzP60Nu/ntFfDDTfDIv0LX8/NPJHYPakfihX7KToQNb4fH/k0bsiEFat2d+K4TOeWDpwCQVyYFaiFiYe+Ai3te6+P9Z9ZRYpJCoVi+azZWUGHO5hv/2BfR6fyddi81hbkYDOGfOZfUqk6D3hdpeXsL1/z+Gnp39vKLTb9gYNdAVJv1D7Wx48d9uHpdvPPBd1J6Uoo0LhjTtELqwGuxvZ/xDq2gmErzSPKKIS3rqEJf6KBHpIMSnV3O+bunZ33g6kutCBVLnS451KDNJApZNOJj7JB2tm6yD6IsqJICdbIqLcji0xc28uT+ER5pHVrwerP+AOMTM1ilgzosF68v5dpTKvjJk+3s7lv4NDpVVRlxSwe1WHmWeguOQ46Fr3Dxf8Huu5bOf3NFNiARtAzqlCpgpWdB48Vah/pn9sLbfgHp2fDQ5+FbDXD3R6D13sOd665+6aCOhfP+H7Q/BvsfkoiPGLnsB5fR+NZG1l6W5KcaChEn//fwfvIz0/inc9fEeykiwWSmGfnnixp5s8/J398cDPv2HaNeam2SP32cyi3Q8yIAJ777RN7/zPtRVZVfn/lr3vzjm0vceH4zEzO4XnuVjteNvOPud1B9ZrWeK179ViKHeizF8qdDjhmUaKoyYcwwYm+zR7Q5Z5dz/vxpe7vW1ZuWQrUknQYlgpZDDZBXmkd6dvrCV0yFAYkgQxKT3fvOrKWpJJ//vL+VienZea8zNjENIBnUEfi3t66nMDeDz935Or7Z+XPIvNN+Jmf8kkEtVpyl3rJwBzVo08Iv/hrc/0nwz//8AETcQR3wB/AOp1DEx7EUBcpP0YqlH3kGbnkKKk6FV34L314Hv78Wup5NrVMOV0qWSTsA0/eydFDHSHp2OjfedyPrr1sf76WIOFIU5deKogwrirL7iMv+XVGUPkVRXgv+ufyI731JUZR2RVH2K4pySXxWvfq92DHGE/uG+ci2NRTkLPKBVYgFXHNKBY0leXzrkf3M+JeOIwzxB1R6xiaplfzp45WeoBU7p1wAlJ9azi0v30LF5gr+9q6/8cjnHyGwjOjHEP+0nzve/mfyMoc5+1vvYe0lKXjAt3wj9O+K7X2MHdIG26Wa0qNzqA1Gg/bZsH2Rz4YLUFUVZ7eTgpr58qf3pU7+dIiOgxIL1xRSfEIx1sYlYn3sbWBLgeeIAhmSmNTSjQa+dvUG+hyT/OiJ+aMo7B6tQG1L5inBMVKQk87/XHsC+wbd/PDx+ffviNsHIAVqseIs9RYcXY7F3yyf+A7ILoQXfrrwdVz9YAq/iDoxMoEaUFOrg3ox5irY8iG46W/wmVbY+B6oPUsrYgv9bXibto9LT4z3SoRIZrcBl85z+XdVVT05+OfvAIqitAA3AOuDt/mJoijGFVtpglBVlW/+Yx/F+Zm8/4wULKoIXRgNCp+/pJmOUS9/fWX5p0v3OyaZ9geotUqB+jhpGVqMWN8rcxflFudy02M3sfljm3n+W8/zh8v/wOTY5JKbCvgD3P2euxl57jXUTAvrbtgcy5WvXuWnSIE6VkpPPH5QYkNhRB3UEyMTzE7NLlCg3p86+dMhhfpFfADccM8NXPWbqxa/kv1ganRQ5xSCf2buQGAykAL1MbbUFXLtxgp+8fQh2oc9x30/VKCWDurIXLCuhLefWslPnzrIG72O474/7JoCpEAtVp6l3oLqV3H2LDLJXVHgiu/C09+B8a75rxNhTrJ7QIuxSJkM6nBkmWD91fDW70dU/BfLoChw5Q+hqDHeKxEiaamqugNYbqDlVcCfVVX1qaraAbQDW2K2uAT1xL5hXu4a51MXNpCdIfV7EbkL1xWzsdrM9x47wNTM/Gd6HqvTrg39kwL1Aqq2QO9LR11kTDdy+Y8u562/fCtdT3Xxi82/YOjNheM1VVXl7x/7O3v+socLv1hLRvW6WK969Sqs1wpRnpHY3cfYIYn4CCpsKGSsfQw1EF42vaPLATB/BnUqdlBb6rRsc702V2/BUm9Z/EqjbWBNgQ5qRUm6QYlSoJ7Hly5bR3a6ka/ee/zARLtX6/CVDOrI/esVLRTlZfLZO46P+hjxSAe1iI/QC92iMR8A1jVw+sfg7587atrzHPdAREVUz4B2QEw6qIUQIuV8XFGUN4IRIKFPXRXAkedt9gYvE0H+gMo3/7GfOlsu12+qivdyRIJTFIUvXtrMkMvHbc91Lus2nfYJAOok4mN+lVug54V5v7Xx5o2876n3MTM5w69O/xWtf22d93qP/7/HeeXnr3Dmv5zJhguytPfhqcpggPKToT+GOdTjnalZoLauBdfA4bk3QOHaQmYnZ3H3uxe54fGcXVqz07wZ1CP7U69Aba7WGrhmp1fm/lQ1GPGRAh3UkHSDEpN8rGVkivIz+fwlTfzrvXu4/40BrjzpcDfk6FzEhxRQI1WQnc7/vO0E3v+bl/jeY2188dLDp7mEIj6K82UCu1hZRxWoL1jiymd8En5+DrTeA+uvOXx5IACeoYhykj2DwQJ1qmZQCyFEavop8DVADf79beADy72xoii3ALcAlJSUsH379hgscXV6tm+G/UPTfPSkTJ59ese81/F4PCm1T1ZaMu7fE4uM/ODRfVRNd5Obrix63Wf2+sgwQOurz7NPWfy6yWS5P/f06Vm2dD7Ps08+Acr8fXEbfriB1n9r5c7r7qT6XdXUvr8Wxajty+4/ddNxawdlby3DeLGR3tefYirLRm+SPeaOtdj+rfPbUJ/9G539+tciDP5pznIN8vSug6iGTt23v1ostH9PzSqn7R+34yrQuvTHJ7SmpSf++gTmk83L3n7PE9qx5Td73mSfY9/c5UpglrNHD/LMnn4C+yIbvpgI5tu/p6UX8sYjdzKZE/vj7OnTDrbM+nn2xTe1DuMk1zhhxPPS4/T369dAG8/XdilQL+Cdp9Vwx8u9/NcDrZzXVER+ljZ0xe7xkWZQMGXLrovGeU3FvGNTFT9/6iAXt5RwSrVWHBxxa/vXvNhUViFiIL8iH0O6YekOatBy9d76fbjzvVB/HmSbtcsnRiEzH9LCf9MoER9CCJF6VFWdO7ddUZRfAA8Ev+wDjmwLrgxeduztbwVuBdi0aZO6bdu2mK11NfHN+vnKt59iQ4WJz73jLAyG+T+Ebt++nVTZJ/GQjPu3uNHF5T94mj3+Mr5w0eJZsb/vfIn64knOP++cFVrd6hDWz33vv7FtfTkUL7wvL7jiAv7+8b+z65e7yHRkcu3t17Lnzj103NrB+nes59o/XIvBaIC+H8PmS1jbtMz7TlCL7t9iF+z6PbWx+L0b2Q97qjn3/KU6dRLbgvvXeQYby9Nhs/Y9R52DNz73BlW5VZy67dRlb/+hux+iN7+XC6+4EOXIAunIAdhdxTkXJPfM43n3b08Lp60tgsZt891EX13PQfc6tp13XuzvazVQXoIZL406PifE87VdIj4WYDQo/NfVGxjx+Pjuo21zl9s901jzMo5+shER+fIV6ygxZfG5O1+fy3obcfuw5WUu+EFDiFgxGA2Ya804DjmWd4Pq06DpMnj8Pw5f5uqPKH8atIiPLHMWaVly8EsIIVKFoihHnnJzDRAKwbwPuEFRlExFUeqABuDFlV7favXHF7rpHZ/kC5c0y3tGoauWchNXnVzOr5/tmJuNs5AOu1fyp5dSdRr0Lv7UlZaZxltvfStv+elbOPjwQX520s944MMPsPaytVzzu2u04jSAvR0KUzjiA6BiI/S9On/MYLRSNX86pPQEGDycQ22qNGHMMDLWttzRETAzMcPInhHMNebj60Uj+1JvQGJIYb2uOdSLsrenxoDEEHNyRXxIgXoRJ1WZuXFLNb99vpPWfm0ypt3rwyrxHrowZaXzjbedyMERL9999ACgZVBL/rSIF0u9ZXkd1CEX/Bvsfwi6g/l6EeZPgxbxIfnTQgiRvBRF+RPwPNCkKEqvoig3A99UFOVNRVHeAM4D/hlAVdU9wB1AK/AP4GOqqi5vcluS8/hm+dET7ZyxxsrZDbZ4L0ckoc9c1MisX+X7j7cteB1/QKVnbIJayZ9eXOXmBXOoj6QoCps+son3PPEeZn2zVJ9VzfV/vR5jaPjp7LTWCGKpje16VztThRaX4uxZ+rrhGutI7QJ1yQYYfHPuS4PRgGWNhbH2hQvUAX+Avpf6ePq/n+a35/2Wb1i+QcfjHRRvKD7+yqmYPx1iqdMOgKyE0bbUyqovqARHDJ4P4kRa9ZbwhUua+MfuQf713t3c+eHTGQl2UAt9nNNYxI1bqrn16UNcvL6EYZeP0gLJnxbxYam30P9S//JvkG2GS/8H7v8UfHhHsIO6NKL79gx4JH9aCCGSmKqqN85z8a8Wuf7Xga/HbkWJ6VdPd2D3TvOFS5vljEYREzXWXN55WjV/eKGbD55dP+8QxH7HJDN+lVprThxWmECqT4fnf6R1/C7j97Xm7Bo+3flpDOmGw53TAI4uMJVrMXupTFEOd1Gbq/Xd9tih1CrsHatkPQzvhYAfDNqBEWuD9bgO6rGDYxx67BCHHj1ExxMdTI1rZ1qUnFTClk9uYc1Fa6g5t+b47Y/sg4aLYv7fWJUK66HjqZW5L3s7nHTDytzXalBQmVQd1FKgXoI5J4N/uayZL/z1Df76ai92j496OVKuq/93eTM7DozwuTvfwDExzQkVBfFekkhRlnoLk2OTTDmmyDIv80BJy9Xw2p/guR/A7FTEER/uATdVp1ctfUUhhBAiRdk9Pm7dcZBL15dycpU53ssRSezj56/lzpd7+c6jB/jhjacc9/2OUS+AdFAvpWS99vfA61B+8rJuMm/cnb0drGv1W1ciK98I/btg/dX6bnfsUOoWUEFrPMq1ap3kNu2xZllr4eAjB2n9aysHHz3IoUcP4ehwAFoESPPVzdRfVE/9BfXkFi/xXDCyH07/WGz/D6tVYZ22X1fCaFtqRXyYKsAzBP5ZMCZ+eTfx/wcr4O0bK7njpR7+96F9eH2zWHNT/MitzvKDUR/v/pV2+lexSSI+RHxY6rVhneMd45SdssyoDkWBt3wLfn4uFLfAideFfb+qqmod1BLxIYQQQizox08eZHLGz+cuSdHTpMWKKc7P4uaz6vjRk+18+Jx6NhzTQNNl1wrU83VXiyMoCqy/Fvb8bdkF6nlJgfqw8lPg+R/qv91Uz6AGKDkBht6cK1BbG63MTs1y53V3kmnKpPa8Wk7/zOnUX1SPtdG6/LN4An7tMWxrjOHiVzFLLTi6j+pOjwn/jHY/qfQ4NqZDbhG4+/U/qyIOlp1BrSiKUVGUXYqiPBD8uk5RlBcURWlXFOUviqJkBC/PDH7dHvx+bYzWvmIMBoWvXb0B5+QMvtkA1jwpoOrtrAYb796q/UJJBrWIl7kCdTg51KC9GJz9Weh6JqIOap/Lx+zUrER8CCGEEAvoHZ/g9p1dXHdqFWuL5fVSxN4t59Zjzknnmw/vP+57HaMTZKcbKZbPLUvbcC3suTu6wX72g6kdP3Gkio3Q/zoEAvpt0z+jRRUmQYErKqVH51CfcOMJXPbDy/jAsx/gC/YvcMM9N7Dl41uwNdnCi5ga79SKiJkp+tqVng05VnD1xfZ+xru0uM30FIuMTaKYj3CGJH4K2HvE198Avquq6lpgHLg5ePnNwHjw8u8Gr5fw1pWZeN8ZtQCSQR0jX7psHTdtreG8pnmGCgixAsx1ZiCCAjXAaR+B9ddASUvYN/UMeACkg1oIIYRYwHcfbQMFPnVhCp26K+LKlJXOx7atZceBEZ47OHrU9zrtXmqsOZKDvhwlG8CYCX2vRL4Ne7sUqENybZBVAGMH9dumswfySiAtxQ+4lGyAwd1zX2aaMtny8S1UnVGFIS2c0tkxUnlAYkhhfewHJdrbwZaC7xHMValVoFYUpRJ4C/DL4NcKcD7w1+BVfgtcHfz3VcGvCX7/AiVJXrn/+aJG3ndGLec0FMV7KUkpNzONr129gapCGTYi4iOrIIvswuzICtTGNLjuNu0IZpjcA24A8svyw79fIYQQIsm1Dbn5265e3nt6DeXm7HgvR6SQm06voawgi2/+Yz/qER3AnXavxHssl6JoTRy7/xb5NuwHJeLjSBWnaIMS9TJ2SMsJTnWlJ8DQ7qWvF65RKVCvSA61vS01nycKKrVokySw3MNA3wO+AITOI7ECDlVVZ4Nf9wIVwX9XAD0Awe87g9dPeHmZafz7lespLUixUwaESCGWeguOQ44VvU/PoHRQCyGEEAu5/40BFOAj50oHpVhZWelG/vnCRl7rcfBI6xAAs/4APWMT1FilQL1soZiPSGIppr0wOQ6m8JtAklb5RujXs0DdkVq5vQsx18CUCybG9N3uyH4oatZ3m4mmsC72HdSjqVqgTp4O6iWHJCqKcgUwrKrqK4qibNPrjhVFuQW4BaCkpITt27frtemk4PF4ZJ/EkOzf1LScn/tM3gzje8ZX9PHR83QPAK+1v0b6UPqK3a/e5PcqtmT/xpbs38QnP8PktfOQnQ0VBTIHRsTFtRsr+PmOg/zfw/u5cF0J/Y4pZvwqdTY563PZitdpsRQ9L0DN6eHdduyQNmTNEEXEQrKp2AiPf02/7UmBWmMwQMl6LYe6/lz9tjuyDzbdvPT1kllhPbz516WvFw17u3YwLNUUVMGBh+O9Cl0sWaAGzgSuVBTlciALMAHfB8yKoqQFu6QrgVDieR9QBfQqipIGFAD2YzeqquqtwK0AmzZtUrdt2xblfyW5bN++HdknsSP7NzUt5+c++/Aszz/zPOecfQ4G48q8EX7kwUfoyuziwisuTOgsQ/m9ii3Zv7El+zfxyc8wOU3N+Hmtx8F7T6+J91JEikozGvj8JU185PZXuevVXkpM2tm0tdJBHZ4N18Kev4VfoJb86eOVnaxFUfhnwKhDc8vYofB/LsmqdIO2b/UqUAcCMHIAihr12V6istRpwyJjabQNrCmYQV1QqeXIJ4Elqy+qqn5JVdVKVVVrgRuAJ1RVfRfwJPD24NXeC9wb/Pd9wa8Jfv8JVY1mZK8QQqwcS72FwGwAV69rxe7TM+Ahvyw/oYvTQgghRCzs6nYwPRtga31SJAaKBHXJ+lJOqjLzvUcPcGBQmx1SKxnU4Vl/LbTeCwF/eLezt6fmafuLyTJpRamRffpsb+yQdFCHlJ5w1KDEqLl6tZ9XVoF+20xEoQzqWJUGp5xaHJCpPDbbX81CQxKToOwaTXvgF4HPKIrSjpYx/avg5b8CrMHLPwP8S3RLFEKIlWOptwBENigxQp5BD3mlkj8thBBCHGvnITuKAptqC+O9FJHCFEXhi5c20e+c4qdPHSQnw0hxvkTOhMW2FvKKoevZ8G4nAxLnV67ToMRAABxdWoyKgJITYOhN/bY3IgMSAa1An54FnuHYbN/eDtZ6bShrqskqAMUAU454ryRqYRWoVVXdrqrqFcF/H1JVdYuqqmtVVb1OVVVf8PKp4Ndrg9+PcRK6EELoJy4F6gGPDEgUQggh5vFCh5315SYKshN3RoNIDmessXF2g40x7zQ11lw58y0S64PDEsMhER/z02tQorsfsi2QIWcEAFpe+mgbzE7rs72RfTIgMaSwPnaDEkfbUzPeI6SgEhyJH/MhkwaEEOIIBVUFKEZlRQvU7gG3FKiFEEKIY0zN+Hm128HWOon3EKvDFy/VCk21KM4R5wABAABJREFUVhmQGJH110DrfeCfXf5tpIN6fhUb9emgHjuk5QMLTUaONnRu9IA+25MO6sMsdTDeEZtt29vAlsoF6mDMR4KTArUQQhzBkGbAXGPGccixIvc365tlanyK/LL8Fbk/IYQQIlG83qPlT58m+dNildhQUcB/X3MCHzxb8nojUlgH5mro3LG860+MQWAWcotiu65EVHqC1uk7MxXddiR/+nilJ2iDEvUwsl86qENi2kGdogMSQ5JkUKIUqIUQ4hiWesuKdVB7Bj0AkkEthBBCHGPnoTEUBbZI/rRYRd55WjWn1ljivYzEteFa2P235V3XflCL95A4leOlZ2u53oNR5iWPdWgHDsRhpRui36+gDa2TAvVhsSxQ2w9qvw+pylwlBWohhEhG5nrzyhWoB4IFaon4EEIIIY6y85CddaUmCnIkf1qIpLH+Gtj34PIyfu3tUCj50wvSI4daOqiPV3KCPgVq9yAY0yFHDrIC2oGQsRhEfAQCMHYwtZ8rJOJDCCGSk6XewsToBD6XL+b35R5wA0jEhxBCCHEE36yfV7vH2SrxHkIkl4JKLSv20Palrzsm+dOL0iOHWjqoj1e6QYv4UNXotiMDEo8Wqw5qVx9kmiDLpP+2E4UMSRRCiORkqddO2xzviH0XtUR8CCGEEMd7vceJbzbA1nrpPBMi6ay/FvYsI+bD3i4F6sVUbILu5yDgj+z2qipDEueTX6b97R6MbjsyIPFoOVbtsToxpu92U31AIkgHtRBCJKu5AvUKxHx4BjygQG5xbszvSwghhEgULxyya/nTdVKgFiLptFwF+/++9IA/e7uWQS3mV7Iecoth732R3d47AulZkG3WdVkJT1GgRIccaumgPpqiaN364zrHfIzKgSzyS2HCDrOxPwM8lqRALYQQx1jJArV7wE1ucS6GNHk6FkIIIUJ2dthpLjVhzsmI91KEEHozlWkFwIOPL3wdVQX7ISlQL0ZR4NwvwI5vaTm84ZL86YWVngBD0RaopYP6OLHIoZYOajAYtc5/V1+8VxIVqYgIIcQxsi3ZZJmzcHQ4Yn5f3kGv5E8LIYQQR5ieDfBK1zinSfe0EMlr/TWwe5GYD/cgZORAVsHKrSkRNVwMigEOPBT+bSXeY2ElG2Bwd3TbGN0vHdTHKqyPQYG6HawpXqAGMCd+zIcUqIUQYh6WesuKdVBL/rQQQghx2Bu9DqZmAjIgUYhk1nIVtD0K0xPzf1/yp5dHUeCcz8NT3wx/qJ90UC+s9ARtUGKkvKNa3nJesX5rSgaxGJQ4KlFAgDYoUQrUQgiRfCz1Fkb3jqJGO715CZ4BD3llUqAWQgghQnYesgNIB7UQySyvGMpPhrZH5v++5E8vX/MVWvZs+yKRKfMZ65AC9UJsjeDoXvgAylJG9mnxHoqi77oSnUXnDOqZSfAMgblGv20mqoIqcPTEexVRkQK1EELMo/b8WhydDoZ3D8fsPgL+AJ4hKVALIYQQR3qhY4zm0nwsuZI/LURS23At7Fkg5kM6qJfPYIBzPgc7wuyilg7qhaVlaLERw3sju32oQC2OpncHtf0gWGrBmKbfNhNVQSU4pUAthBBJZ92161AMCnvu2BOz+5i0T6L6VYn4EEIIIYKmZwO83Dku8R5CpIJ1V8LBJ8HnOf57Y4egUDqol239NTBhh44dy7/N2CFtaJ2YX+mGyAcljkj+9Lzyy2DKCdNefbYnAxIPK6iSArUQQiSjvJI8arfV0npHa8xiPtwDbgAZkiiEECJhHRzxcOfL+n0gerPPweSMX+I9hEgFOYVQtQUO/OP470kHdXgMRjj7s7Dj/5Z3/YkxUAOQIwcDF1R6QuSDEqWDen4Gg9bxrNegRHmeOEyGJAohRPJqub4F+wE7w2/GJubDM6B1i0jEhxBCJD9FUX6tKMqwoijHfdpVFOWziqKoiqLYgl8riqL8QFGUdkVR3lAUZePKr3h5/vRCN1/625sMu6Z02d7OQ2MAbJECtRCpYf21sOfuoy/zz8J4l3T3huuE67Tc5O6dS193vEPbv5KRvLCSDTD4RmS3lQ7qhemZQz0qBeo5pgqtQB3jGVqxJAVqIYRYQKxjPjyDWoFaOqiFECIl3AZceuyFiqJUARcD3UdcfBnQEPxzC/DTFVhfRN61tYbZgMqfX9Kni3rnITtNJflY8zJ12Z4QYpVrfosWSzHlOnyZsxvySiA9O37rSkTGdDjrn+Gpby59XRmQuLTyU8A9AH//gjaEcrkmx7XhiqaK2K0tkemZQy0RH4dl5mnPmd7ReK8kYlKgFkKIBeQW5VJ3fh177tgTk5gPe5sdQDKohRAiBaiqugMYm+db3wW+ABz5QnMV8DtVsxMwK4pStgLLDFudLZezG2z88YVuZv2BqLY14w/wStc4p9VL97QQKSPbDDVnwv6/H77MfhCsUjyNyMnv1Lp3e19Z/Hpjh7ROVrGwLBN8eAe4+uBXF2mPy+UYOQBFjdKdvpDCOn0K1Koa7KCWAvWcBM+hlgK1EEIsouX6Fsbaxhh6fUjX7Qb8Ad68/U3qL6onPSdd120LIYRIDIqiXAX0qar6+jHfqgCO/ITRG7xsVbppaw2Drike2xtdJNabfU4mpv0yIFGIVLPhWtj9t8Nf2w/KafuRSsuEMz8FT39r8euNHZIO6uXItsA7bodTbtKK1G/cufRtRvaBTfKnF1RYp08GtXdEy7TOlfcMcwoSO4c6Ld4LEEKI1WzdNet48J8eZM8deyg9uVS37R585CDObicXf/ti3bYphBAicSiKkgP8P7R4j0i3cQtaBAglJSVs375dn8WFyRhQKcxS+OFDu8gajfyU/AcOTQMw27+P7fb9Ua/L4/HEbZ+kAtm/qSkWP3fjbB6nH3qanY8+wGx6Hg0HnmIip5y+FHx86bF/Df4aTut4njce+A3evPm7pE/peI1Dygk4XdHdV6KJfP82kLfuK7Q89FWcz/2ZtoZbCBjnj6Ja0/4Y0xkWeuTxO6+syRFO7t/Lzij3T4FjD/XpxexKwf28kLUemHrlSXqHTRFvI56v7VKgFkKIReTYcuZiPs7/+vkoOp2q9eqtr5JbnEvTlXJ0XQghUtQaoA54PfjaUgm8qijKFqAPqDriupXBy46iquqtwK0AmzZtUrdt2xbjJS/sA7TxrUcOULV+E2uKIouu+s2hF2konuTKS87VZU3bt28nnvsk2cn+TU0x+7nbL+As6zhsvAK6vwenXUpDQwzuZ5XTbf9mf5bNvU/CFe+f//sv2Tnl/GvBtCrTo2Imuv27DS6+jpwHPkPZvq/CdbdB8brjr9bzA9jyLtY0RXo/iWtZ+9c/Ay9/km1nna51/EfqlS5QT5XXoSNlvAmuftZGsU/i+douER9CCLGE9devZ/zgOIO7BnXZnrvfzf7793Py+0/GmGHUZZtCCCESi6qqb6qqWqyqaq2qqrVoMR4bVVUdBO4D3qNotgJOVVUH4rnepVy/uYp0o8IfdnYvfeV5zPoDvNw5JvEeQqSq9dfAnmDMh/2gxE9Ea9MHoOs5GN53/Pd8bu1Pvn5nh6aMzHy49lY44xNw21vgld9qWchHGtkPRdKEtCBjujZA0hHZ+4U59jawSRTQUQoqJYNaCCGSWfM1zShGhT137NFle7t+swvVr7Lxgxt12Z4QQojVT1GUPwHPA02KovQqinLzIlf/O3AIaAd+AXx0BZYYleL8LC7dUMadr/QwMT0b9u1397vwTvtlQKIQqarxUuh9GZx94BkCc028V5TYMnLhtI/A098+/nvjnVoOsAzxi4yiwCnvhvf9HV74Gdx1M0y5tO/53DA5Bubq+K5xtdMjh1oGJB6voBocUqAWQoiklWPNof7CevbcsQf12CPkYVIDKq/+4lXqLqijcK18CBdCiFShquqNqqqWqaqarqpqpaqqvzrm+7Wqqo4G/62qqvoxVVXXqKp6gqqqL8dn1eG5aWsN7qlZ7n+9P+zb7jxkB+C0OumgFiIlZeTC2gvg2e9rxT2jpJFGbcstcPBxrSP9SDIgUR/FzfChJ7Su6lvPhf5dMHpAG/BpkLNkF1VYrz0Oo2FvA5sUqI9SUJnQQxKlQC2EEMuw/vr1ODocDLwa3RnWBx89iLPLyam3nKrTyoQQQojVYXOthaaSfH73fFfYB3R3HrKztjiPovwo8iiFEIlt/bXw6m+1Ap+IXpYJNn8InvnO0ZePHdI6WEX00rPhrd+H878Ct78NnvwfKGqO96pWP0tddAVq/4zWKSwHWo6WW6R18U9PxHslEZECtRBCLEPz1c0Y0gxRx3y8euur5BTl0Hy1vHERQgiRXBRF4d2n17Cn38VrPY5l307Lnx7ntDo5s0iIlNZwERjSwLom3itJHqd9GPY9CONdhy8bO6QVCIV+NrwNPviYFu9RITGOSyqsh/EoIj7Gu7QBn9EMWUxGBgMUVIDruLnaCUEK1EIIsQzZhdnUX1RP6x2tEcd8uAfc7L9vPye/T4YjCiGESE7XnFJBboaR3+/sWvrKQXv6XXh8szIgUYhUl54NJ1wHZSfHeyXJI6cQTn0fPPu9w5eNdUjnaSwU1muRH1v/Kd4rWf2ijfiwt8mZFgtJ4EGJUqAWQohlWn/9ehydDvpfDj9bE+C1214jMBuQ4YhCCCGSVl5mGtdurOSBNwYY804v6zYvdATzp2VAohDird+DE6+L9yqSy+kfh91/A1fwM4wUqEW8WWq0iI6AP7Lbj7bJgMSFFFQl7KBEKVALIcQyNV3VhCE9spiP0HDE2vNqsTZKh5gQQojk9e6tNUzPBrjz5eV9QNp5aIz6olyK87NivDIhhEhBuTY4+V3w7A9gZhK8I1qXpRDxkp6tPS4jHehnbwObdFDPq6AqYQclSoFaCCGWKduSzZqL1kQU89HxRAeODgcbPyTd00IIIZJbU2k+W+oKuf2FLgKBxV8v/QGVlzrGJN5DCCFi6cxPwut/gt6XwFwFBokbFHFmqYs8h3q0XTqoF1JQKQVqIYRIBS3Xt+DsdtL3YniDB1659RWyrdmsu2ZdjFYmhBBCrB43ba2hZ2ySp9pGFr1ea78Lt29WBiQKIUQs5Zdq+d4P/YvEe4jVobAu8hxqezvYpEA9L3OVZFALIUQqaL6qOeyYD8+Qh3137+Ok955EWlZaDFcnhBBCrA6XrC+lKD+T259ffFjizkNa/rR0UAshRIyd+SkYPSAFarE6FNZpeejhmnLCtBfyy/RfUzIokAK1EEKkhCxzFmsvWUvrna2oS5y2HPL6b18nMBvg1A+dGuPVCSGEEKtDRpqBGzdX8cT+YXrGJha83gsddupsuZSYJH9aCCFiylwFZ3wcqrfGeyVCaAdKIumgHm0H6xpQFP3XlAxMFdpA1EAg3isJmxSohRAiTC3Xt+DqcS0r5iM0HLHmnBpszbYVWJ0QQgixOtx4WjUGReGPL3bP+31/QOWFjjG21ku8hxBCrIgL/x3WXxPvVQihZVBH0kFtb5N4j8WkZ0GWGTxD8V5J2KRALYQQYWq6sgljhnFZMR+d2zsZax9j4y0yHFEIIURqKSvI5sJ1xfzlpR58s/7jvr93wIV7albiPYQQQohUY2uAGS/86UYY3rv82422yYDEpSTooEQpUAshRJiyCrJYe+nyYj5eufUVsixZtLytZYVWJ4QQQqweN22tZcw7zUNvDh73vVD+9Gl1UqAWQgghUkpGLnz0Bag5E267Au752PKKqjIgcWkFlQmZQy0FaiGEiEDLdS24el307lz4RdQ74mXv3/bKcEQhhBAp64w1Vuptufx+5/HDEnceGqPWmkNpgeRPCyGEECknPUvLRf/kq5BfCj87Cx75CkyMLXwbezCDWizMXC0FaiGESBVNVzZhzFw85uP1375OYEaGIwohhEhdBoPCu7bW8ErXOHv6nXOXBwIqL3WOSfe0EEIIkeqyCuCCf4WP7oRpL/xoEzz9HZg+ZshyIAD2g2BdG591JgqJ+BBCiNSRacpcNOZDVVVeufUVqs+qpqilKA4rFEIIIVaHt2+sJCvdwO07Dw9L3Dvowjk5w9Y1MiBRCCGEEGhd1Fd8Fz7wCAy8Dj88FV7+Dfhnte+7eiHbDJn5cV3mqldQBQ7poBZCiJSx/vr1uPvd9Dx3/JN/11NdjLXJcEQhhBCiICedq06q4J5dfbimZgAt3gMkf1oIIYQQx7Cthet/CzfcDrvvgp9shdb7YPSAdE8vh3RQCyFEaml8a+OCMR+v3PoKWeYsWt4uwxGFEEKIm06vYXLGz99e0T4wvXDITnVhDuXm7DivTAghhBCrUsWp8N774bL/hR3fhLs+KAMSl6OgSjKohRAilWTmZ9JweQOtfz065mNidIK9d+3lxPecSHp2ehxXKIQQQqwOGyoKOLnKzO93duEPqLzYOcbWeon3EEIIIcQiFAXWXgi37IC3fAc2vifeK1r9cgrBPw0+d7xXEpYlC9SKomQpivKioiivK4qyR1GU/whefpuiKB2KorwW/HNy8HJFUZQfKIrSrijKG4qiyPntQoiktf769XgGPHQ/ezhX8/XfvY5/2i/DEYUQQogj3LS1hoMjXn77XCeOiRmJ9xBCCCHE8hgMsOFaKD8l3itZ/RQlIWM+ltNB7QPOV1X1JOBk4FJFUbYGv/d5VVVPDv55LXjZZUBD8M8twE/1XbIQQqwejVc0kpaVNhfzERqOWHVGFcUbiuO8OiGEEGL1eMuJZZhz0vnmw/sAOE06qIUQQggh9JeMBWpV4wl+mR78oy5yk6uA3wVvtxMwK4pSFv1ShRBi9cnIy6Dh8gb2/nUvAX+A7qe7se+3y3BEIYQQ4hhZ6UbesamKqZkAVYXZVFpy4r0kIYQQQojkU1AFju6lr7eKpC3nSoqiGIFXgLXAj1VVfUFRlH8Cvq4oyleBx4F/UVXVB1QAR6Zx9wYvGzhmm7egdVhTUlLC9u3bo/yvJBePxyP7JIZk/6ammP3c14Pnbx7u++F9DDw4gDHXiL3EnnKPMfm9ii3Zv7El+zfxyc8wMbzztGpuffqQxHsIIYQQQsRKQVXCdVAvq0CtqqofOFlRFDNwt6IoG4AvAYNABnAr8EXgP5d7x6qq3hq8HZs2bVK3bdsW1sKT3fbt25F9Ejuyf1NTrH7u05umaftWG7M7Z7E/bWfjhzZywaUX6H4/q538XsWW7N/Ykv2b+ORnmBhqrLn87N2n0lJmivdShBBCCCGSU0ElHHwi3qsIy3IyqOeoquoAngQuVVV1IBjj4QN+A2wJXq0PqDriZpXBy4QQIill5GXQ+JZG9vxlD36fn1NvkeGIQgghxEIuWV9KVaHEewghhBBCxIS5Cpw9S19vFVmyQK0oSlGwcxpFUbKBi4B9oVxpRVEU4Gpgd/Am9wHvUTRbAaeqqgPHbVgIIZJIy/UtAFRuraTkhJI4r0YIIYQQQgghhBApKRmHJAJlwJOKorwBvAQ8qqrqA8AfFEV5E3gTsAH/Fbz+34FDQDvwC+Cjuq9aCCFWmYbLGyg9pZQz/+XMeC9FCCHEKqQoyq8VRRlWFGX3EZd9TVGUNxRFeU1RlEcURSkPXq4oivIDRVHag9+XybtCCCGEEGJ5TBVQdhKoarxXsmxLZlCrqvoGcMo8l5+/wPVV4GPRL00IIRJHRm4GH371w/FehhBCiNXrNuBHwO+OuOz/VFX9VwBFUT4JfBX4CHAZ0BD8cxrw0+DfQgghhBBCLM6YDjf8Id6rCEtYGdRCCCGEEEKI8KmqugMYO+Yy1xFf5gKhNpergN8F573sBMyheD0hhBBCCCGSzZId1EIIIYQQQojYUBTl68B7ACdwXvDiCuDIyTa9wcsGjrntLcAtACUlJWzfvj3Wy00oHo9H9kkMyf5NTfJzjy3Zv7El+ze2ZP8mvnj+DKVALYQQQgghRJyoqvpl4MuKonwJ+Djwb2Hc9lbgVoBNmzap27Zti8kaE9X27duRfRI7sn9Tk/zcY0v2b2zJ/o0t2b+JL54/Q4n4EEIIIYQQIv7+ALwt+O8+oOqI71UGLxNCCCGEECLpSIFaCCGEEEKIOFAUpeGIL68C9gX/fR/wHkWzFXCqqjpw3AaEEEIIIYRIAhLxIYQQQgghRIwpivInYBtgUxSlFy3K43JFUZqAANAFfCR49b8DlwPtwATw/hVfsBBCCCGEECtECtRCCCGEEELEmKqqN85z8a8WuK4KfCy2KxJCCCGEEGJ1kIgPIYQQQgghhBBCCCGEEHEhBWohhBBCCCGEEEIIIYQQcSEFaiGEEEKI/8/efYdHVWYPHP++k95IQhJCEjqhI70XKYKAiKio2PuqW1z7qrvuT3fX3XV1V3ftvTcQFEWkSAeRLiC995beZiZl5v39cRMMkDKZzM2UnM/z8AAzd+68OXcy8865555XCCGEEEIIIYRXSIJaCCGEEEIIIYQQQgghhFcoYw0WLw9CqQyMlcvFLxKBTG8PIoBJfBsnOe7mkviaS+JrLomv//PUMWyttU7ywH4alMynqyS/1+aS+DZOctzNJfE1l8TXXBJf/+e1+bRPJKjF+ZRS67XW/bw9jkAl8W2c5LibS+JrLomvuSS+/k+OoTiXvCbMJfFtnOS4m0viay6Jr7kkvv7Pm8dQWnwIIYQQQgghhBBCCCGE8ApJUAshhBBCCCGEEEIIIYTwCklQ+643vT2AACfxbZzkuJtL4msuia+5JL7+T46hOJe8Jswl8W2c5LibS+JrLomvuSS+/s9rx1B6UAshhBBCCCGEEEIIIYTwCqmgFkIIIYQQQgghhBBCCOEVkqAWQgghhBBCCCGEEEII4RWSoBbCTUop5e0xCBFo5PdK+DN5/QohRN3I+6YQnie/V8Kfyeu38ZIEdYBRSg1SSo339jgClVIqUSkVC6C11kop+R1qBJRSId4eQyBTSrVXSvWDM79XMinxIKXUCKXUjd4eR6BSSqUqpVqCvH79lbzHi3PJfNpcMp9unOS91lwynzaXzKfNJfNp/+eJ93iZDAQQpdQ44DUg85zb5ZfbA5RSE4DvgLeUUjMAtNZO745KmE0pNRZ4VCnV1ttjCURKqYnAbOA5pdRqkEmJJ5V/LrwAHDjndomvByilLsH4XHhbKbUE5PXrb+Q9XpxL5tPmkvl04yTvteaS+bS5ZD5tLplP+z9PvcdLgjpAKKVGAp8At2ut1yulIit+oeWXu/6UUqMwPpT+BPwKiFZKPebdUQmzKaUGYnxY9gWmyKTas5RS3YCngRu11qOA00qpdmC8b3l1cAFAKXUhMBO4RWv9g1IqRikVDRJfTyiP7/PA77TW44BipdRLIPH1F/IeL84l82lzyXy6cZL3WnPJfNpcMp82l8yn/Z8n3+MlQR0AyifLicB+IKT8DfND4EOl1FdKqXCZVLtHGcKArsDjWuvvtdZ5wDtAjHdHJxqABm4G/gukAddUfsOV36l6KwR+AjKUUgnAUODvSql55ZNtiXH92IGTQFulVAQwDfhAKfWdUqoLSHzdpZQKBpKBJ7TWK8tv/jMQ5L1RCTfIe7w4Q+bT5pH5dKMn77Xmkvm0uWQ+bRKZTwcMj73HS4I6AJSfWZqLceb0n8BB4AfgCcAJfFVpO1EH2lAMzADWVvrlOgkM8t7IREPQWq8FZmmtlwHfYnyAXiuVHx5ThPEe9Q+M96xntNbXAdsxKqzkfaseyl+/12J8NpwG5mBMHnYB/yvfRuLrBq11Gcbn7spKN1uBfkqpUJBem/5A3uNFZTKfNo/Mpxs3ea81ncynTSTzafPIfDowePI9PtjTgxMNRynVWmt9CEBrXaSUWgREAAla61fLt5kKzFRKNdFa53txuH5HKTUUY9K8C/hJa32s0t02ILp8uzuBVlrr/2v4UQpPU0pdDIwDdgAbtdYbAbTWi5SxiM8EYKxSqjXQFPi11wbrh8rjezGwE1gG/BZog5EA+BpAa/2gUmqBUqqD1nqPt8bqj5RSnYBTWutcgPJL1O8C+mutXynf7IHyqo9UrfVxb43VH5Vf/j8GOAKs0FpvL789CONzIUhrXaKUuh3orpR6SL60+BZ5jxfnkvm0uWQ+3TjJe625ZD5tLplPm0vm0/7PrPd4qaD2U0qpy4ADSqk/V9ymtS4CZgFvVNr0eiABo+xeuEgpdSlGHFsAk4E7lFLhlSo+9gOblVJXA3dhVIQIP6eMHlgvA0eBZsCM8tcCAFrr74G3gZswzpy/5Y1x+qtK8T2GcWZ1PnCx1noXsBfoq5RKVEpdUX5/jtcG64fKX6s7gMeUUokVt2utV2PEvWK76zAuY7c1+CD9WHl8XwRKgLbAw0qpJACttQOj2nJzeZLlHuADmUz7FnmPF+eS+bS5ZD7dOMl7rblkPm0umU+bS+bT/s/M93ipoPZDSqlmwBSMBUauUkqVaa3/CVB++RzlZy1uAP4ATNVaF3hrvP5GKdUBeApjgZy1SqmLgMeAl7XW9orNgDuBYcAUrfUOrwxWeFobYLbW+gUApdTPwEdKqRu11nPKt+kE9ME4g77dO8P0W204O75bMHp7Xo5xudzTGO9trTEWesn00jj9jlIqFqMS4Y9Ab+BepdSLWussOLO4VxBGkuUx4BqttXxhcZFSqhVwH3CP1nqVUqozxus1Csgo3ywcmApcCFyqtd7plcGKmrRB3uNFOZlPm0vm041aG+S91kxtkPm0KWQ+bS6ZTweMNpj0Hi8V1P4pA3ijfBJ9LXCTUurxc7ZpglGtcLXWeltDD9DPHcBo8L4FjMsUMHp79ay0TTEwHbhcJtMBJQPjEhQAtNazMc78Pa+U6lV+8y6gn0ym3VJVfG8B3sToQ3kr8DAwWWv9szcG6K90+WJTWutngEeAfhiT6qRKm4WU/5kinwt1dgx4DWMRIsony6XA8IoNtNZW4FVgokymfZa8x4vKZD5tLplPN17yXmsumU+bRObTppP5dGAw7T1eSbW8f1FKqXMvcSivUPga+Fhr/Q+l1BiMRRFOaq2d3hinv1JKWSrHTCkVpLV2KKW+BN7TWs9WSg3AiG9ZpQoQEQCUsRjDQmC71vqeSrf/pfy2aV4bXACoIb5/A7ZKfD2nvELhNWC91vrJ8ss8t2mtd3t5aH7n3M/dSp8Lr2DE9z2l1GiMz4VMbSz4InyQvMeLCjKfNpfMpxs3ea81l8ynG47Mpz1H5tOBw8z3eKmg9jNVTKaDtbHowWRgilJqPkZPnxCZTNddFTGr+B05ApxQSk0C/gXEyGQ6sJR/mSrBaPZ/oVLqjUo9EiOAbt4bnf+rJb5hSHw9pvxz4TDGYhSdlFILMVZxlzPSbjj3cxfjknSAwxifCxOBvwOhMpn2XfIeLyqT+bS5ZD7deMl7rblkPt1wZD7tWTKfDgxmv8dLD2o/U1GRUHEGquKXV2u9Ryn1LcYKviN1+Wrkom6qiG9p+V1ZGM3dS4A7tdYnvDdKYYby4x6mtbYppfoAM4H3lVIaGIDRy024SeJrvio+Fw4rpbZh9HoboWUF93o5N74Yl6a/DRzH6LF62HujEzUpP3byHiTOkPm0uWQ+3XjJe625JL7mk/m0uWQ+7b8aYj4tCWofp4wFRQZgrGb6Q/kbZKjWukQp1Q/oqbV+RymVDnQGLtJab/XikP2KC/HtrbV+C6MHYVegq9Z6n/dGLDxBKdUGOKW1tlW6TWmti5VSI4AOwGXAEKA58HeZjLhO4muuGuKrlVJDgOFa638ppZoDqcAYLT3yXOZCfC/URm/CUowehNdrrfd6Z7SiKkqp4UB/4BSwRGt9vPxSUnkPaqRkPm0umU83TjLfM5fE11wynzaXzKf9nzfm09Liw4cpowfPqxi/sL2BBUqpC8one8OBdzAmggD7gF9prTd7ZbB+qI7x/RNwgUym/Z9S6jJgP/BrpVRMxe3lH5Z9gOeBDK21Q2u9Qmv9hUz2XCfxNZcL8X0J2Fp+20ngQa31Jm+M1R/VJb4YVYCDZDLtW5RSlwIvY0yUBwN/UkpFa6PPobwHNUIynzaXzKcbJ5nvmUviay6ZT5tL5tP+z1vzaVkk0YcppR4E4rTW/1f+/3uBPwMjgBQgShuLjARprR1eHKpfqkN8Q/QvlyYKP6aUSgCeBTKBLsD3GIv1FJbffylQpLVeUnGG13uj9T8SX3PVMb5nLVAlalfH+Mrngg9SSrUH3sf4IrmufAL9B+C3WusseQ9qnGQ+bS6ZTzc+Mt8zl8TXXDKfNpfMp/2fN+fT0uLDB1U6yEeA1hW3a61fUkb/8U+B8VrrU+XbymS6DtyIr7xpBo584DWt9fryS06fBbRS6iOtdZ7W+ls4syiGLM5QdxJfc0l8zVWX+Mrngm86DbwObADQWm9USjXBuPRwdqVjKInIRkDm0+aS+XSjJvMRc0l8zSXxNZfMp/2f1+bT0uLDB1U6A7EcGK2UehzOTARfApYB/c7ZVrhI4tt4lX8Ibiz/93rgUeBK4GYApdQEpVSKTEbcI/E1l8TXXBJf/6e1LgCmaWMBl4oijAygDEApNUwplSiJyMZB5nvmkvg2XvJ5aS6Jr7kkvuaS+Po/b86nJUHtQ8p/WV+s+L/W+hQwGbhXKfV4pcldMNDeG2P0ZxLfxunc4w6o8tstWut1GB+aY5VSXwKvABFeGKbfkviaS+JrLomv/6viGOpz/j4JZCulLgf+CYQ14PCEF8h8z1wS38ZJPi/NJfE1l8TXXBJf/+cr82npQe0jlLGS6QzgOLBTa31jpfvald+3CmOydyFwpdZ6pzfG6o8kvo1Tdce94nKUistTlVLPAzcCo7XWW2vYpahE4msuia+5JL7+r4ZjeKZnpFLqL8BVgBW4TY5hYJP5nrkkvo2TfF6aS+JrLomvuSS+/s+X5tNSQe07ooCngKFAmFLq04o7tNb7gfHAbGALcIVM9upM4ts4VXncyz8sg8o/LNOANOBi+bCsM4mvuSS+5pL4+r/qjqFTKRVSvk0JkABcJ8ewUZD5nrkkvo2TfF6aS+JrLomvuSS+/s9n5tNSQe1DlFJNtNb5SqmmGE3JHVrr6yrf590R+jeJb+NUy3FvqrXOVkpFaa2LvDtS/yTxNZfE11wSX/9XyzEMx5h0x2ut93pznKLhyHzPXBLfxkk+L80l8TWXxNdcEl//5yvzaUlQ+yilVCLwGpAFrAY6An/VWtu9OrAAIfFtnKo47p2AJ7XWJV4dWICQ+JpL4msuia//q+IYdgH+qGVRxEZL5nvmkvg2TvJ5aS6Jr7kkvuaS+Po/b86nJUHtRRX9eGrZZhfQDBihtd7SMCMLDBLfxkmOu7kkvuaS+JpL4uv/5BiKc8lrwlwS38ZJjru5JL7mkviaS+Lr/3z1GEoPai9QSjVVSkVWfkEopYLL/05RSsWU//tyIAQYJr/UrpP4Nk5y3M0l8TWXxNdcEl//J8dQnEteE+aS+DZOctzNJfE1l8TXXBJf/+frx1AS1A1MKTUZ+AD4WCl1k1KqH4DWukwpNQp4BUgs37wEmKC13uad0fofiW/jJMfdXBJfc0l8zSXx9X9yDMW55DVhLolv4yTH3VwSX3NJfM0l8fV//nAMpcVHA1JKdQRmAlMxDvwkoAXwKkZvlxXAc1rrmV4bpB+T+DZOctzNJfE1l8TXXBJf/yfHUJxLXhPmkvg2TnLczSXxNZfE11wSX//nL8cw2JtP3gglAke11tsBlFLxwG+Aa4AMYLLW+pRSSgHU1hNGnEfi2zjJcTeXxNdcEl9zSXz9nxxDcS55TZhL4ts4yXE3l8TXXBJfc0l8/Z9fHENp8dGwtgL5Sqknyv/fG9gN2IE2WutTYLwY5JfaLRLfxkmOu7kkvuaS+JpL4uv/5BiKc8lrwlwS38ZJjru5JL7mkviaS+Lr//ziGEqLD5MppVoABVrrPGU0Hx8F/Bbj5IDWWk9WSl0HjAdulV/oupH4Nk5y3M0l8TWXxNdcEl//J8dQnEteE+aS+DZOctzNJfE1l8TXXBJf/+ePx1BafJhIGStfPgO8qZT6SGudAXyvlFoENMMopQeIAXJ94QXhTyS+jZMcd3NJfM0l8TWXxNf/yTEU55LXhLkkvo2THHdzSXzNJfE1l8TX//nrMZQKapMopZKAz4HDwFHgNPB5+Quj8nb3A7cBN2qtf27ocforiW/jJMfdXBJfc0l8zSXx9X9yDMW55DVhLolv4yTH3VwSX3NJfM0l8fV//nwMpQe1efKA+4F7gE1AOnCtUqoZgFJG83EgCLjBV14QfkTi2zjJcTeXxNdcEl9zSXz9nxxDcS55TZhL4ts4yXE3l8TXXBJfc0l8/Z/fHkOpoPYwpVQr4CQQrLW2Vrp9CjAC2KO1fkkp1UdrvdFb4/RXEt/GSY67uSS+5pL4mkvi6//kGIpzyWvCXBLfxkmOu7kkvuaS+JpL4uv/AuEYSgW1BymlJgLfAS8D7ymlOlfcp7WeCSwDkpRSs4BlSqk0rwzUT0l8Gyc57uaS+JpL4msuia//k2MoziWvCXNJfBsnOe7mkviaS+JrLomv/wuYY6i1lj/1/AMooCXwMzASSAYeBk4A3c7Z9mPgIHCBt8ftL38kvo3zjxx3ia8//5H4SnzljxxD+SOvCV/6I/FtnH/kuEt8/fmPxFfiK38a1zEMRtSb1lorpY4DPwJ7gNNa638rpUqBBUqpUVrr3UqpFKAPcLn2oT4vvk7i2zjJcTeXxNdcEl9zSXz9nxxDcS55TZhL4ts4yXE3l8TXXBJfc0l8/V+gHUPpQV1PSql0IB7YD7wKbNBaP1vp/j8AXYFfa61tSqlorXWhd0brfyS+jZMcd3NJfM0l8TWXxNf/yTEU55LXhLkkvo2THHdzSXzNJfE1l8TX/wXiMZQK6npQSl0K/APIwSip/wR4USkVpLX+Z/lm04HHATuAr78gfInEt3GS424uia+5JL7mkvj6PzmG4lzymjCXxLdxkuNuLomvuSS+5pL4+r9APYaSoHaTUmoI8Bxwvdb6J6XUm8AAYAiwWikVBHwODAP6AnEYLx7hAolv4yTH3VwSX3NJfM0l8fV/cgzFueQ1YS6Jb+Mkx91cEl9zSXzNJfH1f4F8DKXFh5vKXxQdtdbvl/8/CXhfaz1RKdUOeALjTMVA4FZf7vPiiyS+jZMcd3NJfM0l8TWXxNf/yTEU55LXhLkkvo2THHdzSXzNJfE1l8TX/wXyMZQEtZvKz0pEaa3zy/+dAswGLtFan1BKtQaOlW+T582x+iOJb+Mkx91cEl9zSXzNJfH1f3IMxbnkNWEuiW/jJMfdXBJfc0l8zSXx9X+BfAwt3h6Av9JaO7TW+eX/VUAukF3+grgR+CMQ4m8vCF8h8W2c5LibS+JrLomvuSS+/k+OoTiXvCbMJfFtnOS4m0viay6Jr7kkvv4vkI+hVFB7kFLqfeAEcDF+VkrvDyS+jZMcd3NJfM0l8TWXxNf/yTEU55LXhLkkvo2THHdzSXzNJfE1l8TX/wXKMZQEtQcopRQQAuwo//sirfUe744qcEh8Gyc57uaS+JpL4msuia//k2MoziWvCXNJfBsnOe7mkviaS+JrLomv/wu0YygJag9SSt0KrNNab/P2WAKRxLdxkuNuLomvuSS+5pL4+j85huJc8powl8S3cZLjbi6Jr7kkvuaS+Pq/QDmGkqD2IKWU0hJQ00h8Gyc57uaS+JpL4msuia//k2MoziWvCXNJfBsnOe7mkviaS+JrLomv/wuUYygJaiGEEEIIIYQQQgghhBBeYfH2AIQQQgghhBBCCCGEEEI0TpKgFkIIIYQQQgghhBBCCOEVkqAWQgghhBBCCCGEEEII4RWSoBZCCCGEEEIIIYQQQgjhFZKgFkIIIYQQQgghhBBCCOEVkqAWQgghhBBCCCGEEEII4RWSoBZCCCGEEEIIIYQQQgjhFZKgFkIIUWdKKa2USvf2OIQQQgghhAgESqmlSqk7vT0OIYTwBklQCyGEAGRSLIQQQgghRH3IfFoIIdwjCWohhBBCCCGEEEIIIYQQXiEJaiGE8CCl1KNKqWNKqQKl1C6l1EVKKYtS6jGl1D6lVJZSarpSqmmlx9yslDpUft+flVIHlVJjyu97Sin1hVLq4/J9/qyU6qiUelwpdVopdUQpdXGlfcUqpd5RSp0oH8fTSqmg8vtuVUqtVEr9WymVo5Q6oJSaUH7f34HhwMtKqUKl1Msu/LiXKKX2K6UylVLPKaXkM0UIIYQQQtRLY5lPK6XGKqV2KqXyyrdVJoRTCCH8giQThBDCQ5RSnYDfAf211jHAOOAgcC9wOTACSAVygFfKH9MVeBW4AUgBYoG0c3Y9CfgIiAd+AuZjvH+nAX8F3qi07ftAGZAO9AYuBipfZjgQ2AUkAs8C7yillNb6T8AK4Hda62it9e9c+JGvAPoBfYDJwO0uPEYIIYQQQogqNZb5tFIqEfgSeKJ8P/uAobUGSAghApQkqIUQwnMcQBjQVSkVorU+qLXeB9wD/ElrfVRrXQw8BVyllAoGrgJma61Xaq1LgP8D9Dn7XaG1nq+1LgO+AJKAZ7TWpcDnQBulVJxSKhm4BLhfa12ktT4NvABcW2lfh7TWb2mtHcAHGJP4ZDd/3n9prbO11oeB/wLXubkfIYQQQgghoPHMpy8BtmmtZ5SP4b/AyTruQwghAkawtwcghBCBQmu9Vyl1P8aEuZtSaj7wINAa+Eop5ay0uQNjIpsKHKm0D6tSKuucXZ+q9G8bkFk+Ia74P0B0+b5CgBNKnblC0FJ5/1Sa+JY/V8Vj3VF5v4fKn18IIYQQQgi3NKL59Llj1kqpIzVsL4QQAU0qqIUQwoO01p9qrYdhTKI18C+MyecErXVcpT/hWutjwAmgRcXjlVIRQIKbT38EKAYSKz1PE611N1eHX8fna1np362A43V8vBBCCCGEEGdpJPPpE1SaSysjy92y+s2FECKwSYJaCCE8RCnVSSk1WikVBtgxqjGcwOvA35VSrcu3S1JKTS5/2AxgklJqiFIqFKNaxK0FUrTWJ4AFwH+UUk3KF5Npr5Qa4eIuTgHt6vCUjyil4pVSLYH7gGl1HLIQQgghhBBnNKL59ByMCvEry9uU/B5o7s6YhRAiEEiCWgghPCcMeAbIxLj0rxnwOPA/4BtggVKqAFiNsbgKWuttGIu+fI5RSVEInMao3HDHzUAosB1j8ZgZGH3xXPE/jF5+OUqpF13Y/mtgA7AJY5L9Tp1HK4QQQgghxC8axXxaa50JXI3xs2YBHYAf3ByvEEL4PaV1Xa/oFkIIYRalVDSQC3TQWh/w8nCEEEIIIYTwKzKfFkII/yMV1EII4WVKqUlKqUilVBTwb+Bn4KB3RyWEEEIIIYR/kPm0EEL4N0lQCyGE903GWGDwOMblfddqL1/eopQarpQqrOqPN8clhBBCCCFEFWQ+LYQQfkxafAghhBBCCCGEEEIIIYTwCqmgFkIIIYQQQgghhBBCCOEVwd4eAEBiYqJu06aNt4fhU4qKioiKivL2MAKWxLdxkuNuLomvuSS+5pL4+j9PHcMNGzZkaq2TPDCkBiXz6fPJ77W5JL6Nkxx3c0l8zSXxNZfE1/95cz7tEwnqNm3asH79em8Pw6csXbqUkSNHensYAUvi2zjJcTeXxNdcEl9zSXz9n6eOoVLqUP1H0/BkPn0++b02l8S3cZLjbi6Jr7kkvuaS+Po/b86npcWHEEIIIYQQQgghhBBCCK+QBLUQQgghhBBCCCGEEEIIr5AEtRBCCCGEEEIIIYQQQgiv8Ike1FUpLS3l6NGj2O12bw/FK2JjY9mxY4fL24eHh9OiRQtCQkJMHJUQQgghhPAXMp+W+bQQQgghhD/w2QT10aNHiYmJoU2bNiilvD2cBldQUEBMTIxL22qtycrK4ujRo7Rt29bkkQkhhBBCCH8g82mZTwshhBBC+AOfbfFht9tJSEholJPpulJKkZCQ0GirY4QQQgghxPlkPu06mU8LIYQQQniPzyaoAZlM14HESgghhBBCnEvmiK6TWAkhhBBCeIdPJ6iFEEIIIYQQQgghhBBCBC5JUFcjNzeXV199tc6Pu+SSS8jNzfX8gIQQQgghhPAzMqcWQgghhBC1kQR1NaqbTJeVldX4uO+++464uDiTRiWEEEIIIYT/kDm1EEIIIYSoTbC3B+CrHnvsMfbt20evXr0ICQkhPDyc+Ph4du7cye7du7n88ss5cuQIdrud++67j7vuuguANm3asH79egoLC5kwYQLDhg1j1apVpKWl8fXXXxMREeHln0wIIYSov6KMInbO2kmfO/qgLNK3VQhRNZlTCyFE4+Ysc1KcX0xxfjH2PPuZf5/5k1dMqa2Uvnf1JSYlxtvDFUJ4iV8kqP8yexvbj+d7dJ9dU5vw5KRu1d7/zDPPsHXrVjZt2sTSpUuZOHEiW7dupW3btgC8++67NG3aFJvNRv/+/ZkyZQoJCQln7WPPnj189tlnvPXWW1xzzTXMnDmTG2+80aM/hxBCCOENWz/fyrzfz0M7NP3u6eft4QghauGN+TTInFoIIRqbda+tY81/15xJSJfZar5ipkLm9kyumnaVyaMTQvgqv0hQ+4IBAwacmUgDvPjii3z11VcAHDlyhD179pw3mW7bti29evUCoG/fvhw8eLChhiuEEMIdO7+D+NaQXHPCRYA1wwrAwkcX0nFSR5qkNfHyiIQQ/kDm1EIIEdjWv7oeR4mDjpd1JKxJGGFNwgiPDT/z7zN/Yn/59w/P/sDyvy5n0IODaDGwhbd/BCGEF/hFgrq2yoyGEBUVdebfS5cuZeHChfz4449ERkYycuRI7Hb7eY8JCws78++goCBsNluDjFUIIYSbFv0F4lrBDV94eyQ+z5ZtIzg8GEeJg7n3zmXql1O9PSQhRA18YT4NMqcWQohAZsu2cXrraUY9PYoL/3Shy48b8vAQNry+gYV/WMgtS29BKWkfJ0RjI4skViMmJoaCgoIq78vLyyM+Pp7IyEh27tzJ6tWrG3h0QgghPC77AFiz4PgmyNjt7dH4PFuWjSYtmjDiqRHs/GonO77c4e0hCSF8kMyphRCi8Tiy6ggArYe3rtPjwmLCGPHUCA4tP8SeOXvMGJoQwsdJgroaCQkJDB06lO7du/PII4+cdd/48eMpKyujS5cuPPbYYwwaNMhLoxRCCOExu+dBx3HQ7zZY85q3R+PzrFlWIhIiGPzgYJJ7JvPd777Dnnt+5aMQonGTObUQQjQeh1YcwhJiIbV/ap0f2+fOPiR0TGDhowtxljlNGJ0Qwpf5RYsPb/n000+rvD0sLIy5c+dWeV9FT7zExES2bt165vaHH37Y4+MTQgjhQbvmsmZtLyxtetLf8RsY/WeIbOrtUfksW7aN6ORogkKCuOzty3h74NssfGwhl75+qbeHJoTwMTKnFkKIxuHIyiOk9U8jJCKkzo8NCgnion9exPQp09n0wSb63NHHhBEKIXyVVFALIYQQ9jz00Q0sesvJ/Cd+orjFWNjwnrdH5dNsWTYimkYAkNovlYH3DWTDGxs4tOKQl0cmhBBCCCEaWqmtlGPrjtFyWEu399H5is60GNyCpf+3lFJrqQdHJ4TwdZKgFkIIIfYuIsfRmdLSEJRFsWJhN1j7Njg8PzHWTo3W2uP7bWgVLT4qjPrbKOLaxPHtXd9SVlzmxZEJIYQQQoiGdmztMZylzjr3n65MKcXYZ8dScLyA1f+VdQmEaEwkQS2EEELsnsfWjS1oMbgFgx8ezA8f5GMPaQHbZnn0abTWfHbZZzyf+jzL/74ca5bVo/tvKI4SByUFJWclqEOjQpn4+kQyd2ay4h8rvDg6IYQQQgjR0A6vPAxAy6HuV1ADtBrWik6TO7HymZUUZRR5YmhCCD8gCWohhBCNm6MM584FbFiSRPdruzP0D0OJSo5ixeIL0KtfAQ9WO2/+cDN75uwhqlkUS55YwgstX2DOb+aQtSfLY8/REGw5NoAzLT4qpI9L54IbLmDlP1dyettpbwxNCCGEEEJ4weEVh2nWvRkR8RG1b1yLMc+ModRayvKnl3tgZEIIfyAJaiGEEI3b0bUUlcSRXxBD16u7EhYTxqi/jmLV100oycyEw565vLDodBELHlxAq2GtuPunu/n1z7+m+3Xd+emdn3i508t8fvnnHFpxyC/af9iyjAR1ZELkefeNe2EcYU3C+Paub9FO3/9ZhBBCCCFE/TgdTo6sOkKr4a08sr/Ezon0ubMP619dT/bebI/sUwjh2yRBLYQQolHTu+ayY2sb2oxsQ0xKDAC9b+9NUrdm/LiyJ3rVyx55nvkPzKeksIRL37wUZVE0696Mye9M5v5D9zP8T8M5vPIw71/4Pm8PeJutn2/FWeb0yPOaoaI1SeUWHxWikqIY9/w4jqw6wvrX1zf00ITwWUqp+5RSW5VS25RS95ff9pRS6phSalP5n0sqbf+4UmqvUmqXUmqc1wYuhBBC1OLUllOUFJTQaphnEtQAI54cQVBoEIv/tNhj+xRC+C5JUFcjNzeXV1991a3H/ve//8Vq9c++okII0dg4tnzL5h9T6H5t9zO3WYItXPzvi1m1sA1lu5dDzsF6PceeuXv4+dOfGfbHYSR1STrrvujm0Yz+22geOPwAE1+biD3PzszrZvJi+xf58fkfsefZ6/XcZqipghqgx009aDe2HQsfW0j+0fyGHJoQPkkp1R34FTAA6AlcqpRKL7/7Ba11r/I/35Vv3xW4FugGjAdeVUoFeWHo9SZzaiGECHyHVxj9pz1VQQ0QkxLD4IcHs236No6tPeax/QohfJMkqKshk2khhGgEsvbhKMjmxKnmdLmyy1l3pY9Pp9WoLmxc35WyZe59HgCUFJYw5545JHZJZNhjw6rdLiQyhH739ON3O3/HtV9fS1ybOBY8tIAXWr7AgocX4Cz1nYpqW3bVPagrKKW49PVLcZY5+e5337ndtqTodBHbZ2yXViEiEHQB1mitrVrrMmAZcGUN208GPtdaF2utDwB7MZLbfkfm1EIIEfgOrzxMbOtYYlvGenS/Qx4eQlSzKL7/w/d+0QZPCOE+SVBX47HHHmPfvn306tWLRx55hOeee47+/fvTo0cPnnzySQCKioqYOHEiPXv2pHv37kybNo0XX3yR48ePM2rUKEaNGuXln0IIIURN9K657NnTnvZj04lMPL8aeOxzY1m14gKcGz8Bu3uVwIv/vJi8w3lMemsSwWHBtW6vLIpOl3Xi1mW38qt1v6LDhA78+J8fyViS4dbzm6GmFh8V4tvFM+qvo9j19S52fLmjTvvP2JHBN7/6hhdavcAXV3/Bnrl76jVeIXzAVmC4UipBKRUJXAK0LL/vd0qpLUqpd5VS8eW3pQFHKj3+aPltfkfm1EIIEdi01hxecdij7T0qhMWEMeLJERxadog938l8EABHKdhyvT0KUUlxfrEU1HhA7d+UfcC8++dxctNJj+6zea/mjP/v+Grvf+aZZ9i6dSubNm1iwYIFzJgxg7Vr16K15rLLLmP58uVkZGSQmprKnDlzAMjLyyM2Npbnn3+eJUuWkJiY6NExCyGE8Kzi9V/z84YWdPtjtyrvT+6RTPurLmTPzuW0+f5NoiY9XKf9H1t3jLUvrqXfr/vRamjdJ+2p/VK5/IPL2TZ9G/bTvtPqw5ZlwxJiITQ6tMbtBt0/iK2fbWXu7+bSdnTbGld111pzYPEBfvzPj+ydu5fg8GB63tyTn979iaOrj9JxYkdP/xhCNBit9Q6l1L+ABUARsAlwAK8BfwN0+d//AW53db9KqbuAuwCSk5NZunTpWffHxsZSUFAAwJJHl5Dxs2dPdCVdkMSof9WcPH7iiSfYsmULK1asYNGiRXz99dcsWrQIrTVTp05l3rx5ZGZmkpSUxOeffw78Mqf+z3/+w+zZs0lISDjzc9SFw+Go8+Psdvt5cRRVKywslFg1QnLczeWP8bUds1F4shB7M3PeP50dnUS0iODr331Nv/B+qCDl9r78Mb7n6rTzRWLztrOxz78pC4n29nDOEgjxrYu8bXkc/eIomSsyaXd3O1pe07L2B/k4bx5Dv0hQe9uCBQtYsGABvXv3BowDtmfPHoYPH85DDz3Eo48+yqWXXsrw4cO9PFIhhBAus+USnPUzh44O4YrLO1e72ai/jWLm8AW0Tn8NJj4AFtfawDpKHcy+czbRzaO56J8XuT3M4PBgwuPCKckqcXsfnmbLthHRNAKlav6CYAm2MOmtSbw14C0WPrqQSW9OOm8bR4mDrdO2svr51ZzcdJKoZlGM/OtI+t3Tj6ikKI6vO87xtcfN+lGEaDBa63eAdwCUUv8AjmqtT1Xcr5R6C/i2/L/H+KXCGqBF+W3n7vNN4E2Afv366ZEjR551/44dO4iJMRZ/DQ0NJSjIs22sQ0NDz+y/OtHR0VgsFmJiYli5ciVLlizhwgsvBIw59bFjxxg+fDhPPPEETz/99FlzaqUU0dHRtT5HdQoKCur82PDw8DNzflGzpUuXcu5rTgQ+Oe7m8sf4bnp/EwBj7hhDs27NTHmO5v9tzhdXfUHcoTh63+7+e7Q/xvcsuxfAT3ugy8UMy/gIrv0MLL7TGMHv4+sCZ5mTHV/u4Mfnf+TYmmOEx4UTkxJD4YpCRr460tvDqzdvHkO/SFDXVOncELTWPP7449x9993n3bdx40a+++47nnjiCS666CL+7//+zwsjFEIIUVfO3d9z6HAL2l7clfDY8Gq3i0mJoe3NV5NzaCG2WR+QdKVrxY0//udHTm05xdSvpta4f1dEp0T7VoI6y1btAonnSumTwqAHBvHjv3/kghsuoM2INsY+cmxseGMDa19aS8HxApK6JjHp7Un0uKEHweG/TE9SB6SyfbrRh1pZ3K+YEcLblFLNtNanlVKtMPpPD1JKpWitT5RvcgVGKxCAb4BPlVLPA6lAB2BtfZ7f2/NpkDm1EEIEokMrDhHRNOK8hcA9qcuVXWgxqAVL/ryE7td2JyQyxLTn8lm2XPj2frj8VWg9FD64DJb9C0Y97u2RNQr2PDs/vfMTa15cQ96hPOLbxzPhpQn0urUXm97fxNx755KxPYOkrub9HgQ63znV4mNiYmLOXBI4btw43n33XQoLCwE4duwYp0+f5vjx40RGRnLjjTfyyCOPsHHjxvMeK4QQwjdZV33Jjp9b0+3aqtt7VDb4ocFs3j2UsqUvubRAS9aeLJY+tZQuU7rQuYbqbFfFpMRQku07CWprlrXG/tPnGvWXUcS1jePbu74lY3sGc38/lxdavsCixxeR1DWJ67+7nl9v/TV97uhzVnIaIG1AGvZcO9l7sz39YwjR0GYqpbYDs4Hfaq1zgWeVUj8rpbYAo4AHALTW24DpwHZgXvn2Du8Mu35kTi2EEIHtyMojtBrWytRCAqUUY58bS8HxAlb/b7Vpz+PT5v8ROo6DdiMhKASufh9++gh2zfX2yAJa7sFc5j8431i4/qEFxLWOY+qsqfxu1+8Y8LsBhEaH0vWqriiLYuu0rbXvUFTLLyqovSEhIYGhQ4fSvXt3JkyYwPXXX8/gwYMB41LFjz/+mL179/LII49gsVgICQnhtddeA+Cuu+5i/PjxpKamsmTJEm/+GEIIIariKCP0xHIOHLmJiy+tvbdxaFQoabfdQ8SWK9j3wUzSb72q2m211nx797cEhwcz4aUJHhludEo0J3acqH3DBmLLstE0vanL24dEhnDpG5fy8cUf82q3V7GEWLjgugsY9OAgmvdsXuNjWwxsAcCxtcdI6JhQr3EL4U1a6/N6wWmtb6ph+78Dfzd1UA1A5tRCCBG4Ck8VkrU7i953mt8aqdWwVnSa3IkfnvmBvr/qW+UC5wFr93w4uAJ+veqX22KS4eoP4LNr4fb5kJjuvfEFoCM/HmH1C6vZMXMHyqLodk03Bj0wiNR+qedtG908mtYjWrNt2jZGPjWy1jaIomqSoK7Bp59+etb/77vvvrP+3759e8aNG3fe4+69917uvfdeU8cmhBDCfc6DP5KTFU3KqH6ERtW80F+Fnrf0Zc3U4cRl/Y+yay8/r9K3wqb3NnFwyUEufeNSYlLc65t6rooWH1prn5jw2LJthDetW9uS9mPbM+ZfYyjOL6b/b/oTk+pabBK7JBISFcLRNUfpcWMPd4YrhPAymVMLIURgOvLDEQBaD2/dIM930T8v4rXur7H86eU+0bqqQdhyYfb9cMXrEHbO/Lllfxj9BEy7Ae5ceP79os5Obj7JnHvmcHT1UcLjwhnyyBAG/G4ATVo0qfFx3a7pxpxfz+HUllO1FuCIqkmLDyGEEI1O/qJp7Nzehu7Xdnf5MZYgCym/eow2qbv46X9zqtym8FQhCx5eQKvhrehzZx9PDZeYlBicJU6K84o9tk93aa2xZlld7kFd2dA/DGX006NdTk6DEffUfqmyUKIQQgghhI85tOIQwRHBpPRJaZDnS+qSRO87e7Pu1XVk72sk7d/m/xE6TYB2I6q+v99t0HIAzPoNuNCKUNRswUMLyNqTxYSXJvDAkQcY88yYWpPTAF2mdEEFKbZN29YAowxMkqAWQgjR6AQf+p4DxzqTPr5ul8K1GdeTw/mDKV32GtZM63n3z7tvHqVFpUx6c5JH+/BFN48GoOCE93uxllpLcRQ76tSDur7SBqZxctNJyorLGuw5hRBCCCFEzQ6vOEyLgS0ICg1qsOcc+dRIgkKCWPynxQ32nF6zez4cXAlj/1rzdpf8G/KPwcoXGmZcAaooo4iDSw/S9+6+Z/pLuyoqKYq2o9uybdo2l9YsEueTBLUQQohGpez4TnRxIXFDRlTbpqMmibc+Qc9um1j+l/ln3b57zm62TdvG8CeGk9g50VPDBYwWHwCFJws9ul932LJtAEQ0bcAE9YA0HCUOTm0+1WDPKYQQQgghqldcUMzJn07SanirBn3emJQYBj80mG3TtnFio++s0eJxthyjtcfklyEsuuZtg8Pgmo9gzRuwd1GDDC8Q7fp6F9qh6XpVV7ce321qN3L253BiQwC/Lk0kCWohhBCNSvacT9m9qy3dr3Wvn3HCwP4UBHXBseYTMndlAsYEfc6v55DULYlhjw7z5HABzvSyLjzhAwnqLCNB7U6LD3dVXihRCCGEEEJ439HVR9FOTathDZugBhjy8BAiEiJY9McATsbO+yN0vgTaXnjWzQseWcC7Q989f/vYNLjqHfjqbsg52DBjDDA7Zu4gvl08zXu510O6yxVdsARb2Dptq4dH1jhIgloIIUSjovbM4+CJzrS9qK3b+4id+kcGDtzIwkcXALD4T4vJP5rPpLcmmXKJY0UFtS+0+LBmGa1NGrLFR0xaDNEp0RxbIwlqIYQQQghfcHjlYZRF0WJwiwZ/7rAmYQx7fBj75u/j4NKDDf78pts9Hw79AGP+ctbNjlIHm97dxJFVR8g9mHv+49oMg+EPwec3Qsn57QhF9Ww5NvYv3G/0knZzUfqIphG0v7g926dvlzYfbpAEtRBCiEajNDuDJkEHiOg7nqAQ9xPJEb3GEJ4Yi2PbAn549gfWvryW/r/pT8vBLT042l+ENQnDEmZptBXUSinSBqRJBbUQQgghhI84vOIwzXs1JywmzCvP3/83/WnSogmLHl8UWMnAM609XjmvtceBxQfOtNvbO39v1Y8feA806wKz75NFE+tg1ze7cJY53W7vUaHb1G7kHc6Twho3SIK6Bi+++CJdunThhhtuaNDntZWU4TznjWTWrFls3769QcchhBCB5tTMjzl4sAVdru1bvx0pRfglDzFs5GYWPrqQmNQYLvrHRZ4ZZJVPpwhNCPWNBLUXelCDsVBi1u4sbDm2Bn1eIUT9eWNOnW8rxV52/hdzmVMLIY6sOsKeuXu8PQy/5ihxcHT10QbvP11ZSEQII54cwdHVR9n1zS6vjcPj5v0ROk+EtsPPu2v7F9sJjQmlSYsm7Ju3r+rHKwWT/gcZO2DN6yYPNnDsmLmDJi2bkNo/tV776TS5E0GhQdLmww2SoK7Bq6++yvfff88nn3xS67ZlZWUeec7iUgd7TxeRY5cEtRBCeJpz2xwOnepC6wtb13tfwb2vJrV1HskpWUx8bSJhTcytHgmND220LT7AWCgR4Pi64w36vEKI+mvoObXWmqM5Nk5bnTicMqcWQpxt2V+XMfO6mZRaS709FL914qcTlNnKvJqgBuh1ay8SOiaw+E+LcTqcXh2LR5xp7fHUeXc5Sh3s/GonnSZ1osPEDuxftB9HiaPq/YRGwtSPYcV/4OBKc8ccAIrzi9k3fx9dr+rqdnuPCuGx4aRPSGf7F9vRTqlgrwtJUFfjnnvuYf/+/UyYMIH//Oc/XH755fTo0YNBgwaxZcsWAJ566iluuukmhg4dyk033URGRgZTpkyhf//+9O/fnx9++AGAwsJCbrvtNi644AJ69OjBzJkzAfj1r39Nv3796NatG08++SQApwuKeeGfT3LRsIH06NGDhx9+mFWrVvHNN9/wyCOP0KtXL/btq+ZMmRBCiGoV5xSSFPYzwT0mYgnywMdfcBghw+/hVy866DSpU/33V4vQhFAKT/pABXWWjZCoEILDghv0eVP7pYKShRKF8DfemFMXlzkpczr5zz+eomvXrjKnFkKcxZZtozivmO0z5WSVuw6vOAzglQUSK7MEWxj19CgytmXw8yc/e3Us9VZDaw/4pb1H12u6kj4+nZKCEo78eKT6/cW3gSvegBl3QJ7Mn2uy+9vdOEocdJnSxSP763ZNNwqOFXD4h8Me2V9j0bDfLv3I66+/zrx581iyZAl/+ctf6N27N7NmzWLx4sXcfPPNbNq0CYDt27ezcuVKIiIiuP7663nggQcYNmwYhw8fZty4cezYsYO//e1vxMbG8vPPxhtmTk4OAH//+99p2rQpDoeDiy66iPUbfsIWGsvS+XP4aslaWjSNJKjURlxcHJdddhmXXnopV111lbdCIoQQfu3IF18QmRNLh1svrH1jV/W7naCX+8PpHUavNxOFJoSSvSXb1OdwhS3b1qD9pyuEx4aT2DlREtQeVGotZdP7m+h1Wy9CIkK8PRwRoLwxp75owk8Q1ZQl8+Ywe9k6Oqc0obAgX+bUQggA7Dl2AH56+yd63tTTy6PxT4dXHqZph6ZEJ5+fSG1oXad0JaVPCkufXEr3a7ubsmB5g5j3eLWtPeCX9h7p49JxlDiwBFvYO28vbUa0qX6f6RfBwLth+k1w21wI9k6/cF+3fcZ2olOiPbaeUMdJHQkOD2bbtG20Hl7/K3cbC/9JUD8Va8I+81zabOXKlWcqNEaPHk1WVhb5+fkAXHbZZUREGJc5L1y48KxLBvPz8yksLGThwoV8/vnnZ26Pj48HYPr06bz55puUlZVx4sQJ1vy0haFjLyU6KpK/PnIvoy6ewF03Xu2RH1UIIRq7so2zOXSqC4MGeXCl8ahEGPMkfHkX3LkIgkM9t+9zhDYNxZ5rp9RW6tVkoi3L1uD9pyukDUhj79y9aK3rffldY+csczLj2hnsnr2b8PhwLrjuAm8PSTQEL86noeHm1Jt/3srI8ZcRFRHOEw/9jkmXTuSmqVPq/aMKIQKDPddOUFgQh5YfImt3FgkdE7w9JL+inZrDKw/T6bJqriDc9hUUZsDAuxpkPMqiuOifF/HxuI/Z8OYGBvxuQIM8r0ftmguHf4R7fqjy7srtPYLDgwkOD6bl0Jbsm7ePMf8cU/O+hz0Ae743nqPb5Z4fu58rKSxh79y99L6zN8rime8XYTFhdJjYge0ztjP+f+M9c/VuI+BHCWrXJ78NKSoq6sy/nU4nq1evJjw8vNbHHThwgH//+9+sW7eO+Ph4brr5FnLyi2gWG8m6tWuZ9uVsvpw1iy8+eptlS5aY+SMIIUTAs2YWkRS6gdzOf/TYxOOMPrcYE75lz8BF/+fZfVcSlmBUPBSeLCS+bbxpz1Mba5a1wftPV0gbmMbmDzaTdziPuNZxXhlDINBaM+c3c9g9ezcoOL7+uCSoGwsfnU+D5+bUt956K/mFNuKiwlm6dAlzFi1n1ldf8vG7b7FkyWIzfwQhhB/QWmPLsdHzlp5s/mAzG9/ZyNh/jfX2sPxK5s5MbFm2qvtPb/wQlvwDLCFGm4pe1zfImNqNbUebkW1Y/rfl9Lq1F6HR5hWNeJwtB759EK58s8rWHgAHlxw8096jQvr4dBY9voiCEwXEpMRUv3+loPuVkqCuxp65eyizl9H1qvLYbvvKiNVlL9Wr4rzb1G7smLmDQ8sO0XZ0Ww+NNrBJGt8Fw4cPP7Ooy9KlS0lMTKRJkybnbXfxxRfz0ksvnfl/xSWLY8eO5ZVXXjlze05ODvn5+URFRREbG8upU6eYN28uKIhQpeTl5TF54sU8+tQ/2LLZ6M0XExNDQYH3F8cSQgh/dOCL7wkJLqP1NZM8v3OljAnMxo/g8BrP779caIIx0S484d0+1LYs77T4gF8WSjy2Rtp81Mfyvy1n41sbGfbHYbQY2IITG054e0iikWiIOfXcuXNxao0utZGfn891UybzyJP/YNPmzYDMqYVo7EqLStEOTWLnRDpN6sTm9zfjKK1moTlRpcMrjb6657UuWPsWLHsWbp0DN3wBC/4M+5c1yJiUMqqoi04Xsfp/qxvkOT1m3h+hy6XVtvYA2DZ925n2HhXSxxv/3rfAhfUUOk2APQvAUf+FiAPNjhk7iGoWZfRTzzsKcx6GghMw/WYoK3Z7vx0ndiQkKoSt07Z6cLSBTRLULnjqqafYsGEDPXr04LHHHuODDz6ocrsXX3yR9evX06NHD7p27crrr78OwBNPPEFOTg7du3enZ8+eLFmyhJ49e9K7d286d+7MtdddR8++A4kKC8ZuLeLSSy9l6JAh3DZlAg//39OUOZ1ce+21PPfcc/Tu3VsWdBFCiDqyr/6SQ6e60LxPijlPEN0MLn0evrobis1JIIc2NRLUBSe8m1ixZdsIb1p7VeN5tIZ1b8ORdW4/d/IFyQSFBUkf6nrY+M5Glj65lJ4392T006NJ6ZfCiQ0nZJVx0SDMnlNff/319B84GABniY2rr76afn16c8eUS3joz09TXOqQObUQjZwtxwZARHwEve/sTdHpInZ/u9vLo/Ivh1ccJio5ivj2la7oW/WS8efWbyGhPTTrDFe/BzNuN9ZqaQAtBrWg0+ROrHp2FdYsa4M8Z71pDT9Pr/EqzHPbe1RI7plMdPNo9s134bMstoXx54ifJe9NVmorZfec3XS+ojMWBXz9Wxh4D9z4JQSFwLSb3E5Sh0SG0GlSJ3bM3CEnwVzkPy0+vODgwYNn/j1r1qzz7n/qqafO+n9iYiLTpk07b7vo6OgqJ+Dvv/8+AEdzrORYS+ncPIaQIAtr166loKCAoLAI9p4uJNdaytChQ8/qxSeEEMI1hScLSbSsJ6/9beb2Le4yCXZ+BwuegEn/9fjuKxLUhSe9V0Gtndq9RRLt+fD1b+DoekhIN768uCEoNIiUPimSoHbT7jm7+fbub2k/rj2T3p6EUorUfqmse3kdWbuzSOyc6O0higDVUHNqgENZRVhLHLRuHsPSpUuJiYmh1OFk18kCTuXbZU4tRCNnzzUWSAyPCyd9XDoxaTFsfGsjXa4wd7HrQHJoxSFaD2/9y7x62XOw+TNjEb7YtF82bHshjPsHfHIN3Pk9xDQ3fWyjnx7Naz1e44d//cDYZ/2gdYs9D4IjIKz6Fh1n2ntc3fWs25VStB/Xnt3f7sbpcNbe57jzRKN1RZthnhh5QNg3fx+lRaVGe4/170BxgdGzOygYrio/wTLtJpj6kVvtPrpN7cbWz7dycMlB2l/c3oSfILBIBbWXlZQ5yCkqpWlUKCHnvKFEhgYTERJEdlEJWktlkxBCuGP39NU0b55B86ummv9kE56BvYtg9wKP7zokLgQVpLza4sOeZ0c7dd16UJ/eAW+NhshE+N06yNoLp7a5PYa0AWmc2HACZ5nT7X00RsfWHmPGNTNo3qs518y4hqAQY4X71L6pgNGHWgh/p7WmqNhBdFjwWSckQ4IsJEaHkWsrxVYilzcL0ZjZc8oT1PHhWIIt9LqtF3vn7SXviO/26PcleUfyyDuUR8thLY3q30V/g60z4Lbvzk5OV+g5FfrcDJ9eY9pVhpU1696Mnjf1ZO1La8k/lm/689WbLRsia15bZtsX2wiNDj3T0qOy9PHp2LJsrrVr6zQBds4xjpsAYPuM7UQkRNC6e6nRO/2KN4zkNBgV1Fe9aySm3aykTh+fTliTMGnz4SJJUHvZ6YJiUJAUXfXZmIToUOylDqwlckmAEEK4o2D5lxzPak+zHlUs5OJp4bFw+asw+/dQlOXRXSuLIjo52qstPmzZxmWxLldQb50J7080KhEm/deoDul3B6x53e0xpA1Io9Rayultp93eR2OTtSeLTyd+SlRyFNfPuf6shYMSOycSEhkiCWoREIrLnJQ5nUSFBZ13X1JMKEEWxcl89/tJCiH8X+UKaoDet/cGDZve2+TFUfmPM/2nh7UyrhrcM9/oOV1TdfSFD0PzHjDjtgbpgTzyLyNxOpws+2vD9L+uF2sORDSt9m5HqYOdX+6k02Vnt/eo0G5sO1Cwd97e2p+reQ9wlELGrvqMOGCUFZexe/ZuOk9OJ+jb38LIxyCxw9kb1TNJHRweTKfJndj55U4cktOrlU8nqAO9arikzEmOtZSmkaGEBld9KGIjQglSiuyikhr3FeixEkIId+QdziOBdZS2vKjhnrTtcOg+Bb693+MVCtEp0V6toLZllfdtbFpLBbWjFOY9Dgv/Ajd9Bb1v+OW+vrfC9q/Bmu3WGNIGli+UKG0+XFJ4qpBPxhuL0t04/0aik89eHd4SbKF57+aSoA5gjWmOWFRsJD6iws7/Eh9ksdAsJowCeymFxVUnSBpTrIRorCr3oAaIbxtPuzHt+Omdn3A65Oqs2hxeeZjQmBCaH38ODq2CW2ZDVC0twpSCS18AZxnMfcT0Ct64NnH0u6cfP73zE1m7PVsw4nG2HIisPkFdXXuPCpEJkaQNSHMtQa2UUUW9a467ow0o+xfupzi/mCGD10FIJPT/VdUbViSpQ8Jh2o11TlJ3m9oNe66dfd/Luhe1qTVBrZRqqZRaopTarpTappS6r9J99yqldpbf/myl2x9XSu1VSu1SSo1zZ2Dh4eFkZWUF9EQxo8A4e5sUU30vmyCLIi4qlFxbKWXVfGBqrcnKyiI83I1Fq4QQIoBtn7aJ9u0PkTT5poZ94tF/NlpZbDm/h2p9RDf3boK6YsGZGlt8FJyEDyYZP//dyyCl59n3RydBp4mwserF0WoT3y6eiIQIjq0J7AT1wWUH+Uf0P5h16yxObTnl1j5KCkv4dOKnFJ4s5Po515PQIaHK7VL7pXLyp5PSNiUANYb5dGVFxWWEBFkIraYPZ0JUGCFBFk7m2c+LicynhWgczq2gBuh9Z2/yDudxYNEBbw3LbxxZcZCrb1yGOr0dbv4aImpuT3FGUAhc/QEcWQurXjR3kMDwPw0nODyYJf+3xPTnqhdbdo0xrGjv0X5c9f2L08enc2zNsTNXOtao8yVGH2rBjhk7aJmeS0L2dOMKWEsN6dGgEJjyDoREGEnqUrvLz9N+bHvC48LZNs39FoeNhSuLJJYBD2mtNyqlYoANSqnvgWRgMtBTa12slGoGoJTqClwLdANSgYVKqY5a6zrVs7do0YKjR4+SkZFRl4f5DYdTczLfTmRoEPvyQ8+73263n5kglzqcnMovxnY6hJgqLusA4wtIixYtTB2zEEL4m+xFcyjo3IxmPTo37BOHhBs9zD66AloPhbiWHtltdEq0VytdKyqoq23xcWiVsZhIv9th+MPVT/QG3g2f3wCD7/2lz5uLlFKkDUgL+ArqU1tOUVpUytbPt7L5g820G9uOwQ8Npv3F7V1a7NNR6mD6VdM5uekk1359LWkDqugLWS61Xypr/reGzJ2ZNOvezJM/hvCyQJ9Pn+tEnp2wYAs7c425deX5dIWi4jJyrKUUnAwlPOTsViAynxYi8FX0oA6L/aVIrPPlnYlIiGDj2xtlIbMa2LIKGNLhQxKTQ+HGuRAWXfuDKgtvAtdPh3fGQmxL6H6lOQMFopOjGXT/IFb8fQVDHx1KSu8U056rXqzZ1bb4qNzeIyQipNpdpI9PZ9lflrF/4X66XdOt5udrPQwyd0PBKYhJrs/I/ZqjxMGe2Vv51V0LUBc/DbEufPZXJKln3gnTb4JrPjK+89X2sNAgOl/Rme0ztlNmL6uyVYsw1BoZrfUJ4ET5vwuUUjuANOBXwDNa6+Ly+yqaQU4GPi+//YBSai8wAPixLgMLCQmhbdu2dXmIX/nzrK18vu4kSx4eSYv487/oL126lN69e5/5/1WvrSKrKJ/FD41w6YupEEI0dtl7s0lgLfZmI70zgJQeMPg3MOvXcPM3NZ+Vd1FMSgzWDKtrK3WboKIy47wWH1rD6ldh5Qtw+evQYUzNO0rtZSTtd34L3S6v8zjSBqSxb/4+SgpLzuqnHEgqKrzuP3Q/P737E2tfWssn4z+hWfdmDHpwEBdcfwHBVbQxAKMSdPads9k3fx+T3ppEx4kda3yu1H6/LJQoCerAEujz6cr2ni7k9g+W8a8pFzC0i7HmwLnzaTAKPy5+YTmhQRa+u284QRaZVwvRmNhz7YTFhp01jwoOC6bnzT1Z+/JaijKKiEqK8uIIfVRZCWUf30REuJ28YR8QV9fkdIXYNLh+Gnx4OTRJhVaDPDrMyoY8MoT1r61n8R8Xc8PcG2p/gDfYsqtt8VFbe48Kqf1TCY8PZ++8vbUnqINDof1FsHse9L3F3VH7vQNLDjC492IsSenQ81rXHxgUAlPernOSutvUbmx6bxN75+2l8+UNXDjlR+r07VYp1QboDawBOgLDlVJrlFLLlFL9yzdLA45UetjR8ttEuRN5NqatO8JVfVtUmZyuyvUDW3Egs4gf9/l4DyUhhPARe77bTceO+4kfd533BjH0fnCU1GtRwMqiU6LRTk3R6SKP7K+urFlWUBAeX2kiVlxgLHqzZRrcuaj25HSFgXfDmjfcGkfagDS0U3N8Q+D2Tbbn2gmJCiE6OZrhjw/nvgP3Mfn9yaDgm9u/4b+t/8vyp5efabtS2eInFrP5w82M/MtI+tzZp9bnSuiYQGh0qPShFn5t9X5jjjywbdWtbCqEBFl4cGxHdp0q4JvNgX0lRmOUay3B4WwcLW2Ee+w59rPae1TofUdvnKVOtny0xQuj8nGldph2I7bMQr748nJSh9Szyrz5BXDlG8aic5ku9E52U3hsOEMfG8reeXs5uOygac9TL7bqF0l0pb0HgCXIQvux7dk7b69rLb06XQK7vnNntAHj1OxZ9Oy5g4hb3jB6c9dFRZI6JNLldh9tR7clIiFC2nzUwuXacqVUNDATuF9rna+UCgaaAoOA/sB0pVS7OuzvLuAugOTkZJYuXVqXcfu1j7cX43A66ROeWe3PXVhYeNZ90Q5NVAi88O16SnpJb7z6Oje+onGQ424uX4tv5k9r6RLvYH1uMcqL4wpPvY0+i//ApuxorFGt3N5PYWEhmVmZACydvZSYjjEeGqHr9m7ZS3B0MMtXLAcgsugI3bY9Q36Tzuzp8ATOzQcA1/o3KmcTBp7azdbZ71IY4/L0AYDS0lIAVny2goP6YJ0eWx1fe/0e3HEQFaHOHlNr6Py/zjTf2Jwj04+w5M9LWPb0MpqPa07a1WlEtojk2Kxj7P3fXlImpuAc7nT5Z4poH8HOxTuJXOraiXNf5GvHUDSs1fuzaN4knNbVtSCqZOIFKby+bB/Pf7+biRekVrtYufAvOUUlDPvXYv44sQs3DGzt7eEIH2XPtZ9ZILGyZt2a0WJwCza+vZFBDwySq5Yrm3YjhEUzZ+lYkntbamw34bL0MTD6CfjkKrhzYe0LLbppwO8GsOa/a1j0+CJu/+F2U56jXqzZ0KL/eTc7Sh3s/Kr29h4V2o9vz7bp2zj982mSe9TSuqPDGPj2ASgpgtDGd7WA05pPt5CX2JJ3O0OaNndvJ5UrqafdCFM/rrGSOigkiC5TuvDzJz9Tai0lJNIDv0MByKUEtVIqBCM5/YnW+svym48CX2rjFM1apZQTSASOAZWbbbYov+0sWus3gTcB+vXrp0eOHOnuz+BXTuXbWb5wCVf1bcnVl/SodrulS5dybkyus23n/VUH6dp3EM1iJEldH1XFVwQ+Oe7m8rX4/jhrHXkF8Yy6aLS3hwLNihmw7i2jwjjYvZYUS5cupdfYXmz78zY6pXWi48ia2zaYIevNLOzJduM4F56GV26DsX8hqs/NuNXZL+S39MtaDyPr/oVhR7sdhGWGeew152uv39MvncbZ3Fn1mEYBD8Hpbaf58fkf+fnjnzk++zhtR7flwOIDdJzUkalfTsVSh6RbyZgS1r68luFDhxN0Tl9ef+Frx1A0HK01q/dnMyw9waWkksWieGRcJ259bx2frzvMzYPbmD9IYbrFO09TVOJgy5E8bhjo7dEIX2XLsVVZQQ3Q584+fHPHNxxZdYRWQ90vKggoJVY4sJyyhw5z7MZ/M/A+D/5y9b0Fcg/BZ9fCLbONBeg8LCQihBFPjuDbu79l97e7oeHrO2pWzSKJB5ccxJZVe3uPCunj0gHYO29v7QnqiHhI6w37lkCXS+s8ZH9X+NEDHNifRtzN19dvR2d6Ut8B026Aaz+F4LBqN+8+tTsb39zI7jm76XZ1La1YGqlav7koY5b3DrBDa/18pbtmYXxFQinVEQgFMoFvgGuVUmFKqbZAB2Cth8ftt15ftg+HU/PbUel1fux1A1tR5tR8sf6oCSMTQogAY82h1OkjVQF9bjH67C37V712E93c6PdXeKLQE6OqM1uW7Zf+0zkHoWk76HOz+zvse6vRh7qw7gu4BfpCiTV9ga7QrFszJr8zmfsP3c+FT1zIyU0naTm4JVd9flWdktNg9KF2FDvI2N44FtMTgWVfRhGZhcUMaldze4/KRnRMYmDbpry4aC/WkjITRycayvfbTwGwL8M7n5HCP9hz7We3Kquk2zXdCI0O5ae3f2rgUfkwaxZEJnBs/SkcJQ5aDfdw4n70nyG+DXz5K3A6Pbvvcr1u60XT9KYs/uNitMPHWgBVs0iiq+09KsSkxpDcI5m981xsmdJpIuyaW5eRBoY93xN8dCmLl4+lw4QO9d9fULCRpC4uhJ1zaty09YjWRCVHsX369jo/jdaaI6uOUHC8wN2R+gVXvr0MBW4CRiulNpX/uQR4F2inlNoKfA7cog3bgOnAdmAe8FuttcOk8fuV0/l2Pl1zmCt7p9HKhcsPz9U+KZoh7RP4bO1h6a0mhBC1seVShpsLuHiaUjDpRdj4IRxx/5xtRYK64IR3JifWLCsRCeUJaltOtYu6uCyyKXSdDBver/ND0wamkX8k32uxMJs9t+oemVWJbh7NqL+O4uGTD3Prslvdumyw8kKJwhxKqfuUUluVUtuUUveX39ZUKfW9UmpP+d/x5bcrpdSLSqm9SqktSqnam4k3YhX9p+uSoFZK8YfxncksLOa9Hw6aNDLRUOylDpbtNk6w7c/0zjoNwj9U14MaIDQ6lO7XdWfb9G3Y82rvK9solCeoD688DEDLIS1reUAdKQWTXzEStQuf9Oy+ywWFBDHq6VGc3nqa00tOm/IcbrPlQOTZFdQV7T06TupYp3Yq7ce35/DKwxQXFNe+cacJxkKJzkaUqrNmo7/5Pd9+N4FWY7p7rs1GUDB0nwL7FtW4mSXIQterurJ7zm5KCktc2rXWmr3z9/LukHd5d+i7LHq85ufwd7UmqLXWK7XWSmvdQ2vdq/zPd1rrEq31jVrr7lrrPlrrxZUe83etdXutdSetdSM8LVO1N5bvp8zN6ukKNwxszdEcG8v3SIWTEELUxFKSjyPIh67ji0mGif+Br+42zrK7ITgsmIimERSe9F4FdWTFCVZr1Zck1tnAe2D9O+AordPD0gYY6y8HahV1XRLUFSzBljpXTleIbx9PWGyYJKhNopTqDvwKGAD0BC5VSqUDjwGLtNYdgEXl/weYgHEVYgeMNVtea/BB+5G69J+urG/reMZ0acbry/aRa3Xty6LwTT/szcRW6mBExySyi0rILpLjKapWUwU1GG0+Sq2lbP18awOOyofZsiGyKYdXHCapW9Iv80BPCg4zevju/BY2fOD5/QPdru5GZGIkuZtyTdm/26pYJPHgUqO9R7dr6tYGIn18Os5SJweXHKx94/jWENMcjq6r03P4te8epiBuFDs2JtHlqi6e3Xf6RbB3EdSySGW3qd0os5Wxa/auGrernJj+ZPwnFBwvICYthtxDuR4ctO+RFUEaSEZBMZ+sOcTkXqm0SXT/kvOxXZNJjA7lk9WHPTg6IYTfsGYbvX9dWaG5kbM48nGGNPH2MM7W9TJoMQBWPl/7ttWITon2XouPbBvhTcu/1NWw6nidJHeDhHTY/nWdHta8d3MswZaATlCHxVXfx87TlFKk9k3lxPoTDfacjUwXYI3W2qq1LgOWAVcCk4GKb+MfAJeX/3sy8GH51YmrgTillFut3gNdRf/pQe2aurWo2cPjOlFYXMZry/aZMDrRUBZsO0VMWDDXDzTaD+yXNh+iCo5SByWFJTWeAE7tn0pyj2Rp81HBmo2OaGr05fZ0e4/KIpvC9dNh8d/gwHKP715ZFB26n0YV5Ht8325zlBoLFYad/X1l2/S6tfeo0GpoK0KiQurQ5mNCrW0pAsbWmXBiCz9uGUdQWBAdLvFAe4/KEtpDcDic2lbjZq2GtiImNYZt06rerqrE9KVvXMq9e+6l5ZCWXvsO2FAkQd1A3ly+j5IyJ/eOrt8vQmiwhWv6tWTxzlMcz7V5aHRCCJ+nNax/D17uB68MgGfbwrsTYPb9sOYN2L8UCk5J4rqSIGcROszHEtQAw+6HTZ+53WcvJiXGK5MTR6mD4vziXypnqlnUxS0D74E1r9fpISERIST3SOb42sCr+NVOTXFecZ0rqOsrpV8KJzefpKxY+vGaYCswXCmVoJSKBC7BWFQ8WWtdcVbgJFCxslEacKTS44+W3ybO4U7/6co6N2/C5b3SeP+Hg5yUS/pd9rdvtzNzj29UKTucmkU7TzGyczM6NzeunJI+1KIqxXlG64OI+OoX41NK0fvO3hxff5yTm0421NB8lzUbqy2C4vxiWg0zeeHIxA5w1bsw43bIdDHJ6qqNHzL5wrdoEVlzArFB2XIgIg4sv6Tl3G3vARAUGkS7i9qxd+5etCvfCTtd0jj6UBechLmPoi9/ne1f7id9fDphMSYUgaSPgb0La9xEWRRdr+7K3rl7z2ojVFNiuu9dfQkKDSI6JTpgWxtWCPb2ABqDzMJiPlp9iMm90mhbj+rpCtcNaMVry/bx+bojPDi2owdGKITwabmH4Zt7wZ4Ht3wLzbpAUQac3gEZuyBjB2ybZfyttXF/UidIKv+7eQ+Icu+Lu8vyfavqUmtNiKUQFemhBKonNetiHI9DK6HthXV+eHRKNIeWHzJhYDWzZRsnRc/qQZ3U2TM77zQB5j8ORzdAi74uPyx1QCpbP92KdmqUpe6Vk76qpLAE7dQNnqBO7ZeKs9TJ6a2nSe2b2qDPHei01juUUv8CFgBFwCbAcc42WilVp7OMSqm7MFqAkJyczNKlSz0yXn+y+LDRHkhl7GXp0v1n3VdYWOhSTAbHOPnG4eSxj5dxa7eGu3LBX522Onl3pY0gpflm/hKahHn3/XdPjoPMwhJakMW+LWsJVrB0406Si/bX/mBRZ67+Xvki61ErAAdOHMC61FrtdqWtS1Ehitl/nU2H33u40rIWvhbfNgc2ULAzD2jO8eDjZC/NNv05m7eYSqt3LmVjn2cp88DVkGlHZ9PyyNeczOlEqCPfZ+IbWXSE7jqctZXGk70+G1uWDd1FuzVOZzsnud/kMvfjuUS2rKUdi3YyuCCLTd99jC2yRZ2fqyq+9voF6P7z3ylMHM2W2cfJP5pP6s2ppowxwZZMiz0z2FzWq8btijsU4yhxMOuZWSRfnEzOuhwOfnCQgu0FhCWH0eHBDjQf35yCkAJWrFpx5nEZtgxKCkpYNHcRQRFBHh9/BW8eQ0lQN4C3lu+npMzJ70a733u6spZNIxnRMYlp6w7z+9HpBAdJIbwQAUlr2PAeLH4aBv8OhvzeWIQBILqZ8afdiLO3L8qAjJ1weqfx945vjEuNbv0Wml9gzjj3LYGPpxA66B1z9u+GkoISwsPslEV7oAWFGS64BrZMdy9B3dxo8aG1dutydndVJKg93oMawBIEA+6CtW9AizddfliLgS3Y8PoGsnZnkdg50TNj8QH2XKOiwhsJajAWSpQEtedprd8B3gFQSv0Doyr6lFIqRWt9oryFR8XqTccwKqwrtCi/7dx9vgm8CdCvXz89cuRI834AHzXj0400b5LDNZeMOu89cenSpbgak62lW/lkzWF+O7EH/dv46GeHj/jL7G1YLIcoc8KR0Jb8dqRnvuO468fvdhASdIDfXDGCmPAQ2m1aRml4JCNH9vfquAJVXX6vfM2xdcdYxzp6D+lNx5E1F3oVXF3Anu/2MPSToXWuZK0Pn4uvdQ6b1iiatGzC+KnjG+hJR8ICC8OOvgE3fQXBoe7vasV/IGsR/Hoxpc/8jXAOMcxX4nvoRzjZ4qzj/c0n3xAaHcrkhye79brLaZXDnv/uISEngYE3Daz9AUWXMzA2C4beWOfnqorPvX61hhXXkHj3LHb/8QcsIRYm/2Ey4bEmzLFL+sO//8vIwX0hrPp1kPQIzYFnD5C/IJ+ipUUcXX2UJi2bMPH1ifS+rTdBoVUnnzcd2sSBtw7Qu0NvmqabN0/x5jGUzKbJsgqL+fDHQ0zqmUr7pGiP7feGga05lV/Mop0+tgqtEMIzcg7Bh5Nh40dw63cw/MFfktPVUcpIWre9EAbeBZc+D7d9B5f8G6bdaFS8elreUWPRv7BoQktM2L+bbDk2wsOLsTTx0STDBVfBjtlQWvfLyaNTonGUOM4kMRuKLau8grpppQpqTyWoAXrfaKwmXuD65bSBulCitxLUcW3iiGgaIQslmkQp1az871YY/ac/Bb4Bbinf5Bagohn7N8DNyjAIyKvUCkSUq2//6cp+f1EHWsZHcMNba5i54aiHRhh48u2lTF93hEk9UujS1MKnaw7jcHqvvZjWmgXbTzGoXQIx4UYyp31SNPsyirw2JuG77Dmuf772vrM39lw7O2buMHtYPk1bszi23U7r4a0b9onH/MVof/Ht/e61MNQaFv0NNk+D2+ZCXCuITiIyvIgSX1lE9Zx2efVp71Ehvl08CR0T6tCH+hLY+Z1bz+UXigsgKAQdEsmOmTtoP7a9OclpgNAoaNGv1h7qSim6Te3GiY0nyD+Wz8TXJ/L7vb+n3939qk1Og9HmEQjoNh+SoDbZJ2sOYy9zcK+HqqcrjOqUREpsOJ+skcUShQgoTiesewfeGgXtR8Ed30OzX9ooTLtiGiufWVm3ffa4GjqOhy/vcrvvcZXKimH6zTDoN5DSk5BS31l0xJZtIyLCTnB8kreHUrUmqZDSA/bMr/NDKyYnDd2H2pplXAr7S4sPD1ZQg7Gv7lOMXusuSuiUQGhMKEfXBFYyyVsJaqUUqf1koUQTzVRKbQdmA7/VWucCzwBjlVJ7gDHl/wf4DtgP7AXeAn7T8MP1ffXtP11ZYnQYs347lL6t43noi808M3cnTi8mXn3V9HVHKCpxcMewdlzUKoRjuTYW7TjltfHsyyjkQGYRF3drfua29knRHM62UlLmwTmPCAgVn6819aCu0GZEG+Lbx7Px7Y1mD8unlWWdJue4ouWwlrVv7EkWC1z5Jpz8GVa+ULfHag3z/2jMs2/7DpoYawwHxSUTGWnDmlF9e5cGZc0+a8Hxg0sPYsuy0fXqrvXabfvx7Tm49CClttLaN24zHE5vh6LMej2nzyrKgKhETmw8Qe7BXLpc1cXc53OhDzXAhU9cyNRZU11KTFeITjEKXgN5oURJUJvsQGYRLeIjSG9WfYm/O4KDLFzbvxXLd2dwOMtH3mCFEPWTcwg+mgybPjGqpoc9cF7V9L4F+1j65FJyDtSxWvnip40zyMuf9dx45z0OMSkw9D6ISiKkNNdz+64ne46d8PBiQpv6aIIafmnzUUcVk5OGPnteUUH9yyKJOcaK65404G5Y/65x8sMFliALaf3TAm6hRG8lqMFYKPH01tOufakRdaK1Hq617qq17qm1XlR+W5bW+iKtdQet9RitdXb57Vpr/VutdXut9QVa6/XeHb1vWr0/C8AjCWqAuMhQPrxjANcPbMXry/Zx98cbKJJFQ89wODXvrzpI/zbxXNAilt7NgkiJDeej1Q2/LkKFBduN5PjYLslnbmvfLAqHU3M4W6qoxdlsOcZcxpXPV2VR9L6jN4eWHSJrd5bZQ/NZjvzTWK3hJPdIrn1jTwuNguunwbq3Yfs3rj3G6YDZ98GRtXDLbIj6pQVccEIKUVFWik77yHvDOXPp7V9sJzQ6lPTx9StuTB+fTpmtjMMrXChmDAmHdiONqxgDUVEmRCWxfcZ2LMEWOk/20Po51alIUNdS9R/WJIzOkzu7lJiuEJMqFdSinnKtJcRH1qNnUg2m9m9JkEXx6VqpohbCrzmdxsTrrVHGh9rtC86qmq5QZi+j1FqKo8TBoscX1e05gkLg6vdhw/uwe0H9x7z5c9i/FC5/1WgtEpVEaIkvVVBbCQ8vJiSpmbeHUr2ulxmXgNWx9Yq3KqjPLJJY0eLD6uEWH2C87pO7wbavXH5I6oBUTm4+SZk9cJJI3kxQp/ZLxVnm5NQW71VECuGq1fuzaN4knNYJtSwEVQchQRb+fnl3nprUlUU7TjHltVUczZFiEIDvt5/iaI6N24e2BSDIorhhYCtW7MlkX4Z3KroWbDtFzxaxNK90yXa7RONE7l5fSUIJn3Hm8zXetc/XXrf0QgUpfnr3JzOH5dMsxTlYrRG/zP8aWpNUuPZTo9XHsVqq2R1l8NU9kLUPbp513jw1LDmVyEgbhad8pAK10tWIjlIHO77cUa/2HhXajGhDUFhQ3dp87Jpbr+f0WUUZ6KhEdszYQdvRbc1/HSd1Nk6SZLkY+zqIaBpBUGiQVFAL9+XaSok1aVGF5rHhXNS5GV+sPyKXsAnhr3IOwoeXwabPjP5oQ++rttd0RYuFuLZxbJu2jaOr69jWIKa5kaSe9WvIrsfK9id/Ni6bm/oxhMcat0UmElKa5/4+PcyelQtARGKcV8dRo/BYo43L9q9r37YSb1VQW7OsWIIthMaEgqMUymwQVv+V1c8z6New+jWX+w22GNgCZ6mTk5tc713t67ydoAakD7XweZ7sP30upRS3Dm3Le7cN4Fiujctf+YENh3xnnQVveXflAVrER5zVTmNq/1aEBCk++rHhq6hP59vZdCSXsV3PruxslxQFwP7MwP0SL9xjz7ETFBpEcHgt67qUi0mNoePEjmx6fxOOUkfdniz3CBz1/4tfgsryvZugBkjtBZNehM9vgLxq1h0pK4EZtxpJ3xu+qHKRuvC0lr5VQV1pwXFPtfcACIkMoc2INq4nqDuOg/3LoNRW7+f2OUUZ2Iqjyd6bTZcpJrf3AKNwy8U2H3XftSK6ebQkqIX7cq2lxJlUQQ1ww6DWZBWVMH9b4HwxF6LRyD4Ab46CDmPhjgWQ1KnGza2ZRoJ6xJMjiEqOYsFDC9B1XTSk1SAY8QeYdhOUuFERZss1HjvhWUiuNIGKSiS0JLfu+zOJIycTmy3cu5NpV1xwDWz5ok4PCY0OJSQypOErqLNsRCREGIkgWw6ExxmTME9LHwv2POPSTBcE4kKJZy5BNmsRlxo0adGEqGZRnNggfaiFb/Nk/+nqjOiYxFe/GUpUWDDXvbmaLzcGVr/7uvj5aB5rD2Zz65A2BFl+ee9PignjkgtSmLnhaIO3Q1m4w1gsfmzX5mfdHhMeQnKTMPb5ShIqQDhKHCz/+3JyN+V6eyhus+faCY8Pr9NJrT6/6kPRqSL2zNnj2gMcpfDD/+CNC+HTqVDix6/DUhuKMkpLQ1zq222qLpfCoHvgs6lQfM4cuNQGn19vFDdc+ymEVn1VTWSLFEJCyrCeyjV/vK6wZZ9p8eGp9h4V2o9vT+aOTHIP5da+cWRTY22c/cs88tw+pSiT0wc0yqLofLnJ7T0qpI+BPd+bsuvolGhp8SHcl2stIc6kCmqA4emJtGwawcde7P0mhHBT5h5I62NUTVtq7z9V0QM4rnUco/42iiOrjri3sviAu4w2CrPvq9uq2E6ncdlch4vhgqvOvi8qyacWSSzLz8JuDyMkyrz3X4/oMBZObzOqbFyklCI6JZrCkw3f4uOs/tOebu9RwWKBgXfDmtdd2jwmNYaYtBiOrQmcBLU9105oTCiW4IafplUslCgV1MLXebr/dHXSm0Uz6zdD6dM6jgenb+Zf8xrn4onv/XCAqNAgrul//kJpNw9uTUFxGbM2Nez78ILtJ2mdEEnH5Ojz7muXGO21tiOByhJsYen/LSVng/9eTWDPsdf56qT08enEpMa4tlji4dVGYnr/UrhzIbQeYqyt4a+s2ZQ4YwiJCq1Tr1zTDPk9pPSCmXcabRTAWGPnk6shIs64UjQ4rNqHh0SFYrVFUJrpIyfhrTkQ0RRnmdNj7T0qVCS6983f59oDOl0Cu+Z45Ll9SlEGRzbZaD2iNVHNohrmOduNgCNrTKlIj0mJkQpq4R6nU5NnKyUu0rwEicWiuGlQa9YcyOY/C3bVvZpSCOE9dUzyVbT4iEiIoPftvWnWvRkLH11IWV0rlpSCS/8Lp3fA2jddf9zK58GaZSy4eK4o32rxoQuyKSmL9Phl3x4XHAZdJ8PWGXV6mDcmJ7YsW6X+09meXyCxsl43wL7F1V/GeY4WA1sEVAV1cW6xV9p7VEjpm0LGtgxKrbJQovBdZvSfrk58VCgf3TGQ6wa04rWljW/xxNP5dmZvOc7V/VrSJPz87zV9WsXTNaUJH/14qMG+ixQWl7FqbxZjuyRX+VnfvlkU+zMK5buRBymLIjIpktIc//1ssOfajUpgrX9JcNbCEmyh12292Dt3L/lHqynGsGbDN/fCF7fChY/AjV9CQnvj36te8t/WCdYsisuivV89XUEpmPg8lBTC9/9nXNn50RXQtC1c8Yax5k4tbMVROHJ8ZJ2N8kUSDyw54LH2HhUSOycS2yq2Dn2oJ8CueUZBUgApOX2M0/s1Xa5sgPYeFcJjoXkPOPiDx3ctFdTCbQXFZTg1pvWgrnD70LZM7deSlxbv5dGZWyhzBNabihABq44J6ooK6siESCxBFsb+eyw5+3NY98q6uj93aCRM/RCWPQuHfqx9+32LYe1bcM0HEFxF26KoJEJLfCdB7SzKodTZQGfJ68uNNh/emJxYs6xEJJR/QTGzghogvAn0mArr33Fp89QBqWTvzT6zkKO/s+fWvcKLoizY+Z3R176eUvulop06oPp6i8BiZv/p6oQEWfjHFd15snzxxKte/5FjuYHxnlObj1YfosypuXVImyrvV0px8+DW7DxZwLqDDVNdu2xXBiUO53n9pyu0T4om315GZmFJg4ynJhkFxfx51taAOKkR1SyKklzvx9Rd9txCOrffDC/3h393gG8fNObBtSTlet/RGxQsePic9npaw6ZP4ZWBEBwBv10D3a/8pQVaSg9I7QMbPzTxpzKRLRt7caRvtcwLDoWpH8HuefDaUEjra/SnduFqVABbWTQUZJg8SBeVL5Lo6fYeYLwvtx/fnv0L97vWPz2hvVF8cmyDx8bgC5x5pykqiiSho7lXW50n/SJT+lBHp0Rjy7LhKKljT3w/IQlqE+WVVx6Z2YMaIDjIwjNTLuD3o9OZvv4od320AWuJ/0+AXHEk28p3P/vIJTpC1FU9KqgB0sel035ce5b/bbl7ibmm7eDy12DGbVBQQyIq9wh8eTdMedtYSbsqkQk+VUGt7HmUqfMv+fVJrQYbPZdPbnX5IdEpDb9ARkUPauM/2RBhYgU1GK1oNnzgUtVRoPWhdilBnXfUOLEx+37ji/GLvWD1q/DOxcZCpvUgCyUKX9cQ/aeropTitqFteffW/hzNtjL55ZVsPOy/7Q5cYS918Mmaw1zUOZk2idWf+J3cK40m4cF8+OPBBhnX99tP0jQqlL6tq55HtUsy5gC+0OZj8c5TfLT6ELM3+/97alSzKEpz/bCC2lEGmz5lytBn6Zj6I0z8N/xqMcSmwbcPwP96GBW5J3+usv1dfNt4Rv11FNumbWPzh5uNGzN2wfuXwpo34PppcMmzvyweXtmIR4ye1GXFJv+QJrBmYbNFEB7vvau6qhQRbyyEOPxBGP9MndZEKdbRYMsycXAu0hqs2ThD4zze3qNC+rh0SgpKOPqji+sndJoAu77z6Bi8TdmyKCrywiKfHcaakqCOSTEW/2zoVo8NRRLUJsq1GWeX401s8VFBKcWDF3fi6cu7s3TXaa5/aw3ZRf57dttV76w8wG8+2cj7Pxzw9lCEqDs3KqhDokIIDvtl5fGxz42lOL+YZX9zc1GLjhdD31uNSxIdVXzhKCuG6TfDkN9B2+HV7yc8FouzFErt7o3Dw1RpHo4gP0lQWyzQ42r4ebrLD4luHk1xfnGDtmCwZVdq8WF2BTVAYrrRo33rzFo3Te2XCiqAE9RaGz3rN3xgnCz67wVGj8vtsyCxo3FZ6x8OwK3fwoR/GZe7HnW/AiYmNYbolGhJUAuf1VD9p6szslMzvvrtECJDg7nrw/XYXalO81OzfjpGdlEJdwxrW+N2EaFBXN2vJfO2nuR0vrlzgVKHk8U7TzO6czOCg6r+Ots+yUim+0KC+kD5Itdf/eT/n1HRydGU5PjRd0xHKWz8CF7uB5s+Zf7iCawtfBLajYT4NjD8IfjtaiPBrCzw2fXw6iBY/pyxmHklQx8dSpuRbVhw39dYv3gc3ptgtGn71WJjvlKdtL6Q1NmotPY31myKCsN8p8VHZU3bQf876rxgd7FqQlBptkmDqoNSKyjFyW352LJsdJrcyeNP0faitqggVYc2HxMDLkFtKc2mqCiy4U+yJF9gFCB54MrGyqJTjO+3gdrmQxLUJso9U0HdcIt03TioNa/d2JcdJ/K56rVVHMm2Nthze0NWeRL+L99uZ65UUgt/40aCOvKcXpvJFyTT6/ZerHtlHdl73ZxsXfgHCGsCC544/755jxnVJUN+X/M+lKI0JBasme6NwcMsZfk4Q6qoYvFVF1wDP89wue9bxdnzhpqclFpLKbOX/fL6s2ZDpMkJajAWS1z1EpzYXOOCnmExYSR1TQqYhRKNBHUYrH8Ppt1kXIb84eVwcCW0GgQ3zIBH9sG1n8Dg30BqLwgqP3HV7Qq47GX49Bo4tMrtMchCicKXNWT/6eqkN4vhX1N6kFlYwowNLlan+RmtNe/+cIAuKU0Y1K72q2ZuGtSaMqfms7WuL/zrjrUHssm3l3FxNe09AFJjIwgPsbA/o8jUsbjiYKYxhjUHsjma49/fzSKb+UkP6rIS2PA+vNQHfv4CJr+CvmU2e7Y1J7yqZGtyNxjzFNy/xWgXUXAK3h4Db10Eq1+HglNYgixc9Y84fnXbu5z4fhWOO5bDwLtcay0x4g/GWi5VFYP4Mms2BXmhhDf1sQrqeigJbkKIzsPp7baoNmOBxKLTxvtDXJs4jz9FeGw4LYe0dD1BndbXmONnubiwoq9zOghy5GO1RjT8SRaLxZQ2H2e+Ax6XBLWoo1yb8QEUG2Fui49zjevWnI/vHEhmYTFXvraKbcd957J7T8suKqZrShP6tIrnvmmbWHvAB86GCuEqN1p8nGmxUMnov40mKDSIhY+6+QFoscCVb8Du+Wf3Qt70GRxYDpNfdak6oSS0CRT5Rk+3YGchOsyPEtTJXY3XwiHXFtOoOHveUJd3ndtepkEqqAHajYYuk+CL2+CFbsZluLsXVFmpnzYwjWNrjwXEglj2XDsJTbNh8dPQ+VKjOuvBbTDlLeh3GyR1qvl3stN4oyXPtBuN/vFuSO2XSubOTIoL/PCSZBHQvNF/ujqD2jWlZ4tY3lqxH4fT/997zvXD3ix2nyrk9qFtXIp1m8QoRnRM4tO1hyg1Mfnz/fZThIdYGN4hqdptLBZFu8Ron6igPphVROfmRlLh603+feIvqlkUDpvDdxfRLSuGde8YientX8OVb8Et30CboZQWleIsc9bcQkspaDXQaAHy0E4Y+Tgc/wle6Q+vDiFq7ZMU9HqKj98azZLndro+rlaDIK41bHH9ajmfYM0iPzvENyuo3VQaFkdUZJH31y0pX3DcWn6FxblFSJ6SPj6dkz+ddO07g8VizCF3zTVlLA3OloODSLS2EBYb1vDPnz4G9i7y6C7PfAds4FaPDUUS1CbKtRrVvQ1ZQV2hf5umzPj1EIItiqlvrGbVXt+oavS07KJSUuMiePvmfrSIj+DOD9ax+1Rgnk0SAcgDFdRgtHsY+uhQdny5g8MrD7s3loh4mPoxzHvU6IV8Ygss+JNxW3gTl3ZRGhILRd5/r3E6nIRYilARcd4eSt30uMblNh9n+o810OSkYhJ/5vXXED2owZgoj34Cfr8Rbv7auBx35QtGRfHnNxiX7RaeBow+1NZMK7kHc80fl4m0U2PPsxPTxGokontOhbhWdd9R+1Ew9ROY+Su3vmik9ksFDSd/koUShW/xVv/pqiiluHtEew5lWZm/LfB+V9794QCJ0aFc1qua9SeqcPPg1pzKL+b77adMGZPWmgXbTjIsPYmI0JorV9slRXk9Qe10ag5mFTE0PZH+beL56if/PpEa1cxonVLkA5XpZym1G4t5v9jH+My76l246SsjMVzOnmuc3HY52RoUAh3GGEUcD+6EcX+H3/xIq1tuo89dffjh2R/Yv2i/62O88BFY8R9w+k9LIGdhFoV5ob61SGI9lUXGERlpO1O57DXlCyRWFIFEJpqXoAbYt8DFquhOlwROgroog2JHE8Jiw7BU0w7KVO1GGVc/lnmuLVJUsyiURUmLD1F3FS0+Yj3c7N5VHZNj+PI3Q0iLi+CW99byTQAszHGunKISmkaFEB8Vyge3DSAsJIhb3l3LibzGsaq68HMeqqAGGPzgYGJSY1jw0AK0u1VczbsbC41Mu9HoOz3hWWjWxeWH+0qCujivmPDwYlR0AyRQPan7VbD9G5f6eDd0/zFblvGe2qA9qM+V2AGG3ge3z4X7NhuV1XsXwkv94O0xdIybTbNmGRxb7d+X2hcXFIOGqCgrRFVfHeiS1oPhhunwzb2w9cs6PTSlbwogCyUK31PRf3qgDySowbhysU1CJG8s2+fXicdz7csoZPHO09w4qDVhwS60MCg3slMzWsRH8MGqg6aMa9vxfI7n2bm4W/XtPSq0T4rmaI7Nqz3CTxXYsZc6aZMYxeW909h7upBtx/O9Np76OpOg9nZyrzJHqdE3es/3cM2HcOMMaDngvM1sOcZcptZFiKsSGmmc+A0x5kHjnh9HYqdEvrrpqzMVsLVqeyFEJdb589ibnPkZvrlIYj04YuKJirJ6/zVsLU9QZ1pRQcq0Ct/mvZoT1SzK9TYf7UYarfWsAXBlelEGtpJo751giUow1oo5stpju7QEWYhqFiUV1KLucq2lRIcFE+KNszXlUmIjmH73YHq3jOf3n/3E2yvqcJbXx2mtyS4qIT7KaKHSsmkk79/WnwJ7Gbe+u448m49eeiZEBTcqqKtLUIdGhTL676M5tvYYW6dtdX9MPa6Bbpcbfy64qtbN7Xl2Vv1nFe8Nfw9rcZRPtPiw5dgIDy8mqIlvJC9cFpsGzS+APQtq3TQyIRJLsKXBJifntfiw5kCkF08ARDaFntfCNR/AI3th1B+JjrJy3fVf027HFWe3qvEzFRVekeGFEN2s/jtM6ws3zYJ5jxtte1wUnRxNk5ZN3E9Ql1jh6HpY/y7M/xPYct3bjxDnWL0/i+QmYbTxYv/pyoIsil9d2I7NR/NYvT8AvtCXe/+Hg4QGWbhhYOs6PS7IorhxUGvWHMhm10nPn0RdsP0UFgUXda79/bF9s2i0NlpseMvB8uRl24QoJl6QQkiQYpYfL5bokwnqwtNQajNOyLboW+1mFZ+vnki2hkaFMuWzKdiybHxzxzeunZxSylj3ZcW/XV5zxNt0UZbRvzeAKqidsU2NCupT3q6gNubStixjEXKzWlYpi6L9uPbsW7DPtb7bIRHGyRQXvo/4vKIMrLYo77aoSR9jnDzzoOiUaElQi7rLtZV4rXq6stjIED68YwATujfn6Tk7+Md3O3AGQJ+8ohIHJQ4nCVG/9PjulhrLGzf1ZX9mIXd9uJ7iMv+5hEo0Mk6nsbJveJxrmzuc2HKqbvFRoefNPWneqzmLHl9Emb3M/bGNecr4U4O8w3nMf2g+L7R8ge8f/p7DKw+TlxHqE4sk2nPsRETYCYnzswQ1uNzmQ1kUUckNd/a8ooL6lxYfXqigrk5wKLQfjeXS5/hy3VMs2XCt0arGluPtkbnlzBfokHyI8kCCGoyrI26ZDYv/ZiSMXeTSQolaQ8FJY/K94nmjX/hL/eDZdkbP8KMbjEtFj62v5w8hROX+0wle7z9d2ZQ+LUiMDuWN5YGxsFSetZQZG45yWa9UkmLqXtV3Tb+WhAZb+Gj1QY+P7fvtp+jXuikJ0bWPq12ikUzd58VkakVyvE1iJHGRoYzq1IyvNx/3257lPpmgLsqA6NqvOLLnlH++ulNBXYXmvZoz5l9j2PXNLta/7uJnXPpFRgJw52yPjMFsypaN1RoeUD2odUKCb1RQl7fLs2ZaTWvvUSF9fDq2LBsnNp5w7QGdL4Gdc0wdU4MoyqSoMNK7VwCY0Ic6JiVGWnyIusuzlnql/3RVwkOCePn6Ptw8uDVvLt/Pg9M3UVLmH2duq5NdaPTyiY88exHKoemJ/Pvqnqw5kM2D0zcHRDJeBKDifAiNgqBglza359pBU20FNRhJy4v/czF5h/JY8+IaT430LMfXH2fmdTP5X7v/seZ/a+h4aUdu/+F2AIoKI3yixYdRQW0nOKGe7RG8octlsH+ZS8nVhpycVPSg/qXFRwP1oK6jtAEt2LQ4AmfHiUavaj9UkaAOs+S79IXbZUkd4dZvjbj8+IpLD0ntl0r2nmzseeVtZ7Q2Vnbf8gUs+DN8eLnRD/zVwbDqJbBmQcdxRmX740fgnhVw+SvQbgRkBc4VXMJ7fKn/dGXhIUHcOqQNS3dlsOOE/7ZvqPDZusPYSh3cPrStW49vGhXKpB6pfLXxGAV2z13ReCTbyo4T+YztWnt7DzB6UAPs92If6oOZRYQGW0iNNT4/r+idRkZBMav2eX++5I4zCWpvV59WVpThUkusOvegdsHA3w8kfXw6Cx5cwOltp2t/QEUV9fLnjM9UH2cpyQ24CmoVF0tQkBPbaS9f8WI1ij2qW2PIk9pf3B5LiIVFjy2irNiFIqYO42D/UpfaDvq0ogwK8sK8e4IlrQ8UHId8z7XMkwpq4ZZcW+l5yVNvCrIo/nJZNx4Z14lZm47zp69+9vaQ6iW7fBHKplHnx3hyrzT+eEln5mw5wdNzdgRUT0ARIGw5UIdF/M6rYK1G29Ft6TCxAyv+vsJjC9hop2bn1zt578L3eKv/W+z5bg+DHhjEffvvY8qnU2g5pCXh8eEU5oX7RouPbBsREcWENfNQ9WlDiogzknnbv6l10+iUaNdW5PYAa5aVkMgQgsODjcmqo9Q4weJj0gamUWYvI6PZHbDxQ8jzv8uoKyq8QnSO5yqoKzRtB7fNhXXvGF+Oa5HaJ4nU1BMUff2s0Zv+3x3g/UthxzfG4qmDfg13LYM/7IdbvjEWkOp5LSR3MxaXOvO87SE7MCpLhXetOWD0n/a1BDXAjYNaExkaxFvL/ftkTKnDyQerDjK4XQJdU11bJLkqNw9uTVGJgy83eu59uGLhRVcT1JGhwaTFRXh1ocQDmUW0bhqJxWJU/I/q3Iwm4cF85adtPkKjQrGEW7xffVqZiwnqevWgroayKCa/P5mwJmHMvG6ma1cwdpoAGtg9z2PjMEWpHZwllJSEBlQPahVkwWaPpCzLywvb2rIhsinWLPMrqCMTI7ns7cs4sPgAX9/6de3rFUUnQbOucHCFqeMyXVEG+TlhhDf14uvXEmQslujBKurolGiKThe51rLFz0iC2kS51hJifaSCuoJSit+OSufuC9vxxYaj/Hw0z9tDcltOUfUJaoBfDW/HbUPb8O4PB3h7xYGGHJoQtXNjgUSouYK6wtjnxlJSVMKyvyxze3gApdZS1r22jpc7v8y0y6eRdziPi5+/mAeOPMDFz11MbKvYM9tGN4+mIDvcJyqoi7PzsVichCf6XgLDJT2mws+191BuyLPnZ/U/L++Zhw9dXl8hbUAaAEd+LoM+t8CyZ7w8orqrqPAKLsvxTA/qc8W2MJLUP8+EhX85u4LLnmcsPLn4aXj/UtptGM2kSd9TcngndJkMv1oMD26HqR/BhY8Y1dKxabW/FhLaG5XXQtTT6v3ZPtV/urK4yFCu7d+KbzYf51iu/y7WPX/bSU7k2bl9mHvV0xV6toyjZ8s4Plp9yGOFIt9vP0XH5GjaJLp+grRdUhT7PHTC3h0Hs4ponfDLeMNDgpjYI4V5W09iLalHOzYvCo0P9a0EdeHpOlVQe3oxuujkaCa/P5nTP5/m+z+40GtWKbjwIVj2rG9XUduyKVNNABVQLT4A7GXROHJcqHg3ky3nTIsPV77f1VfPm3ty0TMXsfXzrcx/aH7t78udJvh9mw9dlEFuRoj3X78dxhrzaw+JSYlBO7VvvQ97iCSoTZRnKyXOB3pQV+W3o9NpGhXK37/b7rfVxVm1JKiVUvx5Ylcm9kjh79/t4OtN/lmpIAKUGwskQu0V1ABJXZLoe1df1r++nsyddUsYa63JOZDD4j8v5oVWL/Ddb74jIj6Cq6Zdxe/3/p7BDwwmrMn5E/vo5tHkZ4T4RIK6NCcTuz2McH+9HLHDxXBqK+QdrXGzmJQYijKKcDZAuyZbts03+0+fI65NHJFJkRxbcwyG3W9MrDN2e3tYdVLxBdpSkunSF263xCTDrXNg3yKY9RuY8zC8Ngz+0wVWvGB8YR56H+rB7Uyb/3t++PlK6HE1xLVy78SEVFALDzD6T2f5XP/pyu4Y3hYNvLvSfwsj3ll5gNYJkS4tQlibmwe1Zu/pQn7cl1XvfeVaS1h7MNvl6ukK7ZOi2Z9R6JXvO06n5lCWlbbnVEde3isNa4njTEW4vwmJC/GtxIirLT5y7IQ1CcMS5PkUSIcJHRh4/0DWvrSW3XNcmHd0mQwlRbBvscfH4jHWbEqc0aA8n9T3tlId6/2rPq3Z6IoWHyZXUFcY+oehDLxvIGv+u4ZV/15V88bdr4TtX/t1gYEuyKAgL9z7VwC0H220THF45qRkdEo0QEC2+ZAEtUm01uT6UA/qczUJD+GBMR1YvT+bhTu8fPbQTbVVUANYLIr/XN2TgW2b8vAXm/lhr/eTZ0IAplZQA4x8aiQhkSEsfLTms7Vl9jKOrDrCqn+vYvqU6Tyf9jwvtnuRFX9fQevhrbltxW3csfoOul3TDUtw9R8Z0c2jyT0R6v3JHlCWm4XdHk6Ij54grFVwGHSZBD/PqHGz6JRo0FB4yvzJScUK48Z/fLP/NBgnJlsMasG+BfsoJRqG/B4W/9Xbw6oTI0GtUdZMcyqoK0QlwM3lrTriW8Ok/8KjB+G2OXDRn41qj4g41xZKrE18G+OEi8NzvWhF47M/s4iMAt/rP11ZWlwEl/VM5bO1h8mz+t/rfePhHH46nMttQ9qcaUlRHxN7pNA0KpQPfzxU730t3nkah1MztmvzOj2ufVIURSUOTuUX13sMdXUi305xmfO8iu/+bZqSFhfhv20+fK2CuijDpc9Le67d1ETVmGfGkNwzma9v/br2NUIsFrjwYd/uRW3NorgsivDYcFOS+t5UFhSHstf/xFm92LIp1dE4ShwNUkENxjx53PPj6HZNNxb+YSGbP9pc/cZxrYzX6Ne/A6d/tpLQBacpKor0fgV1THOIa+mxBcNjUmIAAnKhxMB6p/EhhcVllDk1cRG+04P6XNcOaEW7pCj++d0OSv2wf01WUQkhQYrosJoXmQsPCeLNm/vRLjGauz/awPbj/r94jQgAJlZQg7GIzbDHh7Hrm10cXHrwzO35x/LZ9sU25j84n3cGv8Mzsc/w7tB3+f6R7zm56STtLmrHJa9cwr177mXqV1NpNayVS5VqRi8sjUYbFSFepAuzKXH4afV0hR5TYcv0GjeJbt5wZ8+tWdazW3z4aAU1wOAHB1NwrIA1/1sDA++GYxvhqGcmhA3BnmunSRKooFAIMfl1HBEHE/4FQ+6FFv0g+Pw5S0q/FHL255xZKNMtwaEQkwI59U9SicZr9X7f7T9d2V0XtsNa4uDjNf73en/vh4PEhAVzVb+WHtlfeEgQ1/Rryfc7TnEir35tT77fforkJmH0SIutfeNK2icZn5Xe6EN9KNOYD7VNODtBbbEoJvdKZcWeTDIKGj5xXl/+XEHtyf7T5woOC2bKp1MoKSph1i2zau/z2+1KKDwFB1eaNqZ6sWVjL44KqAUSKzjDEggqq31BclNZs7HZjNg2VAU1GH3TL//wctqObss3t3/D3vl7q9944D2gnbD2jQYbnycpWxZFRT6yyGf6GI+1+ZAKalFnueVVE77Wg7qykCALf5zQhf2ZRXy65rC3h1NnOUUlxEeGupQ8i40I4f3b+xMTHsyt760l0+Z/CXkRYGy5da6gVkGqTpfYDbp/ELGtYpnz6znMuHYGL7R6gRdavMCMa2aw/rX1WEIsDLx/IFNnTeWhkw/x+32/54qPrqD/b/rTtH3dKmSjm0fjtGuISPR6FbW25lLq9L0F/Oqk1RCjH/CpbdVuUnH2vCEWSjyrB7U1GyJ9N0HdZmQbOl3WiRX/WEFRrhNGPAoLn/LdCqVz2HPtNE0uMxao8QGp/VIBOL6hnlXUCdLmQ9SPL/efrqxLShNGdEzivR8OYC91eHs4LjuRZ+O7n09w7YCWtRZ/1MUNA1vh1Lpe3zXspQ6W7c5gTJfkOld2t/NigvpAlpHErapn9hW903A4Nd9uqed7qxeExIVgzbDWnoBtKIUuJqhz7aZXUiZ1TWLcC+PY//1+fnzhx5o3DgqG4Q/B8mdNHZPbrFlYrT7QHsEEOjKB8OACSr11pYvTCfY8igqMwgBXC5A8JTgsmKlfTSWpWxLTp0yv/ko5SxBc/qrRL93fWn2UFaPKbBQXh/nGa9iTCeryIiWpoBYuy7MZb3a+2oO6wkVdmjG4XQL/XbibfLt/XYqYbS2psb3HuVJiI/jg9gHYShy8v63ExJEJ4QI3KqgjEyLr1HczJCKEsc+NJXNnJkd/PErLIS0Z999x3Ln2Th7Le4zblt/G2H+NpfPkzkQnR7vzU5xR8UHpCImHIm9fMpdDGfX7ebzOYoELptRYRV1x9tzsyYl2ar/pQV1hzL/GUGotZelTS6HXDUaFkgdXzzaTPddOXFIJRJnY3qMOUvqkANS/zUdTWShRuM8f+k9Xds+I9mQWljBzY81rCfiSD1YZixnePLiNR/fbsqnRz/qztYcpLnMvYb9qXybWEgcXd6tbew+A5CZhRIUGsd8LCyUezCwiLNhC8ybnJ0c6JMfQLbUJs/ywzUdofCjOMie2HB9ZDNTFCmpbjs3UCuoKfe/qS+crOrPo8UWc2Hii5o17TIXsg3B4jenjqjNrDkUF4b5RfephlthkIiNt3rsSoDgPQqOx5hg5iYZq8VFZWJMwbph7A1FJUXxyySdk7anm+1tCe2Nh7Fm/Aaf/nHSlKJOy4Hh8ZpHPlgMha79xQq2egsOCiWgaIRXUwnUVFdRxkb7b4gOMPkR/mtiFXFspryyp4fIOH5RdVLcENUDH5BjuG9OBrZlGJYYQXuNGgtqdyUu3a7rxeMHj3H/ofq76/CoG3TeItP5pBIUG1XlfNamo5i1V3l90RJXk4wiK8eoYPKLHVKMPdTV93ypOKpg9OSnOL0Y7tV/0oK6Q2DmRfvf0Y8MbG8jYnQOj/2xUUftBDz17rp0mTYt9poI6Ij6CpulNObG+li/ZtZEKalEP/tB/urJB7ZrSs0Usby3fj8NXqkxrYC0p47O1hxnXrTktm3q+ku+mwW3ILCxh3taTbj1+wbZTRIcFM6hd3T97lFK0bxbtnQrqTCutEyKrrfq+oncam4/meWVs9REab3z/8ok2H04nWF1bVNieY24P6gpKKSa9NYmoZlHMuHbGmcWPqxQUYizqvPw508dVZ9YsCvNCfCO552HBTZOJirJ67zVszYaIuF9aODZgi4/KYlJiuHH+jaDh43EfV39V5sB7QFlgzesNO8D6KMqgFKMllE9UUAeFQNvhsH+JR3YXnRItCWrhulybcTYs3odbfFTonhbLFb3TeG/lQY5kW709HJfluJGgBrhpcGuSIhT/mLPDL740iADlxiKJ7l7+FRpt/omyigpqe1kTryeogxz5OEPq1qPSJyV3g/BYOFz1KttBoUFEJkaaXkF93gKdflBBDTDiyRGERoWy8A8LjUUng8Ng60xvD6tW9lw7TWLtPlNBDdRroURHqYNV/15FkaO5VFALt208ZPQK7d/G9997wEhQ3T2iPQezrCzY5l5StiEt3ZVBnq3U49XTFYanJ9ImIdKtxRIdTs3CHacY0SmJsGD3Tq63S4xi3+mG/yJ/MKuINgnVtxy7rGcqFgVf+1kVdUic8f3WJxLU9lwIjapyDYXzNzW3B3VlkQmRTPlsCrkHcpl5/UycNa331PtGo6XbsY0NMjaX2bLJzwkhvKkPJPc8LCQpzbsJalsORDbFmmnMsRu6xUdlCR0TuO7b6yg6VcQnl3xCcVV98S0WmPwyLP83ZPpJUWNRJiXOJgC+cxVA+hjY871HdhWTEiMtPoTr/KEHdWWPjOuExQLPzt/l7aG4rK4tPiqEBQdxTadQdp0q4Iv1R0wYmRAuaKAK6oZSkaC2FUcalSxeFOQsRIcFQIIaoMfVtbb5MPvsecXieGcmz9ZsiPTtCmqAqKQohv9pOLu/3c2BJQdhzFOw5Gko8+0WT/ZcO9HRVoj2nQR1Sr8U8g7n1fmLnNaab+/5lu8f+Z7tS4ulglq4LbPQ+L1NjfPdz8FzjevWnNYJkby+bB/ax3vgn8o3Kjw71rPdV3UsFsWNg1qz4VAOf5m9jZ8O57gck01HcsgsLOHirsluP3/7pGiO59mxlpS5vY+6cjg1h7OstK2i/3SFZk3CGZqeyFebjvn8a6SykHgfSlAXZbh0QtdR6qCksKRBKylbD2/NhJcmsHfuXhb9sYY2Y8FhMPQ+I/nnQ7Q1i7zMoICsoA5PSfNuiw+rcTWiNcsKyvsVvi0GtuDqGVdzassppl85HUdJFa08Etob67p87SetPooysJfGoCyKsBjX13AyVfpFsG+xR67olApqUScVPahjfbwHdYWU2Ah+Nbwdszcf56f/Z+/N4yRJ6zr/95P3FVmZdVdl9VHdPT3DMPfFHMD0zAACIocCghesB6voD8VjvdZd12MVFWQRRVB31RURRBAWEGaAaWBOmPvumZ6+z6rKOyMi7+f3R2RWVXdVd+cReUXE+/XqV3dnZUZERUVFPM/n+Xw/3yMD7mjbAtVanYxWId5hhMp1M26u3Rbng3c9j1rq32DVwWGVDhzUwyxQB8eDCI9ALQRBHZxAXavU8Lk1RCg2sGMwlcvfBs9+EaqbuBkwFgZ6LlA3yg/XIj4yI+GgBnjZ+17G2LYx7vzVO5HbXg4Tu+Dhvx/0YZ2XYqZIMFRoqVy5X3TaKHHv7+7lsf/9GADLJ4KQP3XOa9nB4XxktDI+j4ug19x4ql7idgl+5hU7ePxYlgcPpgZ9OOclrfV+3vKOG7by+stn+eQDR3jLX93Hyz9wN3/45WcuKFbf+cxpPC7Bnos7X7TbOW0I7/3MoT6Z1SnX6ps2SFzPW65OcDSl8/Dh4Z9/NfHFhijio7DU0vOylDWePf1yUDe57mev47qfu477/uQ+nvinJ879xmvfBccfglNP9e/gLoDMr6DmrdkkMbhlC+GwRuH0gAS+dQ7qYDyIyz14We6i113EG//ujRz4+gH+/d3/vnkT1BveAy4PPPCx/h9gu6jLaKUwgVgA0WZz3Z4R2wqhCTj5WPufldKoBE0dBBoC9anCSC1utsLgfxMsSlotE/K5Oy5FGwT/+dadTEb8/OGXnx36Cz3TWACY6DC6oJm9vZwv8fFvOY4uhwHQYZPEYUW4BL64j3wmMFCBupgpEggUEeHREFAvyNgCTL8UXrhz0y8rc8q58+JMYmPEx/BnUDfxBDzc8Ud3cOrRUzz+fx+HO/47fOfPoDScjgNZl5RyJUL+AkQ6dwuazdzVcyDg5MOt51A/9PGH+PbvfZurf+pqpi+bJndMN67n9KHeHeiQI4R4vxDiaSHEU0KITwkhAkKIvxdCHBRCPNb4c1XjvUII8REhxH4hxBNCiGsGfPgDJa2ViYe8I9EgcT1vvXaBibBv6MeaGa1MNODB00ORJOL38Fc/ei3f+6+v4oNvu5JLZhX+4b7DFxSr73rmNDfumOhKPN85ZQjU/cx6PtQo3T9fxAcYTvug183nRyjmwzvmBTEkArW63FLPhmZDx0G4gV/7v17Ltlu38cWf/iLHv3eOn7M3CDf9wnBlUatJNM2aTRK9sTgul6S4NKDG7noKgnFjfjeg/OnNuOpdV3HHH93BU596ijt/bZO5RzPq4zsfhJUX+n+A7aAuoxZCw7fActGr22/crq7Ap38MPvceeOYLgDEHrJVrq5WuVsERqHtERq8QGxH3dJOI38Mvv3o3Dx1Od9zEpF+k1GbGd+fZutdsjfOGK+b4xHcOcCp7nuYVDg5mI6UhUAdiLb29olWoFqtD7aAG8I37yK54B5pBXUwXCQZLuKOj0UirJa54Gzzx6U2/1I/V89UGLs0FkhHJoG5y2TsuI3FDgm/+9jepjL0EFl8J9//loA9rU4rZIkjwu3NDFfHhj/qZ2D3Rcg71vi/u4yvv/QoXvf4i3vDXbyC6JUrueM5wsNs0h1oIkQDeB1wnpbwMcAPvaHz516SUVzX+PNZ47XXARY0/7wFGwK7UO1Jq51VzgyTgdfPum7dz975lnjuVG/ThnJO0ViHeQWxeJ4wFvfzQtQv83buvP0Os/vv7Dm0Qq/cv5TmwrPKal3a3YLdtIoQQ/XVQH0wa+zpfxAdA2O/hNS+d4UtPnKRcHf5GvgDCLQhNhIZHoG6lQWKjUWG/HdQAbq+bt/3r24jMRvj0mz997tzY634SDt9LUOus54PpFFNoWtCSER8IgV6KUEstDWb/zYiPleGrkL3l12/hhvfdwAMfeoD7/myTPjjjO2DPb8C/D3nUh7pCIRccvgWWXXfA/q+3/v4X7oKP3WKc91f/PqTXHNSA5WI+HIG6R2S0CmMjOJB++3UL7J6J8MdffW6oB0lNgXqiy8H0r7/2Eup1+LM7Ryd728EClFWjk6+3tUFy08E6zA5qAO+4l9Qp90AFaj2lEwgU8cYnB3YMpnPpm+DAt3BXNzaxjcxFer563tx2IB4wFldGJIO6iRCC13zwNeSP57n/Q/fDbb9tdCEfoNP/XDQn0D6RGaqID2i9UeLR+4/y2Xd8lvnr5nnrZ96Ky+MiuhAldywH4zvtnkPtAYJCCA8QAs53Qt8E/KM0eACICSHm+nGQw0hGK4+kQA1Gc+6g180nvn1g0IdyTjJamdgAzu96sfqh//rqDWL1D/zFvQC86iXdCdQBr5st8VCfHdQqAa+L6RayT998dYKsXmHvvv6KZV996iT/4/89TbHSvsgUngmjnh4WgfrCC7rFdEOgHpCbMjwV5p1ffCfFbJFPv+XTVIubREz6I7DtFpT8EDShq5YRtRKlkn/4BD6TKFUV6rkBCdS6MZYexgpZIQSv/fPXcunbLuWu/3IXxx48tvFN1/8MuH3wwF/1/wBbRV0ml/EN3wLL1puNpqj6BWKdyhp8+Vfh//0S/NDfwGt+H6Z2r0Z8KHMKgOUaJToCdY/I6uWRc1ADeNwufuv1L+FwUuP/PtB+p+1+kW46qLsUqLeMh3j3Ldv5t0eO8fSJrBmH5uBwYTqI9wCGboX9bPzjflaOCdAGVC6HUcIZDJbwTAyXuNcVwTiMbSGob6xsaQ5Oerl6riU1ArGAkY9X0UEIoxR1hNj68q285Adfwj1/fA+F8hRc/taha0YETYFa4q2lh8pBDYZAnT+eP+9AeGXfCp96w6eIJqK880vvxNd4RkcXoqinVepji7Z1UEspjwN/BhwBTgJZKWWzfvYPGzEefy6EaKpZCWB9J+djjddsSVorEw+P3rgaIBby8Y4btvDFx05wIjOcpbjNCJVBsplYffPOCd5+3YIpzTF3ToV5sY8O6kMrKtsnwrhayD59xa5JJsI+/v2x/sV8LOWL/ObnnuShQ2ncHeSzhqfDw+GgLixB+MKmhEE6qJvMXDHDW/7xLRx/8Dhf+tkvbV79Fp3HVx6CzHo9Rc2tAGL4IhJMoizGkIMy1ejp1SaJwxTx0US4BG/82zeizCl8+We/TP1s4+Jq1MeHhjfqQ10mu+IbvuvXG4BtN8GBved+z4nH4BN7jOvk5+4xqj8B4ourUXlWdVB7Bn0AViWjVdg13ZtO2L1mz8XTvOKiST7yjRf4oWsSA3FUXIhkQ6AeN6Ec8edv28W/PnSUP/zys3zyp182cvmGDiNIBw0SYTQc1CePglSXEVIaQmafKaaLBAIlqpPDk99rCtF5/KWNwn9k1njO5E/mmb6sN4KmntRHMn/6bF71gVex7//t4+7/djc/8KFfg7+8AW78WYhvH/ShrVLMFPH5KiBc4Dt/WXi/aTZKPPnwSZQ3KBu+nj+Z55Ov/SQuj4sf/eqPEp5aO/7oQhQATc4RSX2pPwc8ZAgh4hiu6EUgA/yrEOLHgN8ETgE+4BPArwO/18Z234MRAcLMzAx79+419biHhaWMytZAqe3vr1AoDMU5ucxTpy4l/+Nfvs07L7mwo7bfnExqKFIdqvM7Afz4doD2j2szfMUSL56u8s2778bVh/HJ00c1EhFXy8d+zWSdO58+xZfvupuwt7fHJ6Xkw4+UKBRrvHOxzL3f+XZbny8UCqioFA4P/vfrssPPcao0x4p6/uM48YBRsPLos4/iXx7g7+A4bHvXNh7/h8cphAssvG3hjC8vLOu48icHfl7DhcPsLhvC3mP7HiOQHjKRrwua9635sp+6ujSQc33F8Rc56jpKYUllRVsZ+M/7XGx5zxae+d1n+OT7PsmWt2/Z8PVE4q1M/+OP8ujVfwTC6L02LM/dG1PHWDom8U2nhuJ41pOQ24h855/Yt3yWHiBrbDn672w5+gX27/opliZvhQcfX/2yqFd4RfY43/nm16mWjOfE4/c+TnqruU12B/kzdATqHpHRK0Mp7LbKb73+Jbz+I9/hL765n995w6WDPpwNpE3IoG4yFvTyi3dcxO/+v2e4e98St19iMWGrC6SUlGv1kWr2ORK0K1CvnNWkbkjxjfuolD3g8kIpB4Gxvh+Dnizg9VbwT1sogxogOoevsIlA3YfVcz2lj2z+9HrGd41z/c9fz3c/8l1e9r6XMX3De+Du/wk/+IlBH9oqxUyRcFilHpgcuhK32atmES7BiYdOsPsNu8/4WilX4p9f/8+oyyrv3vtuxneeuYjRFKiz2iSR5PDGHPSYVwEHpZTLAEKIzwE3Syn/qfH1khDi/wC/2vj/cWD9bHCh8doZSCk/gSFsc91118k9e/b05ugHSL0uUb/2FV66azt79lzc1mf37t3LsJyTe3KPcefTp/iTn7iFsQG7lc+m+M2vcsniFvbseWlbnxum83shTgSP8LXDT7L7qpexEO/tgn+1Vid511d583Xb2bPnkpY+E9+Z4a6/vJdCbCfff/3Wnh7fp757hMeXn+S/veFSfuTli+19eOUFvvPYCyxetsjjjzw++J///j9g8mW3wdYbz/u2ex68hxd4gdtffzveAf/+yVdK/jX/rzz3189x4xtvZNf37Vr74pMrLH37fw/+vB78DtlHjGf57a+/HV9kdHWNs2net458838TFClufeWtiA6qCLpinyR65S38e+mrXHz1xbx8z8v7u/8WkbdKPvW9T3HoHw/xxt98I2Nbzprb1V8J//hG9viehlveBwzJc0FK5Hfy5JZ9vOyynYM/nrNJboG//37mbr11zdCVOQKf/1lAwM/fw6WxrWyqwj0xz61XLsLETr4b+S7TwWnTv79B/gyHbf5jCaSUZLUKsSEbfLbDS+aivP3aLfzj/Yc4nByC8q2zSKplFL8Hn8ecS/hHb9zG4mSY//mV56jWhjd7u9/8/X2HeMUH7h7qPPKRRE9DMNb6289uUjek+CcMR0rNGx9Yvm8lvUKp5CM4Plzu066JJjZ1UK9GfJzqoUCd1NfyB0csf/psbv2dW/FH/dz1a3fBTb8AL34TTj016MNapZgpEoloQ5c/DeCL+Jh8yeSGHOpaucZnfugzLD21xNs/+/ZVp/V6lIRxnaZXwqCtGFEx9uMIcKMQIiSMUq07gGebudKN194MNC/ILwI/IQxuxIgEOTmA4x44uWKFumSkx9UA73nlDtRyjX96cLgi9MrVOmq5NrIZ362ys1HV0Y+Yj5PZIpWaZLGN0v0rFsbYMRnm84/2NubjcFLl97/0DLfsmuDdN29vfwNf/mWiuX2Ep8OUsiWqpU2ylPtJq00S00XcPjee4OD9ecIlePM/vJnpy6b5t3f8G8kX1o3vzlEx13f0FKVKBJfXhXdE45UuSHiSUEjraR+Xc6Kl0YrG2HqYDUhCCF7/0dcj65Kvvu+rG9/gcsEb/wLu+XNYfr7/B3guSnlwuamUPMOXQQ0wsRM8AVh6xujv88Rn4BO3wUWvgXd9EWLnWaSML57RKNFqER+OQN0D9EqNcq0+khnU6/mV1+zG63bxga8+N+hD2UBaKzNu4kqu1+3iN153CfuXCnzqe0cv/AGb8MiRDEv5Eo8dzQz6UKxFhxEfw96kxDtu3PMqIjYwgbqeS1IsBXH7LOb6j87jL208p76ID1/E19MGGVpyXYfxNhdXho3geJBX/s4r2f/V/bz47WV4xa/AN/7HoA9rFcNBrSGiw1nJ02yU2MzNlHXJF37yCxz4+gF+4G9/gF2v3bXp55oO6txx1Rh0Nxq82Akp5YPAZ4FHgCcxxuCfAD4phHiy8dok8AeNj3wFOADsB/4GeG+/j3lYSGsVwJxYt0Hykrkot+6e4v/ce6ijpnS9IqM1qxJHe95yIXY2ohdfXOr9ZP7giiGCb59ofbFcCMFbrk7wwIEUx3uUVV6rS37lM4/jdgn+9K1XtpSPvYHYNgLFJcLTxvemLW9s4NxXCi0K1JkigVhgaKIcfREfP/zvP4xwC/7ljf9CMWtkZKPM4S8NQQa1Zoyng/Hg0Jwzs3HFZgiFdAqnByDw6Wl0zRhbD2MG9Xpi22Ps+d09PPfvz7Hvi/s2vmF8EW77LfjCe6E+JM82bQXpN6pphy6DusmuV8GTn4V/+yn4zgfhxz8PL/8lcF1gDhvfvppDrcwpTpNEhwvTHEiPutNjOhrgP79yJ1958hQPHRqCB+U6Uqr53dxfc+kMNyyO8+G7nidfrJi67VHl4IrxwL53/2DERstSzLTdJNGn+IZedPWNG7+T5XrUcEkOgHo+Rbky3EJ+R5zHUdPr1XOrZFA3uf7nrye+I86dv3on9avfDcvPwaF7B31YQMNBrai4YrODPpRNmb9uHvW0Sv64MRj++m9+nSc/+SS3/+HtXPWuq875OX/Ujy/iI3c8B+M7IWXbRon/XUp5iZTyMinlj0spS1LK26WUlzde+zEpZaHxXiml/Hkp5c7G1x8a9PEPirRmXqzboPnPr9zBSqHE157e2PR2UKzNW0b//J6PibCPaMDDgZXei1GHGtWni5PtVXO96SqjD+oXetQs8ePffpGHDqf5/Tdd1nnjydg2AsXTqwL1QBslllWQNfBv7ItwNsV0ceiEqvhinLd/9u2k9qf43I98jnqtDsqc0SSxPuDqVS2JqgWH7pyZiWdilnBY6/81XC1DVUfNGFLcsFfIAtz4/huZvmyar/zCVygXyhvfcN1PGY7g+z/a/4PbDHWFqteYrwylgxoMgfqeDxkLbO/ZC3NXtPa58cVVo4cyrzgOaocL03QijAVHf6D3M69cZCbq5w++/OzmnYYHREotm+6kEULwX7//JSTVMh/ba8/J83qklBxslEHe96IjUJtKmw5qPamPxOClKVDrpbBRcjkApJqmIi0W7wGgnFugVuZ6NzipVWqUciVLZFA38fg93PHHd7D05BKP/d9n4bbfhq//d6PEbsAUM0XGxkuISG8aXnZLM77jxEMnePAjD3Lfn9zHde+9jpf/5vmzE4UQRBei5I/ljbLGpPOMdWid1b4jI+6gBrh+cRwh1hy2w4CVFgDOhxCCndMRXuyDGHVwRSXkczOltNeMb+tEiOu2xfn8I8dNn3c9fSLLn9/1PN9/+RxvumpjFFPLxLcR1NcE6oG4T5s04z1acPg2HdTDxvY923ntR17LC195gW/+9jfBG6DqCQ3M6LGKlkbL+4e+erMbfDPzhMN6/wVqPQ2BGFojWmSYIz6auL1u3vDxN5A7mmPv7+7d+AaXC970UbjnwwS13sYUtYS6TMUVA4a4Avmi18B7H4DXfQC8bRxjfHHVQR2ZizgOaocLk7WIgxog5PPwK6+5mMeOZvjSE8MTfZjugUANcMVCjDdfNc/f3XOwZ+V1o8JyvoRarjEe9vHokQzqoDPmrEQHER8jMXjxu/GP+VHV0MAEaooZKkQGs+9ecj4H9WzvBifFtFFyapUM6iaXvvVStty8hbt/527Ki2+C/GnC6pFBHxalTIlovDSUGdQAM1fOINyCez9wL1/9pa9yyZsv4XUfeV1L5b/RhSi5YzkY32FbB7VDZzQdvlaIoPC6XYyHfCznS4M+lFWaxhorzFsuxM6pCC8u98FBvaKybSLcUTTCm69O8MJSgWdO5kw7nmKlxvs//RjxkI8/ePNl3UU2NCM+ZobAQa2uQHiypbfqaX1onZTX/9z1XPufr+XeD9zLk//8JGXfBOROXPiDvURLks/4hvacmUFgfoFQaAAOat0YS2srRjzOsEd8NNly8xau+ZlreODDD3Dq8U2qgOLb4dI3MZ56tO/HtgF1mUrdiJcb2ioAlwumX9L+58bPFKgraoXSEI0pusURqHtARreOQA3wQ9cs8JK5KB/46nOUqoPPFZJSkuyRQA3wa681um3/6RBmb/eTAw13z9uuW6Bal3z34HDFvIw0FnVQQ0MszfpBHUyDF1HOUXdfuNRz5AiMIaSE4sYJay8jPlbzz1cjPjIj76AGw0n3mg++hsKpAvd+8AGYfgmB4uBL7ouZIoqiw5A6qL1BL9OXTXPsgWNsuXkLP/jPP4jL3dpQclWgntgJyQM9PlIHK7EmoFrD4Tul+IdKoF5dALCAQ/1C7JgKs5Qv9TzK71BSa6tB4nq+//I5vG7Bv5vYLPGDd+7j+dMFPvDWK7r/Oce2Dk/ER2EJwq09L4fVQd3kdR95HVtfsZUv/tQXUatRyA/YGKanyKW8w+s+NYFgYovhoO53FYCehuA4erLhoB6hc/yqP34VwfEgX/rPX0LWN6nymNhFUB/8eBp1mWLVmA9abpElvt2I+JASZc74Hq0U8+EI1D0g03RQWyDiA8DtEvziHRdxLK3zyOHMoA8HvVKjVK33TKBOxIL81MsX+ffHTvDEsUxP9jEKNMtP33btFnwel5NDbSZtinyj4qAGQ6DOJn0Dc1C7qjnq3uhA9t1ThKDkH990whKZi1AulDfPhOuSZmfztYiP0c+gbrJw4wIv/eGXct+f3kfJN09QPz3oQ2o0SVRbnnAPgt1v2M3sVbO884vvxNtGM2hlwWjkUh9bdBzUDm2RUsu4XYJowDPoQzGFKcXP0lAJ1MazY9wiCwDnY+eUUWF1YLl3omq1VudoSmurQeJ64mEfey6e5guPnaC2mQDUJg8cSPK39xzkR1+2ldsuNuHZEpnBXdPx+Sp4Ap4BO6hba5AIw5lBvR63z83b/+3tICB9MjgUDurMimuoz1m3iIBxPygu99mE1ahG1JIa/jE/bu9w9xhaT3A8yGs++BqOP3ichz/x8MY3jO8gqA9B1b26glYyfr6Wu4YDY+Dxg7pMZM74Hq0U8+EI1D0go1uvVG73jHHxn8wOPvYipfZ+IP1ze3YyEfYNXfZ2Pzm4ouLzuNgxGea6bXHufXEwjlhL0oGDelQEamVOIX3KPbDsPI8sIP1jA9l3ryn5JyG30VG1unp+yvzV8w3uDgtkUK/njj+6A1mTPP+d0tA4qEOBwtA6qAFu/4Pbec8j72nb8RNNRJE1SUEfMxbpStZxezj0lrRWIR7ydhdLMERMRYbLQZ3RKvg9LoJD3ojZDJoCdS9jPo5ndKp1yfY2GySu5y1XJ1jKl7i/y7F3vljhVz7zONvGQ/z293dQSr4ZLhcl/xQie4zwdBhtSTNnu52gLkHkwgK1lHLoHdQA4akwY1vHyGXDA3dQSy1FdskzUu7eTtDLEWrpPhsU9BQE4+gro1Mhu54rfuwKFm9f5Ou/8fWNc4/xxSERqJfRtBAujwtfxIKLr41GibZ0UAshtggh7hZCPCOEeFoI8Ytnff1XhBBSCDHZ+L8QQnxECLFfCPGEEOKaXh38sJLVKgS8LgIjtBp2IebGjIfTyWxxwEeyJlD3shRRCXj5pVfv5rsHU9z5TO8fWsfSGh/46nNDlfN8YFllcSKMyyW4Zdckz57MkSwMz4RqpGlD5KtX64ZoNSIDmPBsmNQJYeQC9plqsYrfqyGCsb7vux+U/JtnEvZy9XxDxIdFMqibxBfj3PC+G3j6zgLe5OCbuuhpnYA3P7QZ1E06EQqjC0ZlQ+54oVGe6MR8OLRGRitbJt4DGhEfhdLQGCDSatnyDRKbbJsI4XGJnjqomxWIi10I1LdfMo3i9/DRu1/oqifO//h/z3Ayq/OhH76KkM+8CoRiYBoyhwlPh4cgg/rCz8uKWqFerY+EkzKaiJJJhgfvoFaTaFpgJM5ZN5TrUWR+qb871QyBWktqI5M/vR4hBK//q9dT1at87Ze/duYX49vxl5ahPuBYWHWZQj5IIB6wzOL2GTQaJdrVQV0FfkVKeSlwI/DzQohLwRCvgdcA6zsLvQ64qPHnPcDHTD3iESCjVSwT79Ek6HMTC3mHy0Hd46y8d16/hV3TEf74P56jXK33bD/PnMjxg391Hx/b+yJ37+vzA/I8HFwprA6ub945AcD9BxwXtSm0IVDr6dHp8AxGxEdm2Yss9P9a1tM6gUAJoVhHQF2PIVBvdCX0cvW86aBei/iwloMa4OZfvZl0egx/YfAO6lohhxB18FsvR70pUOeP540caifmw6FFUmrZUvETU4qfcrVOrjgcpoS0VrFU1ef58LpdbB0P9dRBfaghUG/rwlgQ8Lp5/6t38/DhNHv+9G5++/NPti1Uf+3pU3z24WO8d88urtlq7nNbD85AeggE6hYzqIsZw2A17A5qACWhkD4dGKxAXatARaVYDFgvv/csqq5Y//vmrGuSOCrzu7OZvHiSl//my3nqU0/x4p3rxnPeIBWvsmnFZ19RV8hn/Na9fuPbIX2QQCyA2++2l4NaSnlSSvlI49954Fkg0fjynwP/BVhvAXgT8I/S4AEgJoSYM/ewh5u0VrbkQG82GuBkZngc1L0WqD1uF7/1+ks4uKLyzw8e7sk+7ntxhR/++P24hMAl4PlTw7H6Va3VOZLSWJwyBOrLE2Mofo+TQ20GlSLUq+BtbeKyQSAccpQ5BVUNGe6Aeu8WdjajmC4SCBRxRyf6ut9+YQjUGwd8kdnerZ7rKd0oj1N8IKUlBerwdJh8cYKIa8X4HgdEvVrHKzNURBws6PZYdVAfy8H4Dkg6ArVDa2QsJqBOKX6AoYn5yGj2cVAD7JiK9FagTmqEfW6mIv6utvOTL19k76/dxtuv28JnHjrallC9nC/xm597kpfOR3nfHRd1dRybUQzMrDqoC/1uMLcedRnCkxd826rZYwTEKiWhkD4WQA4y4kNPN/q5CMtHfNS8cdyVfgvUa00SR2V+txkv/42XM37ROF9+75ep6GuNZ4uBucFXyanLZFZ81q0AaER8CCFQ5hR7CdTrEUJsB64GHhRCvAk4LqV8/Ky3JYCj6/5/jDVB2xZk9ApjbTQOGhXmY8Ghivjoh5vmtounuWXXBB/+xgt875C5DRS+9MQJ3v2/v8fsWIDPvfdmtk+G2Xd6OATq4xmdSk2uOqg9bhcv2zHBvfsdB3XXFDOGwNeiALUhYmHIicxGqNfdSHfQ+F77SNNB7YldeLIyipwr4iM4EcTldfVkcKIlNYLjQaM8rlwAt89ozGEhhBAEpycpVwNQGFyjxFKuRCSiUXFbswIgOBHE7XcbAvXEzsFPXhxGhrTFBNRhE6jTWpl42HrzlnOxczrMoRXNlAaEm3FwRWX7ZNiUsvJELMgfvuXytoRqKSW/8W9PUChV+fAPX4XPY37LqdWIjxnDQT2wuBp1uaWeDaPkoI4momQzYcgO0EGtJam5jX4ulhX4GtSDE/jdeSpa5cJvNotmxMeKRnByNOZ3m+EJePj+v/p+0i+mueeP7ll9XQ/OQurg4A6sXgM9TXbZbd0FlvgipI1zHJmLWCrio+UwKiFEBPg34JcwYj9+CyPeoyOEEO/BiABhZmaGvXv3drqpoePEssZM2NXV91QoFIbunNTVEkdWqgM/rseeL+MS8MiD93Q8+Gvn/H7/bJ3nj1d5+1/fz2u2efih3T587u4GnXcdqvDPz5W5KO7iFy+v8/xjDzLuKvLYQW3g5xfg8WWj7DR79Hn2FgyX24ys8PVUmX/9yjeZCo1mf9Vh+L0KqUd4ad3H91o8jpV7Ddf6s4ee5djeYz08su4pFAo8e/pZANRqiGfv/gpaeKFv+0/en+T2YImHT5zmxSH4PTIbVy1E4cTzPLTJ9+aNe9n/2H48e83LmAQ48twRZFCyd+9eAvpprnKFeMCC57YWqZHJj/HcNz9PbsykRlJtop/QCYc1smU/D1vwHAN4J7zsf3g/UzdVWTz4CI+a/H0Owz3ewVyklA0B1ToC9XRToB6Svh6GQ9065/dC7JyMUK7VOZbW2DbReU70uTiUVLksYW6z5qZQ/d7bdvFXd+/nMw8d5TMPHeWHr9/Ce/fsYj62JsJ8+ntH+cZzS/zOGy7lopnexEUVAzNw4muEp8PUK3VK2dJgxF91uaUM6mK6IVCPgNiqJBSKxQBUS0YzYX+k/wehpahgVD1ZVuBrICJThMOHUZdVYtti/dmpnqbmjVEulEfaQQ2w41U7uPxHL+eeP76Hy3/kciYvmUQPDthBrafBH0VLlRm/yKLX77iRQQ1G9fLKc9apcm9pJiuE8GKI05+UUn5OCHE5sAg83hAIF4BHhBA3AMeBLes+vtB47QyklJ8APgFw3XXXyT179nTxbQwXlfu+zq4t0+zZc0XH29i7dy/Ddk6eqr/A3qPPc+MtrxhoA8ivpZ5gfGmJ2267reNttHt+3/TqKn/0H8/yTw8c4QXVz5+9/cqO8tzqdckHvvYcn3zuAN/30hn+1zuuXj2Xj1ae5yPffGHg5xfgxXsOAs/wg69+ORONEsXE6TyffO7b1Kd2sef6rQM9vraREj73M3wr/g5uHfTv1eH74FSi5evv0YOP8jRP8/LXvJz44nBHK+zdu5frb7ieh3kYPBPccNkO2HZz3/b/+JHHCWSKXHv77cRfurNv++0X996ZIXI4t+m1s3/7fgIyYPpz47D7MKEtIWO7Jx6Dw7ND92wyg9RLU2RSY1yzPQ5X7hnIMZx85CQPR/6WyPR2S55jgEMXHUJWJFfd8X3w8f9l+vc5jGMnh+5QyzUqNUncShEfEUMkGwYHtZSSjF6x1Pm9EDunDVH6xeWC6QJ1pVbnWFrnB66YN3W7Tc4Wqj/9vaN8+ntrQnW1Jvn9Lz3DzTsn+E83b+/JMcC6iI8F4/ypS2r/BepaFfQMhC4c6zZqDmoQVLxT+PInwW9+RMsF0ZKUa4YwPgqxKN3gic8SCmmop/soUGspimXjvI5ik8Szec0HX8MLX36BL/3sl3jX3e9qCNTPDO6AGtE/xXRxJBalOiIyC8UslFUicxEOfnOAjnWTuaANUhgK9N8Bz0opPwQgpXxSSjktpdwupdyOEeNxjZTyFPBF4CeEwY1AVko5wBCl/mO1rLwms2PGjXTQMR8ptcxEn500Yb+HP3jz5fzTT72MUrXOWz92H3/0H89SrLTeobZSq/Or//o4H//WAX78xm381Y9ee4YQffGsgpSwf2nwGUIHVwpEA54zcr53TUeYVvyjGfMhBBy6B185PegjaTvDd9QyqEOTIYRboJcjxgChj+gpFb+/jH/6wuWeo0jFG4VS3sgxP4telXfpSX3NPaOnIGjN+AkloZBcUpADLEksZoqEw2pL5cqjSjQRNSI+lDkoq1DMDfqQHIacdCPWzUoRH9GgB5/bNRQCda5YpVaXljq/F2LHpCG8vdiD5n7H0jq1umT7pPnO7PWcHf3x6e8d5dY/vZt3/s0DuITgT992JS5X73oZVLwK1Koo40avkYE0StSSxnjadWFTz6hlUAMU6+ODa5SopyhWjGvYsgJfA8/kLOGw1t9rWE+jacZ5HZUIx/MRmYnwqg+8isPfOszj//i4IVA33L0DQV1BhiaN6EerXr8uF8S2QfoQkbkIxUzxjBzwUaaVOv1bgB8HbhdCPNb48/rzvP8rwAFgP/A3wHu7P8zRoVipUarWLVkqNz9m/IKfbLOLtNmk1MFl5b38okm++kuv4Iev38LHv3WAH/iLe3j8aOaCnyuUqvzk33+Pzz16nF99zW5+700vxX3WwHF3owxv3xA0Sjy4orI4FTkjQkUIwc07J7jvxZXBZc11gzKHvzQE4nqbArWW1Naa1I0AwiWIzETQtDCo/S03qmZSlMteAuO9nRgODOECZRbyGycskdlI7zKom4NnCzZIbBJNREmtjFE9PbiSxGKmSCSi4RqbHdgx9BplQSF/PG901h7fASmnUaLD+UlrDYHaQhEfQgimFD9L+cH3dck0zq8V5y3nIh72MR72cWDF/GfmoRVD5FrskyvybKE6qZb4g7dcRiLWY9FLCIhvQwkZxo+BCNQt5k/DmoPaPzb8PTQisxFwgVaKwaAaJWpJisUg3pAXj9/c6Lhhwz+7QCik9+8alhL0FFreuBat4KAGuOanr2HhpgXu+tW7yFUmjAzqAWbT1/0TIC0eUdNolKjMGRpS4dTgTY5mcEGBWkp5j5RSSCmvkFJe1fjzlbPes11KudL4t5RS/ryUcqeU8nIp5UO9OvhhJNMI2Leig3ouNjwO6vEBTlSUgJc/+sEr+IefvIF8scoPfuw+/uxr+yhVN3dTL+dLvPMTD3Dfi0n+5Ieu4Bduv2jT7OztEyF8bhfPD0GjxIPLKjs2cX/cvGuSlUJ5aJo5tkV0fiQFaj2pE5wImtJsp19EZiMUsv4BCNQrlMpBXO7RzEhvCWUechsnLJG5CNqKRq3celVHKzSvP8Bo6hKyroM6nR6jvjxYgToc1nCPzw3sGHpNdCFKrVxDW9GMRolJR6B2OD/pxrjaahEUk4p/KBzUVj2/F2LnVLgnDuqDDYG6F9nW56MpVD/7e6/lTVcl+rPT2DbCXqNSbjAC9RKEW2uKXUwX8Uf9IzE+dLld+MZ95PORwTmotRSaFrS2uNcgkFjor4O6rIJwo6aN6oNRqZC9EMIleMPH34Ce1jn0b0nwBgfXeFxdoeKKAaNRNdEx8cVVBzXQE6PSIBj+u/SIkdEbToSg9QZ6s9GGgzo7WAd1WqsMVKBucuvuKb72/lfylqsTfPTu/bzpo/fy1PHsGe85tKLy1r++jxeW8vzNT1zL26/fco6tgcftYud0ZOACtV6ucSJb3FSgvmWXMRAcyZgPZQ5fOTXoo+hIoB61wUtkLkI25et7xEc9n6ZUsfBABCA6v+mEpbl6buYAu6JXqBara9efnrGug3ohSiYzhit3ZGDH0BSoPVO9yS4dBqILRtOl3LEcjO8cbBMdh5EgY0EHNcBUZFgEavs5qAF2TkV4cbkHDuqkiuL39D2KsElfzQyxrfilIUAVTg9AGFFXINy6g3oU8qeb+Cf9ZFLBATqoU6gFv3XjEdbhnZglHNYp9Gv+rRtmDy2pAdZxUAPMXD7D1Eum0I5ojSq5AcXmqctUMBrVWvoajm+H9JqDuhdRj4PAEahNJq0aToQxCzoRgj438ZB3oA7qWt3o5j4+JAPpsaCXP3vblfzdu64jqZZ581/ey4e//jyVWp0njmX4oY/dR06v8KmfuZHbL5m54PZ2z0R4fhCDvHUcSjbKE6c2CtSJWJDtEyHu2z+CnWKjwxTxEWv57WdELIwIkdkImSUPaP29TqSWplK3aLxHk+g85Db0HV5dPTdzcNLMP7dDBnU0ESWXi+CupDfN+O4HRsSHim+qT+63AXCGQO04qB1aIGXBDGqAKcXPSmHwAvXqAoAF5y3nY+dUhKRaXv3+zeLgisr2yfBIVb11THwbrtxRguPBwTioC0sQnmrpraPWLM0/5Sd50j/QDOp82mdt92kTX4i6dFNe6ZOJSU9DcNyoJMMaGdTrUeYVyivlhkA9IBOCukyxaoi2lr6GGxEfjoPa4bxkVx3U1hpIN5kdCw5UoM7qFaRkKBzU67njJTPc9f5X8gNXzvPhr7/AD/zFPbzjEw8Q9Ln5t5+7mau3tuY63D2jcDyjky8OLuT+4Gp+3uZC3y27JnnwYIpqrd7Pw+oeZXQjPkbOQT0bIXXShSz010FNMUNV2ECg3sRRs5o/ZuLgpOnusEMGdWQ2ghQuinISskcHcgzFTJGIoiEUCzdJ3OCgdgRqh/OT1ioIYRgCrMSU4ieplgc+lmoaa6y2AHAhdjRMGC8umyusHkqqPW+QODTEtkHmMOHpMNqS1v/9q8sQaVGgHjEHtW/Sx9IRzwAjPpLkUh5bRHwAFCsRapk+xVFoKQjF0ZM63rD1Mr6VhEJppdQQTwcnUOtlQ7S19DUcX4T0QcJTYYRbOA5qh82xcgY1GI0SBylQrzpphkygBqM88s9/+Co+/uPXslIosTgZ5nM/dzM7piItb+PiRqPEQbqomwL19nPk592ya5JCqcrjx7Kbfn1oic7hL41exMeoOqgL+SD1XH8Falc5R90d7es++04/HdQpw0G9ukCipSwrULs8LnxxH4XixMA6j5czOdzuOgTGBrL/fhCeDuPyuBwHtUPLpNUyY0HvhsbSo86U4kfKtXHtoMhoZYSAqMUWAC7EzsbY3MyYj3K1zvG0zuKImQo6Jr4NMkcIT4cH1ySxRQe1ntZHyknpnzQc1HKAAnVm2T1SrvNuqMgo9MtUoxtjaT2pWyreo4kyr1BOlanHtg9QoF5B1wwdw9LXcGwrZI8hqBOZiTgOaofNyejWFqhnxwIDzaBuDuSHzUG9nu976Sz3/PrtfOHnb2E62t5N8eLZpkA9uBWwA8sqs9EA4XOs6N60YwIhGL2YD2V+5DKopZQjOYCJzEVQ1VDfM6hdtRx1r9UF6sSmjprwdBiEuQ7q1YiP9Q5qizZJhEbmYy42MIFaqEvopQhYuDTc5XYRmYuQP5Y3hIVaxbiuHBzOQVorW9LdO634AVgacA51WqtYcgHgQizEg/jcLg6Y6KA+mtaoS2zkoN4K6cOEp0MDFKitm0FdKIRAS0Kt2v8D0FJkTrmt7T5dR8Ud718soZZajfgYtQrZVlASCtRBZw7Sg8ugLhSMa3eUFqbaxhswxtLZY0TmHIHa4RxktAo+t4ug1z3oQ+kJ87EgGa2CXq4NZP+jIFADBLxuPB10ik7EgoR8bvadGpxAfXClcM54DzDc65fORbln1ATqZga1lIM9jjYE6opaoVaujaSDWtOCuMpZqPfnXiGlxFMvIP3WdZ8CoMxtKlC7vW5CkyFTHdSrER9nZFBb00ENRkntyunI4ATq4gqlmsUXWDBiPnLHcoYQP7EDkk6jRIdzk9EqljR9TDUE6uUB51BbdQHgQnjcLrZNhEx1UB9qVCBuO0cFouUIjIHbS2ym5mRQm4xv0ke97qbmGQN1qb87r1WRpTz5tGukzlk31H1xPNU0st6HOaKeWW2SOGoGpFZQ5hsN+7RJY3w3iHm3ukIu48ftc+MJWitCZQONmA9lTnEiPhw2J6uXiYW8lm2OMdtwBA/KRT0qAnWnuFyCi2aUgTqoD66omzZIXM8tuyZ59EhmYAsVHeFXkMIFxQFHk+iZlkW+1Q7PI7bCHpmNIKWLmivSN3dkRavg9+kQivVlfwNDmTU612/iqFHmFNRT5k0Smw7q1euv0djFqvin/CwdDQ5MoPZUUpSlxRdYaAjUx3PGf5wcaocLkFKHpzG2mUxFGgL1gB3UVl0AaIWdUxFTBeoL9XCxJPFtjE8W0FM6tUqf5wTqSksZ1PVqnXKhPHIOaoCymIDcxr4jPaWYAX8UKV22cVATmiIU0lej7XqKvuagHjUDUitEE4bRIrvcMGv2u0quWoKKRiFtVABYVZNbZXz7aqNEx0HtsClWH+jNNR7upwaUQ53WrNnNfT0Xz0QGJlCn1TJprcKOCwyub945QblW53uHhiAyow1K/olNG8z1jVoFyir4W3NJbohYGBEis0a2Y1kqfYv5KKaLBAIlXGHrCqgAuL0QmoDCxmYukbmI6RnU3pAXT8AD9XpjcSVm2vaHDf+kn9PHQsjUoYHs31NPU3FZ16HepOmgllI6OdQOFySjlYlZcMy36qAeeMSHPR3UADunwxxJalRMalR5KKkSDXiIW3geuIHYVsbGMgBoy31slChlyxnUxYwxZx0lN7B/yrg/6JX4pn1HeoqWpOaNARaPR1iHUKYIh7X+VAJo1s+gBsifLDQaJfY55kNdgfAkxXRppH7nOya+HdKHjHjNZZV6dbCNl83AEahNJqNViAWtO9CbGzMeVCcGJFCn1DJhn5uARSNUAHbPKKwUyqwMoOzzYLI198cNi+N43YJ7XxyNmI+lp5b4h9v+Aa06NriO2GC4twNj4Grt1juqDmpf2IdP8VGsKMZAoQ/oaZ1AoIg7anGBGhqNEjdex8qcYnoG9ap7ppQDX9gQyC2Kb9JHOj1mCNQDKEn0kaHmtf71G12IUlErlLIlx0HtcEHSWsWSgl/A60YJeAYvUKtlSxtrzsfOqQjVuuRIyhxh9dCKxuJk2PqOvfXEthENGmaVvsZ8lHLg9oH3wgLqqkA9Qg5qd9CNf8xPQVP6b6zRUtRcRjWXXRzUnolZQiGNwuk+OFD1FHV/jGKmOHIGpFYIz4TBhVEpN77Y/0aJ6jKEJ0euMWrHrIv4QNKfa7jHOAK1yaS1MmMWHujNjTUd1IOL+IhbNN6jySAbJTabxVxIoA75PFy9Nc59+5P9OKyuES7Bob2HUIvRwTqo28ifhtF1UEMzh7p/jRL1lE4wWMQTn+zL/gZKdB7yGwXqyFyEwqmCaRl6WnJd+aGesrR7GgwHdakUQCIMh0sfqVfrBH156gHrX7/RBaOCJHcs5zioHc5LsVJDr9QsO+6bUvyDF6i1im0d1DumjGqvF5fMmdAfSqr2aZDYJL6doNswIvRVoC4YIlQr6OnGWHrExKpoIko2He6/sUZLUsGYi9rCgQp4p+YIh/W+OahLFeM+MWoGpFZwuV34xn3kT+RhfMcABOoVCE2ip3R7XL8Nl3pkznieWSHmwxGoTSarV4gFrStQB7xuxsO+gTqoJyw6UWly8UxDoB5Ao8SDKwXcLsGW8Qs/MG/ZOclTJ7JkGrErw4ySaJQb6Ur/s9zW06ZAPaoOami4efOBvjmomxEf3onWGuaMNOdwUEdmI9Sr9dXrplv0lG6b/GlYK6ktuef6nkNdzBYJhzVkyPrX7xkCddNBPejmtQ5DidVj3aYigxWoVxcALGysOR87Gv1WXlzuXpQqVWucyOhst0uDxCaxrfjrp4A+C9QtxnvAaDqowZi7pJcD/TfW6CnKNWPeNGqifqf45xKEQn2K+NDT6LpxXq0Y8QGG4SN/vCFQp/sd8WHcG4rpoj0qAOKLkD6E0ojXtEKjREegNhmrZ1CD0SjxZMZxUPeKKcVPLORl3wBKNA6uqGwdD+F1X/jWcMuuCaSE+18cfhe1P+rHG/KSy4U3dZ72jXYF6hVDaBzFB2xkNkIu5QetfxEfwWAR3+R0X/Y3UKLzm2YSmr16rif1NQe11t61O4r4Jo1ni1aZgsyhvu67mCkSDquI6Gxf9zsImguGuWM5CDUWPfrsWHcYDdJqBcCyAuqU4md5AHFuTTKacX6tmPHdCtGAl2nFzwETGiUeTWnUpc0aJALEtuEpGuOR/grUSxBpbbxXTI9eBjUYDurlY96BOKiLFUM4HcX5Ryf4ZxP9c1DrKVTVuOeOYoVsK/gmGg7q+AAiPrQVCE8Z0Y8j9jvfEcE4IFDGq4DjoHY4i6YTweoDvflYgJMDdFCPW1ygFkKwe0YZWMRHq4PrK7fECPvcI5FDLYRASSjkUuGRclDrSR3/mB+XZ/Ru1eHZMJllT/8iPpIagUCJwKz1BT6Uc2dQAxROmTM40ZLa2uRET6+JiRbFE/Lgj/rJqeP9d1BnikQiGu6Y9a9fZU4B0RCohbBVDrUQ4v1CiKeFEE8JIT4lhAgIIRaFEA8KIfYLIT4thPA13utv/H9/4+vbB3z4fWfVQW3Rcd+gIz6s7lBvhR1TYV40QaA+2DAUbBvBireuiG1F5I/j8ooBOKhbi/gYZQf10mE3cgACtV40rmP/mL+/+x4QLmXaaJLYa3NYvQbFHGrOWHS1hYN6ABnU9dAEpWzJHhUAQsD4dsLeJcBxUDucRU43nAhjFo74AJgdG5xAndbKjNtgIL17JsLzp/PIPpY91+uSQ8nWBWqv28UNi+Mjk0OtzCukl4Ij5aDWk/pIxnuA4aDOJn3Uc0t92V8lk6Fa9eCPRfqyv4ESnd90oaXpoDZjcCKlNHK9z8igtraDGholtanoQATqcFjDMzXf1/0OArfPTWQmYjTQgUYO9f7BHlQfEEIkgPcB10kpLwPcwDuADwB/LqXcBaSBn2p85KeAdOP1P2+8z1ZYXUCdVgIUSlW0cnUg+187v9aet5yPnVMRXlxWux5vH1pprYeL5fCFEH6F6e1yABnUrTmoRzWDWkkoZDMRw5DQzxgsLY2mBgjEArhaqKi1BN4AtbqXcrLHpqtiFvwRtKRx7x3VOd6F8E360FM6Ve8klFUo9VE0VVeoiBgwelUTHRNfxJ0/Qmgy5DioHc4kozdLEa05kG4yNxYkq1f6PqAuVmpoZes2y1nPxTMK+WKVU7n+LQScyhUpVuptDa5v2TXJgRWVkwNqmtkO0USU9PHASDmoz2hSN2IocwqqGqSW6Y9AXc2uUCoHEC7Rl/0NlHNEfKw6qE0YnJRyJWRN2iqDGoz7xNKJcN8F6lIqh9dbtUdEDUYOdf5YY8IybqtGiR4gKITwACHgJHA78NnG1/8BeHPj329q/J/G1+8QQtjgBrdGWrN+xAfASn4wvTzsHvEBhkCd1Suk1O5+BgeTKrGQ157nMraNma1F1NPDm0Ht8rrwBD09PihziSailMs+JC5D2OwXWpJC3m8fca9BsapQz/Z4ztIYS6/2GLKqg3rCeLblTxYaMR99zKFWlynXjF4ndomoWd8o0RGoHc5gbaBnzYF0k7kx44HVbxd1c/Bo9SaJALsbjRL39bFR4sGG+6PZNKYVbtlllNfdOwIu6sh8hNRRD1JPQ60ymIOwmYNaVUOGy6UPyHyKUsUmA5HovNE05yxHjTfkxR/1m+Kg1pMNx1FzcKfZx0F98qAf0of7ut9q6hSaFiQwYg6vTokuRI2IDzAc1DaI+JBSHgf+DDiCIUxngYeBjJSyueJ/DEg0/p0AjjY+W228f6Kfxzxo0o1xn1VFv6ZAvVwYXFUiQDxs7XnL+TCrUeKhFdV+DRKbxLcxNasOIIO6RYE6XSQYDzJq63vNfg0V91R/GyXqKQoZn33EvQYVxnofS9gYS2srGp6AB69FNaNmT5f8iXxDPO1jzIe6jF4xKkpHrWqiY+LbjUaJc4olIj5GaylxyMk0BnpWj/iYGzN+2U9li+yc6l85fVOgtoODuilQP386z56L++OoO9AUqCdb/5lePKMwEfZx7/4V3nrtQq8OzRSiiSj1skAGJxH5UxDb0v+D6MBBPXHxaOoRTYFalPqzeCG1NJWoTSaH3iD4wqAlN2QwRmbNWT1vujvWIj7SkLim6+0OO9GFKE/9sxuZP4moVcDdn+e5zJykUAgxMWIZmZ2iLCgc2nvI+I9NHNRCiDiGK3oRyAD/CrzWhO2+B3gPwMzMDHv37u12k0PDk8+XCLjhvnu+3fE2CoXC0J6TI7kaAN+8/xHyB/s/JXvkRWNc/eRDD7DP3Zl4N8zntxWWtToAX7nnYbTDnd/v9x3X2D3uGulz0Q7rf+6LOfD6TpI8Ot+37/+qEy9y0H+c7PKF93fk+SPU/fWR+tkUCgWeSj0FQKrgZ+mer5IeP92Xfd+wcpQTR4ro6CN1ztphs/vWYiWA1FZ6+j2PJx8iUYSDTx3EFbHu/aIWMp5tD9z5AGzzUHn4GxxdjvVl3zcmj/FI+igAzx58lhN7Bxjt2Sdi6RzbDz1KQVxO5lDGlOtqkM92R6A2Ebs5qE9k+hvr0BSord4kEQwRflrxs8+kZmetcHBZJeh1MxNtvSGGyyW4aecE9+5fQUo51O6EphOh5pvClT85EgK1ntRHNuIjMhdB1wO4awXDsd5roa+YpYoN8qebRBNGzMfZArVJ5V16yri/r0V82MdBXau4kMFpRPaY4fzoA7KwhKqGmYtY//kGxoJhMVOkXCjjm2g00ZHSaPZiXV4FHJRSLgMIIT4H3ALEhBCehkt6AWjm9xwHtgDHGpEgY8CGFT8p5SeATwBcd911cs+ePb3+PvrGF04/xlQ+RTff0969e7v6fC9Zzpf4b/d9nZltu9hz0/a+7/+ewjMEDx3hNXfc1vE2hvn8tkK9Lvmv930V73iCPXsu7WgbxUqN1Ne+yo2X7mTPnotMPsLh5Iyfe+Qg7he/QC1b49Zbb+3PXOCJElff8hqY2n3Btx77o2P45n0jdZ3u3buXW195Kw96HgTXHFdun4Rr9vRn5w8WqWhjJC5JjNQ5a4fN7lunvp0g6Clwy8tuwdsrs+FjJ4FdRL1RZEJa9vzelb8LgC3xLWy98lY48Sg7+/G9Sgn35Nmy7Woe5CQ333EzU5e2Vmkx0mR2wN99jF1X7+L+b9zPra+8tevIy0E+252IDxPJ6NYuRWwy2xCoT/U54qNZimgHgRrg4lmF50/3M+KjwOJkuO2B5S27JlnKl0zpgt5LlHlDoC4xYTQcGQRtCNS1So1SrjSyER+hyRDC5aIiFcPp22NEOUvNrfR8P0NDdH7T61iZUyiYsLC1GvGx3kFtkwxqgIpvvq851EJboVhRhnqRz0yiC8Z5zh3PGfdEtw8K/cmrHyBHgBuFEKFGlvQdwDPA3cBbG+95F/CFxr+/2Pg/ja9/U/azc/IQkFLLlu7rMh724RKGUD0I0lrFsvnereJyCXY0GiV2ypGUhpSw3aJ5shckvo2IP0m1WKVc6FOeurqyYYH+XBQzxZEs9RcuQWQuQi4X6V/ER70GxSzZ08J2GdSEJwmH9d5G1ehpCI2PdIRjK3giHjwBD/nj+f5mUJcLINxojch228TURBOgJYnO+qhX66tVsKOKI1CbSEar4HEJwj73oA+lpwS8bsbDPk70WaBONgY94xaerKxn94zCC0t5avX+zEcPrqgstpE/3eSWnaORQ90UnvRKrL9ZbutpQ6BuOlhH1UHtcrsIT4cpVhVjItHr/VXz1L1jPd/P0KDMbSpQR+YipuSPrUZ82DCDGkBnpq8CtbucpFS3z/W7KlDbKIdaSvkgRrPDR4AnMcbgnwB+HfhlIcR+jIzpv2t85O+Aicbrvwz8Rt8PesBktLKlTR9ul2Ai4h+YQG3189sqO6bCXZksmj1cbJtBHdtG0GVk9/Ylh7pagorW+ng6rRMY0fis6EKUTDLYP2NNMYv0K2jJku0EatfYNOGw1mOBOrXaJNGqDRIBhBAoCaWRQb2jfwK1ugzhSYppQ6OyzTXscsPYAvEJY/436o0SHYHaRDJ6hVjIawsH1NxYgFPZ/kZ8pLUyLmH9jO8mF88oFCt1jqZ6vwpWrtY5mtbZMdn+4HrrRIiFeJB79/dehOyGyJwR/5BXlZFwUDcdrKO8wh6ZjaDpoZ43HZFS4pEF8NtH4DMiPjYXqCtqhVKXgseqgzq+zkEdso+DOl+cgEz/GiV6qikqIta3/Q2apkCdP95YTLFJDrWU8r9LKS+RUl4mpfxxKWVJSnlASnmDlHKXlPJtUspS473Fxv93Nb7exy5Dw0FKKzNucYfv1AAF6rRWtnWDxCa7piIcTWkd/xwONQXqDsbQlmBsAW9tBSHq/RGoGyJUq5FQxUxxZIWqaCLKyklf/4w1WhICcerVun3cpw08E7OEQj0WqNc1SRxVA1KrKPOKMcYbWzB+Zyt90I3UFQhPoad1PEEPHr+N0ozHFxkLpwBGvlGiI1CbSFar2EY8nRsLcrLfDupGqaery0ydUWH3rOHk29eHmI+jaY1aXbLY4eD6lp2T3H8g2Te3dyd4/B68Y16ymdBgHNT1OhRzEGhNRN3QpG4EicxFUPPBnkd8lPNlAn4dgrGe7meoOEfER2TWWIjpdvVcTxmOI5fHZZR8lvItX7ujTHg6jMvjIpON9dVB7ZUZqm7rLwA0aTrV1xzUuyzvoHZon4xasbzDd0rxs1wYlIPa+ue3Fd58dQIhBH959/6OPn8oqTIe9tlmDrgBjx/pnyAazfdRoG4tV1ZKSTFdHFkHtZJQWDrs6Z+xRktS8xpGmlGMRekG33TCiPg43VsHdT0Qo5guWtpBDcbiSv5E3nD3xrZAug+mj8bilZ7SbXf9El8k4jOi8hwHtcMqGd3aWXnrmRsL9L1JYlotE7dJ/jTARdOG0PT8qd4L1Aca2XsdC9QXTZIvVnnyeNbMwzId34SP9OkA5AYgUJey4IuAu7XVXKs4qHMZX88d1HpKJxAo4VLsI/ARnTOaJJ6FMmcIf92unutJfc09U8yCXzEGmRZHuATKvEJyKdJXgdrvylLzTfRtf4PGG/QSnAiuE6h32MJB7dA6lVqdfKlq+XH1tDJgB7XFHeqtsDgZ5u3XbeGTDx7uqGrx4IrK9hEeq5mBHNtKLJbrrbjXpNC6QF3RKtSr9ZF1UCsJhdRpPzLbL4E6RdVtmBHs5qD2z8333kGtpynXI8i6HGkDUitE5iPkjueQUjZiPvpQBLYu4sNu1y/x7fjrhr7hOKgdVjGcCPYY6M3FAuSKVdRStW/7TKll2zRIBAj7PWwZD/bFQX1wxVhp61SgvnmnIawMe8yHf8rP8nEv5AcQ8aGn23L4WsJBPRshu+JDFnosUKd1gsEi7qidBOrEppUAzSibblfPteS68kOb5E83URIKS0dDfRWoA94c9VBrDZ+sQnQhuiZQj+/sz+TFYWRYa4xt7XH1lOJnpVCi3ucKtHpdktUrll8AaJVfvOMiXELw519/vu3PHk5q9o33aOCa2k48nu2fgzoy3dJbV7NoR9RBHU1EUdWQYXKp9mEhS0tSkcY4clRF/U7xTs4TifS4SaKWolgyFrNG2YDUCtFElKpepZQtGQJ1ug851I3qimJ6dGN9OmZ8EXfuCP4xv+Ogdlgjo1UYC9pjoDc3ZvzS9zPmI6WWbdMgscnFMwrP90WgNsoTOy31nIz4uWRW4b4Xh1ug9k34OH3QZTioZZ/jSNrInwaLOKjnIhTyQaqpUz3dTzFdJBAo4YnZSOCLzkP2+IbruOmgLpzqPuJj9dqzSf50k2giytKhOlTLhnu8DwQDhZYn3FYhmoie1STxQP/vyw5DS0arAFg+gmJK8VOpGWJxP8kVK9Sl9c9vq8yOBXj3zdv5/KPH2ddG5aJernEyW7Rvg8QGrolFJmfUPgnUS0YGdQsUM8Y8dVTL/ZWEgpQuat4JyPd2LA2AnqJcM8aRtnOghiYIhnTUpR7Ou/U0WsFv7M7iER/KfKOi80Qe4ot9clAnVzOoR/V3vmPii5A+iDKnOAK1wxpGN2xrOz2azI0Zv/Sn+ihQp7Uy4xF7DaR3zygcWFYpV+s93c+BZbVj93STm3dO8tChNMVKzaSjMh//pJ/0sQrS5YZipr87b1Og1pIabp8b7wi7xyKzEVQ1SC3d20G1njYiPjzjrZV8WgK/0WSOUu6MlwPxAG6/25yIj6aDWrefgzp3LI+Mb+tLZl6tWMTvK+MZs9H1CygLyppA7VeMCKRB9AdwGErSquGgtrrDd0oxxIqlPsd8pBsLAE7Exxo/e+tOIj4Pf3bnvpY/czhl8waJTWLbmOibQL0C4dYWdPW0YfYYZQc1QInx/jwftSTFiiGc2k7g8/ip1nxUkj00W2kp1ILxTBvlCtlWWO01cjzX54iPKSP60W4O6vh2yBwhMhdyIj4cDMrVOmq5RswmDTKaDuoT2f7kUNfrkrRWsZ2DeveMQrUuOZTs7YDv4Er3AvUtuyYoVes8cjht0lGZj2/SBxLqwdn+51DrmbYd1MGJIKLFLuXDiCFQh4y8wB6ip4yID/+0jRyoQjQaJZ4862VBZDZiTsRH0z2jpyFoIwf1QpSKWqGubO1LzEf51HE0LUggbm03zdlEF6JoyxrVZlTYxE4nh9phlWbER3yEF2lbYSpiCNT9zqFePb82G1efj3jYx3teuYO7njnNI0daG8seWmn0cLG5g5rYVmKxPkV8FJZazqBuOqhHVaxqinx6OdafRolaCl03xiKjes66oVyLUs/1aM5SLUGtjJo25DdbOajHd0CqXxEfNs2g9oUgMMb0lprjoHYwaJbm2cVBPRM1Hlr9clDnihVqdWmrJolgCNRAW+WG7VIoVVnKl7oWqG9YHMftEtw7xDEf/kljIljxTPY/h7qDiI9RjvcAI25C04IIPdnT/RQbTRID0zM93c/QEZ3ftFFitwJ1vVqnlC3ZOoMaoOSa7Y9Affo4qhoaWYdXp0QXDGdY/kTj+Ta+E1KOQO1gsObwtfa4r+mgXi70ryIRjKpPsM+8pVV+8uWLTEZ8/MlXnzOae12AgytGv5DtFhebLkh8G9Fwuo8Z1C0K1COeQe0NegnEA+RVpW8CtaYGcHlc+GxWtQxQEWMIrUcCdWMeqFkgwrEVVgXq43mIbTXmK7UeR1mpK9T8E5QLZVsusBBfZHImT/5kvqXn17DiCNQmkdWNgd6YxQfSTQJeNxNhHyf75KBONUo9J2wmUO+YCuN2iZ7mUDfdHzu6FKiVgJertsS4Z39vxchu8E0a10+xPj4AB3X7ER+jXv7VdFC7q7111ZcyRk6wNxbt6X6Gjmhi0wmLMqd0Vd7VLIm1cwY1gFqdhkzvIz4qK8cpFOwrUK/lUO9wHNQOq9jF4bsqUPfbQa3aYwGgXcJ+D79w2y4eOJDiOy9c2HBxaEVlMuJDCdhc6Ffm8XsLFFf60LehUcbfCqOeQQ3GmCSbCfcn4kNPUcj5CMQDI13B2Sk1bxxXOY3sRdPahtlDS2q4vC58irXvvauLKyfy4PGBMguZI73dqbpMqdrIUB/h3/mOGV8kPp4xmlPm+jumMBNHoDaJ1WYuNon4AJiLBfrWJLEpUNvNQR3wutk+Eeqpg/pAszxxqvvyxFt2TvDksUzfm/20in/CmAhqxWj/s05t6KD2RXzU3BFcstTT7uO1zArF0mjHoXREdG5TgToyF+mqSWKzQeeZER/2c1Dn1fG+OKjr6VMUCmFHoB7f2Z+MQoeRIK2WCXhdBH3uQR9KT4n4PQS8LifiY4h458u2shAP8idfe476BYSqQ0nV9g0SAXB7KDOBt3qaeo/75hgCdXsZ1P4xfy+PqKcoCYXkqUCfHNRJChmf/eIRGsjgBKGgip7qgQFPT0FoHG1FIzQRssWcRZlXDAc1GDEf6R7GfNTroKfQdOPatauDOhoyjIKjHPPhCNQmkbFJKeJ6ZqNBTmb6K1DbzUENcPGs0lMH9cFlFSEwZYB9865J6hK+8Nhxnj6RbflPv5z43pgXl8dFPt+nUrn12NBBDRCZVSjVIkZTmx5RL6QpV0f/XLVNdH7TqJrIXAQ9qVMrd9awVEsaJctnNkm0j4O6WZaYTEX7IlDL3GlbR3ysOaidDGqHNdJaxRZjaiEEU4q/7wJ1RqvgEqAEPH3d7yjg97h5/6t289TxHP/x1PmbPB9Kqk6DxAZl3xyxsezqGKIn1OugJSE82dLbi5ki/qgfl3t0JY/oQpSVY56+NUnMJj32dJ8CRKYIh/XeRNVoxlhaT+qWz59uEk1E12Lc4ou9zaHW0+BXKGaNuY8tF1ni2wm5jYiaUW6U6IxKTCJjswxqgPlYgO8e7E+cw1qzHOtPVs5m94zCfzx1Cr1c64mT6OBKgfmxIAFv99u+emuMiN/Df/vC0219ziXg7959Pbdd3Nsmd8IliMxFyCTLkH++p/vaQBsCtZRytUniqKPMKejFCEF1GcYSPdmHVDNUxm04QYwm4PmvbXhZmTME1sKpAmNbx9rebNM5ckbEh40c1N6gl+BEkOXjQZBHoV4DVw9dnOqyLQVqv+LHp/jWOah3GAsC9Tq4RldMcDCHjFYmZgOBGmBaCbBc6L+DOhby4XJZ38XXCW++OsHHv/0iH7xzH9/30hk8mwicWrnK6VyJ7SNe7WYW9fAWYrEc6pJKZCbSm500RCjcrc23i+niyD9blYTCoc+7kbkT9PS3tV4HPUNm2UV4evTnH53gjs0QDj+BuqQydWlrMTIto6chFEdbsYYBqRWUeYWlp5eM/4zv6G2VXCP6p1k1YctFlvFF/LUTwKUj7aB2BGqTaDYbGbORQD03FiRXrKKWqoT9vb2Ukg0H9bhNJivruXhGQUrYv1Tg8oX2xaYLcXBFZYcJ8R5guE4++3M3cbhN98Sf3/U8v/KZx/nK+17B7FhvB5LRRJTkKXWoHdTlfJl6tT7yER/QaNhXCDKu9bB5ZjFDVfRoMjTMKOeO+ABj9bwjgboZ8bG+SWLIPgI1NDIfj5dgZ9xwLY0t9GxfruKyLTOowXCG5Y81XB6+MARjRiOd2JaBHpfD4EmpZcbD9hhTT0X8HFjp72Qyo1VsZappF7dL8KuvuZj3/N+H+ezDx3jHDVs3vOfQaoNEGy6Qb0Z8K/H4d3vbKFFdajl/GgwH9aiX+kcTUfK5CORPgZTQq2iIYgZ8EbRkmYmLR/ucdYpncpZQqEcOat3IoNaTOpOXtFYBMOooCYXCqQL1Wh3X+A44fF/vdtYQqFcbo474731HxBfxaEcBx0HtgDHQc7sESo+F2mFiriEknswW2TXdW3EorZYJet2WzyLcjN2zhhty3+m86QK1lJIDKypvudo8Z+sls1EumW2vWd3OqQhv/Og9vO9fHuWff/plmzpVzEJJKJw+sDTUGdQbIhZGmPBsmPyyr6cRH6Kcpea2oUB9jiaJkVnjXHS6er56/dk0gxqM+0T+eB7i2yF9uKcCtbuSQtN347WJGLee6EJ0zUENjRzqFx2B2oGMVmEuNvrPwFaYUvw82KeKxCZprWyLCJVuePWlM1y9Ncb/+sYLvPnqxIZKw0NJQ8RyMqgN3NM7iMW+3mOBuvUGiWAdB3W16kW6/Ig24k3aptEQu5gu2jMeAfDNJAiHNZZO92DBsBHxoa1oBCftcX6VeQVZk6hLKsr4Yh8c1JPoSzZ2UIcnoV4hHKuOtIPaqaE0iYxeZizotUXgfZM1gbr3+cFJtcy4DeM9ALaNh/B5XD3JoU6qZfLFKosDdn/smo7wB2++jO8eTPGRb7zQ030p8wpLByToGaiWe7qvM2hD5Gs6WK3goFbmFPKZALXM6Z7tw13LUfe0tyhiCUITUC5A5cx7cDPio9PVcz2p4/K48EcbTYX0tK0yqMGYEOaO5xoC9aGe7stbT1NxxW01fmgSXYga57nJxA4nh9oBMARUu1TNTSl+0lqFcq+by63DyPi236JYOwgh+C/fdwkns0X+7/2HN3z9YKPJuOOgNvBtuYhYLNtbgbrQvoN61IWqaMIY35bdU72t/tSSyOA4xezou847xT8zT6hXGdR6ChkcR0/plpjftcJq0/ETDcNH5rARJdML1BUITa5GfNjyGhYCEd9OYldlLft7BHEEapPIaBViQXsN9ObGjAd+Pxolpm0sUHvcLnZNRdh3yvwbTXNwPWiBGuAHr1ngrdcu8Bd37+fe/b1z2yoJhWK2ggxNQuH8zW9MQ8qGyBdr6e1WclBHZiOoapDKcm8c6/VaHQ8FCMR6sv2hxuUCZXbDhCU8HQZhZFB3gp7SCY4HDcG0VoGyCn57LQBEE1HUJZX62NaeC9Q+MlS9Ez3dx7ASXYhSOFmg3hTmxp1GiQ5Qq0syun0E1CnFWAxc6WMOtZ0yvrvhpp0TvOKiSf5q735yxcoZXzu0ojKl+InYqHr2fPi3XLSaQd0z1JW2BGo9rVvCQQ1QrMV7W/2ppaj7YiBt6j4FXNEZIpFeCdQZKihGhKNNmiQ2m47nj+cbMW7xTZu7m8K6iA9fxIfbhN5aI0l8OzNbNMdB7QBZvWKr/GmAmTFjQH0y23uBOqVVbNkgscnFs0pPHNQHlo2b147J4YhH+L03vZSdUxF+8V8e61lH++bDsuqfhlyfYj7KBXD7weNv6e2rDmoLDGAMgTpENd2bc13Klgj4S7aLoFglmtgwYXF5XISnwx0PTvSkvi7eI2MsrNisaZ2SUEBCkZneCtS1Kl6XBgF7OdSbRBeiyLpcW0yZaER8ONianF5BSmwjoE5FjLFBr8Y9m2FEfNhr3tIp/+X7LiGtVfjbb59Znn44qbHoxHusIpRZ/IEyxaUextWoSxBpvaF6MT36buDQZAi3z42qj/XcQV11GWYEu0Z8EJogENDRlnoT8VEsGefVCgakVmi6/1fdvPEexnw0Ij6s8DvfFeOLTM7kRzqD2l4zzh5iRwe13+NmMuLrS8RHSi0xbuOB9O4ZhZPZIlm9cuE3t8GBFRWvW5AYkpXykM/DX/7INeSLFd7/6ceo1aXp+1gtlRMTvVvFPZs2M3ybDmorlIA1BWqZX+7J9vW0TiBQwhWxq0A9v+mERZlTusqgXh082zB/GgzhFCBfnDRKEnuFtkKpEsIfG/3f9U5onufVHGrHQe0ApBqNx+1SOdd0UPdLoC5WahQrddssAHTL5QtjfP/lc/ztPQfPcLkfTKpss8A4zTRcLgp6HLJHe7ePhgjVCvVqnXKhPPIOaiEEyrxCLhfurYNaT1GRxjPZtgKf20u1FqCSWjJ/23oKXTfG1lYwILVCeDqMcIm1KLfxHb0TqDWjukJP6batAAAgvp34WMZxUDsYGdR2bDYyNxbsi4M6rVYYD7fmPrUiFzeanr1gsov64LLKtokwbtfwZJ9ePKvwP974Uu7Zv8LH9u43fftNB7VeifXPQd2myKcndRDWGCBG5iJoWtBo7NIDiukiwWARd9SeEQmGQH18w8uRuUjnGdTr8/H0lO3yp2FtISuTjfXWQV1YQtMjth1MN0uX1wTqRcgcgVp1gEflMGgyDYE6ZhNjwqpA3aeIj3Tj/Npx3tIpv/ya3ZSqdT76TWNcWihVWc6XnPzps9CqU3j0jWMS0ygsQ7g1B3WxEUFphbG0klBIrwQ3He+ZhpakVDOuZ9s6qIGyVHpjqtFSqAXjXm8FA1IruDwuIrORNQd1LxslNuJ/9LRu6+uX+CJKcIVSrkRFM9fY2C8cgdokMpr9Ij4AZscCPXdQl6o1CqUq42H7nd8mF00bk/jnTe4qfHBFHYr86bP54eu38Kar5vnQXc/z3YMpU7fdFEQKWrTPDupYy2/XkhqBWACXe/Rv0eGpMKoWwl0x9+fYRE8ZDmpPvEddzYcdZXMH9RkDwjbRk7rtHdTN+0T6tA+KWShrvdmRukShEMIfs+cC7AYHtTdo5Iv20oHnMPSkVWNSZRcBdSJifJ/9clCvnV/7jqvbZedUhLddu8A/P3iEoymNQ0PUw2WYKLlm8FV72N+lkTPbCqsC9Yg7qMFYNF854eutsUZLUiw1BGqbLpoDRtPqosmmmkYvokLOuOfaJeIDDGNY/vh6gfpgb3a0LoPaCotSHTO+SMhlVACMaszH6KsfQ0C1VidfrBIL2mMgvZ75sUDPHdSrA2mblHpuRiIWJOxzm5pDXatLDic1dgzh4FoIwR++5XK2jod436ceJaWWTdu2X/Hji/jIZcLD66BesU6HZ5fHBcFJvDLbk+3raZ1gsIhn3KYC9TkiPuavn6dwssDR+9sX+rSktuY+0FIQsp+DOjgexO13kztRgLEtvYv5KCyTywYsMYHuhOB4EE/AsyZQA0zscHKobY7dIj78HjexkLdvAvWaQ90e59csfvFVF4GAD3/9BQ4lDYF6u5NBfQYV/zwhdw/iEZqoSxBpTaDW04aBygpiq7KgcPqgG9njJol6sZGRbGMHat0Xx0eOipmxmuUCuH2oSaM6zC4RH2AYPtYc1Dt6LFBPGsYlOwvUY1vw1pO4XLWRjflwBGoTaOYC26UUcT2zY0HyxSqFUu/KcZvi5IRNJiqb4XIJLppR2HfKPIH6REanXKsPrfsj4vfw0R+5hpRa5pc/8xh1E/OolYRCajnQ2yy39XSQQW2l1XXf5DiCWk9cqMV0kUCgiH9qxvRtjwTRxKYC9ZU/fiWBWID7P3h/W5ur6BWqetX2DmohBNFE1HB9xLf3LOajlj1FIRe0rUAthCC6EF1z10Ajh7pHJaAOI4HdIj4AphV/3wTq5gJA3MaViZ0wNxbkXTdt4/OPHuOuZ04DsN1GQlMr1JUtKKE0ZRONJWfQKONvBas5qNPLQcj2skliCrVgnCs7C3wyOEk4rKEuqeZtVEtBMI6e1BEuQWDMPuf3DAd1s0miNLnHVLUMZRUCMcO4ZIFFqY5xe6kFZ4jFco6D2s5kbCxQzzce+qd6GPPRFKjtUup5Li6eUUx1UB8YgfLEyxJj/M4bXsLefcv87T3mCRbRRJSV477edsNeTwcZ1FZxUANEZhX0UsRoYGEyzSaJ/pnWu7pbiujcptexL+Lj2v98Lc99/jnSB9Itb05PGfdyu2dQgxE/kTuWawjUvXFQ11MnKRRClphAd8rqeW4ysctxUNuctFbB4xJE/J5BH0rfmFL8fcygtleEipn83J5dhHwevvDYCWaifkI++1yjreAa3048nkNb7kEsVlk1hC1fpKW3F9PWyqDW9QBUtN5Fjukp1Lwfb8iLx0b33rMRyhThsG6uQK2nIBRfNSCJIer91GuUhIKe0qkWq0bcpTdguJ3NRFuB0CTVSt0w2bzAjBgAAIFASURBVNi4AgBAjC8Sj49uo0RHoDaBTGOgNxa0n0A9N2bcAE5kehfz0XR6NDP67MruWYWkWj6jg3g3HFw2blqLU8MrUAP82I3beN1ls/zJV/fxyJHWhbbzocwrnD4oDAe12au4m6FnbO2gjsxGUNWg+QMSoJjK4XbX8UZjpm97JIjMgJaE2sZSxBv+vxsQLsGDH3mw5c3pyUZJ7BkO6pgZRzpyKAml5w7qevY0quoI1GcK1Dsh6QjUdiatlomHfQhhn0n8VMTPUr73TccBMqr9HOpmMR728Z5X7gCceI/NcM/uJBbLUjC5Zw4AhSXDPd3ifcFqDmoQVL1Tvav+1JLk0l5LCPrd4I7Pmu+g1tMQHLdUhGOrKPNGT5dVN2+8B40S1+VPgzUWpbrBNbOLiUnHQW1rsrp9s9zmxpoO6h4K1A1B1u5Oj4tnGo0STYr5OLiiEvF7mIoMd3MuIQR//ENXMBcL8P/986NkTehIqyQUUkfKSLfPGDT0mg4c1JYSqOci5LP+nnTFrmdTlMqBlicslsPthfAkFE5v+FI0EeWyd1zGo3/36OpE7UJoScOZY/cMajDuE7njOWR8W88EallYsr2DWllonOdmjNP4TsdBbXPSWtl2DfymGhEfsg+L5mmtQsjnxu9x93xfVuSnXr7ItOLnpfNjgz6UoSOYmMflqqOf6EGjRHWl5fxpsFgGdaNxc4nx3lR/Npr45ZMeS5yvbvBNzREKmeygboyltaRmq/xpWCdQH1+fQ90LgXpytQrU7tewGF9kekF1HNR2JqPZtxv2TNSYVJ/oZcSHVkEIey4ArGf3rFHSts+kmI8DKyqLk+GRcCiNBb189J3XsJQv8muffbzrCZwyr1Cv1JGhmf7kULchUNfKNcqFsqVW2COzEQr5EOUV8891vZCiVLXOueoIZfOYD4Ab338j5UKZR/72kZY2tTHiw54Z1GAI/LVSjaKY7ZlALbRlVDVsa4E6mohSr9RRlxuTwfh2yB7ftCrAwR6ktYrtxnxTip9ipd7Tni5NMlrZ9qaPbgj7Pdz1/lv59dddPOhDGTrCMxEymSjVUz3oI6AutZw/DYaD2uV14QmOflxFU+TTyrHezFuKWfAEUVMV28cj+GYThoP6tNkO6jjairUqZFvBcP/T20aJjWz65qKU3R3UxLczMZV3BGo70xSoY0H7DfZ8HheTEX9PHdRptUws6MVto7ymzZiK+ImHvKblUB9cUdkx5PEe67lyS4xff+0l3PnMaf7+vkNdbavpRKh4piDXD4E603JMwqqD1UIDmMhsBE0LUjl93PRtSzVNtW5zgTo6D7nNz+3cNXNs37OdB//Xg9QqtQtuamPEh30zqJv3ibw6DpnDPYkDcpWStndQRxeMyctqzIfHB8osZI4M8KgcBklaLTNuMwF1SjGq2frRKDGtlZ0GiV0yFvI6DvRNCE+FyWTGkEmTBShYLeNvlWK6SDAeHAkjzoXw+D2EJkPkC0pvHNS64fDVU7rtxT3vxCzhSA8c1MFxy1XItkJzcSV3vDHGG+99xIfdF1mILxKLpp2IDzuT0Q2HrxIY/RXaTpiPBTjRy4iPRhah3RFCsHtGYZ8JER/FSo3jGX2oGyRuxk+9fJFXvWSa//mVZ3niWKbj7TQfliU5Dvk+NEpsw4XaFAit5qBW1RDV1MYYiq4pZqjSWsMcyxJNnHeh5aZfuYncsRzPfPaZC25qQ8RHm/npVqIpnGZP18Hbgwz1eg1PLetkUJ8tUIMlc6iFEBcLIR5b9ycnhPglIcTvCiGOr3v99es+85tCiP1CiH1CiO8b5PH3k7RWsZ2AOhUx7gH9EagrjoPaoSd4Q15yahyRP2b+xgttCtSZoqWerUpCIZsK9cZB3YigKKaLjrgXniJitkCtp5ANB7XdIj4C8QCegOcsB3UvBOoJS8X6dMX4IhF/koJVBWohxBYhxN1CiGeEEE8LIX6x8fqfCiGeE0I8IYT4vBAitu4zthpQZ7UyY0EvLps6fGejAU5mehjxoZaZcARqAC6eVXj+dKHriIsjKQ0pGTmBWgjBn73tSqYifv77F5/u+Dw0y4200lifHNStC9RWdFArcwqaFqSeWzJ926Kco+ZWTN/uSHEeBzXARa+/iIndEzzwoQcu+DujJ3U8QQ/eZtNfG2dQN+8TueO53jRK1JJUCSOly1KT6HZpCtSr+YRgyRxqKeU+KeVVUsqrgGsBDfh848t/3vyalPIrAEKIS4F3AC8FXgv8lRDC8pZNKSUZrWzLiA+AZZMaYZ8PO55fh/6h16fxlnpg/lCXITLd8tuL6aKl3MDRRJTkaf95x3sdoyUhNOE4qAGC4/h9RbQlE8U9PU3NPUatXLOUAakVhBAo88qZGdTpHkV8pJyIDwD8CnVXAFdxmVr5wtWzw0YrDuoq8CtSykuBG4Gfbwya7wIuk1JeATwP/CbYc0Cd1irEgvZyeqxnPhbsbcSHk5W3yu4ZhUKp2rVj/cCykUm0Y3L0nKexkI9P/MR1/PWPXdtx2V5kzvi+c/mI46DuA00HtdBWTN+2q5qj7o2avt2RIjp/3pJP4RLc+P4bOfHQCY7cc/7YBD21rsN4tQS1MvhG7z5hBpG5CIiGcBrrQaPEwhKl+hgujwuvDXtYNAlPh3F5XJZ3UJ/FHcCLUsrD53nPm4B/kVKWpJQHgf3ADX05ugGSL1Wp1qUT8dFDDAe1fe85Dr2l7J4lUO9Fk8T2M6ittPirJBSWj3p7Y6zRUtQD41Q0J4Mat4dKPUg1bWLVnJaiWDHG1nZzUINx7a46qEMTUKsaBhizOCviw0q/951S9s4Tj2cpnB69HOoLCtRSypNSykca/84DzwIJKeWdUspmJ48HgIXGv203oM7oFcZsNpBez+xYgHypSr7Ym4ZGSbXMuOOgBgwHNcDzXcZ8HFgxypa2j+hD8rLE2GqDzk5we92Ep8NkUqHeO6grOsgaeFs711Z0UPsUH8Wqgqts4mAEqFVqeIWK9MdM3e7IEZ2/YMnnlT9xJcHxIA986IHzvu+MfLzmwooF8hs7oXmfWHNQn09L7AB1iWI1SiAesERGZqcIl0BJKGcK1BZ0UJ/FO4BPrfv/LzQqEv+3EKK5mpkAjq57z7HGa5Ymozb6uthMQI0FvXjdoucCda0uyRXt14TSoX9UgwlCbpMjsWDVJdkqelq3VKm/klBYOuxB9iKDWktSFcYc00rnrFPKcszcWDc9ha4b81Yrze9a5QwHtRBGDrWZLuqGQK2ndfxjflxuJ8W4rmw1BOoRbJTYVmiyEGI7cDXw4Flf+kng041/JzAE6yabDqiFEO8B3gMwMzPD3r172zmUoeLoaZ2IV5j6PRQKhZE5J5kTxjrFF7/+HRIRc28IUkpShRKF5Cn27jVP3Bql87setWKU5//HfY8hTnU+ubj/yRJjfsHDD9xr1qGNBOt/7mJMcHBfkZdsfZ6He3gt+EpJrnWHuf9b32rp/Ue+ZzhcH3r6Idwvjlbxyfl+r0peBVclaervXTlTRgmWSGpVDo7g73O7nOv8BvSTXLn0Ig9e4BxMvX6K5z75HF/5p68QWth8weTkgZO4vC727t1LSD3CS6WP79ng3MLm51dEBYefPMy+20pEc4+zT+7d9LOdMHPq23gyHqRfjuTzyEykIjny1JHV8+CplAgrrybb5nkZhWe7EMIHvJFG5SHwMeD3Adn4+4MY4+pWt2eZ8TTAgaxRjnr8wD72FrpfpBiFa6KJ4oUnXzjM3kAP3KcN8mWJlJA8fpi9e7sXukbp/DqYx/l+7id1H5Fgir13323qAvf1Swd55plDqEdai/fLL+dJauaOO/vFZuf3ZOEk+XwYmT/Nt+7+BphYoL544FGKOQGMcfDUQdS9JuYvDyEXum9dUg0iiivc/c27ESZEuL4seZxHU4bJYd+RfZza27t7/DBw9vnN1rNkjmW4++67EUJwaU1h5Z4vszRjTozKjcnjPPbkixx+No0ImqvJjSrz5SDj46e4/877mdQm2/78IJ/tLQvUQogI8G/AL0kpc+te/22MGJBPtrNjKeUngE8AXHfddXLPnj3tfHyo+O/fu5sdCzH27LnatG3u3buXUTknoYMp/vqJ+1nYfTm37m59ZbsVsnqF2tfu5KqX7GLPK3aYtt1ROr9n83vf+zrVyCR79lzV8TY++ux9XDwv2LPnJvMObARY/3M/sfsE5ZU6Sj3f22vh9DOwf6blfdz55Ts5GjjKHa+9o3fH1CPO93t1ZPpZQj6VPbfeatqEJfl8kiOBIlPbL+KaEf19bodznt+KDg+9jz2vfCW4zr1IeN0l1/Hhz3wYHoA9H91kO8DTtaeZvmTa2M+he+H0lpG9V7bLZuf31EtOkTmU4eIbvw++9ThzZp6L+57k2foE8bm4bc7xuVi5dIWTj57s+jyMyLP9dcAjUsrTAM2/AYQQfwN8qfHf48CWdZ9baLx2BlYaTwPIfUtw//d4xcuu5dpt3TdoHZFrAoCFp+7BFfKxZ0/vCk9fXC7AN7/F9Vdeyp6ruzfkj9L5dTCP8/3c61+vU6u4ufW6yxCKifPCBzWuv+37IXxhsUVKyXcK32HnS3eO5PW52fndX9zP83/2PNI3xp7rXgrKrHk7zH+eVHgB0LjmlmvYtWeXedseQi5030rdO0coqPOyK19mTuTiA0UW5q8AvsEtr76FyUvaFwxHibPPr+9hH8f+9Rg3XX2TEb9R3cu0N8ilt+455zZaRkq4J8+Nd7yBA3/5BcScGMnfebPR5X6K9/0N4cntXLfnurY/P8hne0t2VyGEF0Oc/qSU8nPrXn838AbgR+Va56WWBtRWImPzbthzY0bJyqms+Y0S02oZwIn4WMfuGYXnT3e34nhwRWXHiDVINBslobB0SEIxa2Tt9oo28qfhrIgFCxGYnqBeF1A2r9RIT+kEAkXc0QnTtjmSeINGTrSWPO/bIrMRLv+Ry3ns/zy22kjkbDaN+LAxq9ETvWiSWFiikAs6WXmAsmCc524bAI8I72RdvIcQYm7d194CPNX49xeBdwgh/EKIReAi4Lt9O8oBkdGMcZ8dM5KnIv6eR3w0z6/dIlQc+kd4Okw6HaV05HnzNlqrQCnX8pikolWoV+uWer4qCSOCo+yaNL9RopaiWDLmhU7EB8jwFOGwhnraBCd5vQalPPm0IbtZcY53IZpNx1dzqMd3QOqAORsvq4bxyRemmC46128D/7ZLiI9nyZ80sdlnn7igQC2MYMS/A56VUn5o3euvBf4L8EYppbbuI7YaUDez3MZs3CRxJhpACDiRMb9RYqo5UXEE6lUunlF44XSBWr2ziXxWq5BUyyzaXaCeVyic1pHhKcj3sNSqA4HaSg0Sm4Rnw6hqyNRMNz2tEwyWcMes7URoiWiipQnLje+/kYpW4eFPPLzha1JK9JS+1iBHTzkCdUJBT+lUfNNGgyYzF7PUZXKZgKUm0J0SXYhS1aurDW6sihAiDLwa+Ny6l/9ECPGkEOIJ4Dbg/QBSyqeBzwDPAF8Ffl5KOXrt2Nsk3cigtqMxYUrxs1zorUDdPL92NtY49JbwdJhMZozysRfM26iWhOA4uFqLtVhtlha3zvO1KfLp1bj5/XO0dRnJdm+SCLiiU4TDOuqSCQK1ngG/gpYsgbDnAoAybyyu5I43QhjGd5iXQa0ur1ZV6GnduX4buCZ3Mj6eG8kM6lYc1LcAPw7cLoR4rPHn9cBHAQW4q/HaX4P9BtT5YgUp7e1E8HlcTEb8nMr2QKAuNBzUzkB6ld2zCqVqnSMp7cJv3oSDSeNha3eBujnQqwVmLthgrivaFKi1pGbJ1XVlTqGQD1LNnL7wm1ukmC4SCJTwTpgbLTSSROeghcY5M1fMsONVO/juX3yXWvnMR3MpV6JerTsO6nWsuj5O6UYzyuwx8zZeWCK74nMEagyBGtZNXiyKlFKVUk5IKbPrXvtxKeXlUsorpJRvlFKeXPe1P5RS7pRSXiyl/I/BHHV/SWtlXAKiAfuNq6cUP8lCqWMDQiukVx3qzrjaoTcYAnWU6mmTHJIAhaW2GiQWG6YpKz1fA/EAnoAHVY+aP2/RU6iFwOp+7I5nYs5wUJsiUKcgNI6e1AnEArg89mvg13T/rzqo44vmOajXNU8tpovO9dtEmcXnK1M8vTLoI2mbC/6GSCnvkVKKxsD5qsafr0gpd0kpt6x77WfXfcY2A+qMZs9u42czPxbgRA8iPpoOajs6ac7FxTPGTX7fqc5KNg6uGCtpO6bsLVA3V3PLYqIlYa9jHAc1YMRLaFqQ4nHzBL5mxId/asa0bY4s0fmWSz5v+pWbyJ/I89Snnzrj9Wbsx+r1pzkO6tVB9fF8I+bDzK7jS6SXvJaaQHfKqkB9zNoCtcOFSWtlxoJeXCY0pho1phQ/dQmpRrxdL1idt4TtPW9x6B1NBzXpw+ZtdJ1LshX0tDGesZJbVQhhxI5lIubPW7QkhbwfsJao3yneqTlCIbMc1GkIGgJ1aNJ687tWaM6588cb2oUyB8UclExw96rLEJ5arQJ1BOoGQqCWJxE5E+/DfcJ+Szgm03QixIL2FlBnxwK9cVA7GdQbuGgmAtBxDvXBZRWXgC3j9nxINmkKT3ot3gcHdazlt1vVQR2ZjaCqIcqnzcvNa0Z8+GccgZpoouXreOf37WTq0ike+NADZ2T+6snGhG69gzo0bvqhjhJnOHtNzqGWhSWyKb8zGcQRqB3WSKsV28a6TUUMgaiXOdRprYzHJVD8np7tw8HeNDOoXQUTK47UZYhMt/x2KzqowajqSq0EzJ23SAlainzKg3/Mj8vtyEO+mQThsEbhtAkCqmY4qLUVzZIGpFbwBr0E4oE1B7XLZZ7po7F4VdWr1Mo1Sy1KdYsuZvGVR68VoHMH6pKMbjgRxmzuoJ4bC3KyBwJ1Wi3j97gI+VrLHLMDIZ+HreMh9nUoUB9YUVmIh/B77H1Om6X7qhYdGgf1agawFQXqOUOgribNy/supVW83gru8Jhp2xxZovMtX8dCCG58/42ceuwUh/YeWn1dSxqxQU4G9RrN+0TuWA5i28wTqOt10JKoashyE+hOiMxGEC7hCNQOpLWybeMnppSGQN3DHOq0ViEW8mK0GHJwMJ/gRJBsLoa3bOLYuuGSbBUrZlCDYa5JHveZ2ySxlAePHy1dd/J7G7iUKSLRonkRH8E4WlKzrYMaDBf1qoMaYHwRUmYJ1FNrVRPONbxKxb9AUJyiXqsP+lDawhGouyTbLJWzcZNEgLmxAIVSlVyxYup2U2qZ8bDPGUifxe4Zhec7jvhQbZ8/DcYA2u1zk8uGhyaDupQtIWvSkivszYgPmVsybZvVTJJyxW+sxNsdZa6tCcvlP3o5oakQD3zogdXXNkR86BmjKZGN8Uf9+CK+dREfJpXK6WmkJ0y97nYEasDtdROeCTsCtQNprULcpqaPacW4F/TSQZ3RysRsugDg0B9cbhdlzywBlo3FWDNwMqgBQ6A+dciFNLNJYqMBpZ7WHfdpk/AU4ZCOttRZv6cz0FIQNBzUVjQgtYoyr6w5qMFolGhGDrW6AqFJyy5KdUM9upV4LIO2YsJ13EecWX2XZJoRHzYf7M3FjBuu2TEfKdW+TprzcfFshIMrKqVqe/1HpZSOQN1ACIEyr5BeDprfDXs9bQjUqw5WCw5gwtNhVDVkDCRMol5IUapYT8zviGiirevYG/Ry/Xuv5/kvPc/KPuNnsiHiw8mgBowJ4ZpAfcicjapL1LwTgPUm0J0SXYiSP9bZwquDdUjbeNw3qRjfd68jPuy6AODQP/zjMcrVIBRMaoy9rhFaKzTdlIExaz1fo4komZWguZWfzSZ+Tn7vGsE4Pl8RbdmERfNGXJ6etGaFbKtEE9EzG2GPm9QosemgTlkvd75bXJM7icezFE6aEFXTRxyBuktWIz4cBzUAJzLmNkpMaWUmIvacqJyP3TMK1bohNrfDUr6EVq6x0+YNEpso8worJ7yQH46Ij6ZAaEUHtdvrpuqJ4yolTdumVDNUpHMtA2sRH+sypS/E9e+9HrffzQMfNlzUqwskcSeDej2rg+qmQN3GOT4nhSWqbuO+4AjUBtGFqOOgdjAEVJtmUId8HiJ+D0t58yPzmmS0iu1NNQ69JzwdJq/GIWNS1ZG61HYGtU/x4fJYS+pQEgqlkh9Zl0aTOTNoZCQX00UnHqGJy025FqaeXe5+W3qKmmeMilaxdcRHZD5C4VRhLW4ivmhqBvXqopSzyLKKd+Ei4vEM+ZOjZf6w1l17AGS0CtGAB7cNu42vpylQOw7q/nDxrNHgb1+bMR8Hlg1Be3EyYvoxjSJKQuH0ITfkT5kjOm2GnnEc1E3Ck3jqGfO2V8xQxbmWAQhEQQgoZlv+SHg6zBU/fgWP//3jaCsaelI3GuQ0J3ROBjWwzkEdjAPCEO67pbBEWRrZ6c5g2iC6cJa7xsF26OUapWqdmI0dvlOK33FQO4w84ekwmUzUvFishgjVKsV00ZJOSqOhsKDqnTQvnlBLQWjCcVCfRUWMIVUTBGotRalqCNNWNCC1SjQRRdYk2nIjbmJ8h0kZ1EZ1RTPiw1lkWSO4eDHRaIHCicygD6UtHIG6S7K640QAmIkGEAJO9ECgHrepk+Z87JiM4HEJnm+zUeKBFaPEY9FxUAOGgzp9pARuvzmi02Y4DupVXNFpfMI8AUqUs9TcimnbG3mi821PWG78pRupFqs89NcPoaf0tWuvohuLNl5rXovtEF2Ikj+RN9aw4lvNcYSpSxRrDYHacVADxnkuZUuUeijOOQw3qUZs3riNx9VTkd4J1FLKRsa3fc+vQ38ITYdYWYpA5og5GywsQ7g9B7UVn63Nxs3F+rh5MR9aEhmMGxnUjri3Ss0Tx0eOit5lfy09RbHUEKht7KBW5o352qoRYWyLEQFU7fJ5d3aTRAsuTHVKJDFBoRCictKEhYA+4gjUXWI0G3GcCF63i6mIn1NZ8yI+KrU6+WLVEag3wedxsTgZ5pHDmdVGna1wcFnF73ExF7XeoK0TlIRCuVCmHpk1N8+tSa0CFQ380ZbebnUHtWd8loBXNc2t7q7lqHtbO7e2IDrfdmf36ZdOs+u1u/juR79L/kR+Y/6006AWJaFQr9aNbu5m5VAXltDLxmDdipPoTjCcYZzZ5d3BVqRVp6/LlOJnudAbgVqv1ChX67Y+vw79ITwdJnk6TD1pgjAi5aoI1SrFdNGSbuDIXAQEaOWYefMWPUXNE6deqTvi3jpkYJxQSFtz/HaKnkbTjWvRqvO7VlASxph3tVGi2wNjC91VWdTrjQx1owIAYTQ3dzDwBDxkC3FImpD13UccgbpL0lrF9vnTTeZiQU6a6KBuTlTsmkV4Ia7cEuP+A0mu/L07efWHvsWvf/YJPv29I+xfylOvby4ANhskumweSdOkuZpb9UyZVyq3Hj0DwVjLIp+eNB6uVhWsQnNxKhU3Us90va1qsYrPrYN/rPsDswrKfEcTlpt+5SbU0yqH9h5ac884+dOrNB1LZ+RQd4u6jKaHcfvceAKe7rdnAZqTFyeH2r5kGgvudo6g6GXER9o5vw59woj4GKO+bIJAXcyCNwje1sfGVnVQu71uI987HzGvf46WpCKNuDzHQb2OyDThsGaYE7pBS6PlDdHUcVCfZUIY39Fdo8RiBnwR8PiMRalYAOFoHGeglqdxFY4O+jDawpkVdUlWr7Bl3L43m/XMRQPsXzavS2iz1HPCEag35Q/fchk/eHWChw+neeRImq8+fYpPP2TcgKIBD9dsi3PN1jjXbotz5ZYYEb+Hgyvqan61w5rwVGIcXy8c1G3Ee4DhoA7Gg7jc1lw7jMxG0A4G4eRxAju7yzbW0zqBQBFCMXMOzgpEOxOoF+9YZPryaZaeXFqL+HDyp1dZdX0cz8Pcdjj1ZPcbLSxRKMwag2nHpQ6sOagdgdq+rEZ82HjcN6X4yRerFCs1Al63qdt2HOoO/SIyEyGdjkL2we431mb+NBhjxLlr5rrf9xASTUTJJEOQMyuDOkkpfDmQtqTrvFNcY9OEw0conO5S29BT5DPGoqBVIxxbITITQbjEmoMauheo11VWOE0+N6fomsNXbq+6dtA4AnWXZLQyMcdBDcBcLMB3XlhGSmnKhDtVaDionYH0pvg9bm7eNcnNu4xBW70uObCi8siRNI80ROtvPb+MlOASsHtG4XBK47WXzQ74yIeHpvCklcZQeuKgbk+g1pO6pcu/IrMR1KdCiGNHCey8rKttFdNFAoESrrDj8l0lOg8nH2/7Y0IIbvrlm/jCf/rC2vXX5rVrZc5wUL9kOzz7/7rfqLpEPhu0pMOrU1bPsyNQ25aM5gioUxHDabecL5lugHEc6g79IjwdJpdTcOmnoVY1yvk7RW0vfxoMB7U/Zs1SfyWhkDzlN7VJYtFr9CZyBL41vJNz3TuoK0WoVSikjMpmK8/xLoTL4yI8Ez6zGXZ8EdJdVFmsE6j1tO5E1GxCNbCFaGnvoA+jLRyBugvqddlokugM9ADmxgKo5Rr5UpVooPtz4jhp2sPlEuyajrBrOsLbr9sCGA7/x45mVgXrlFrm5p3tuRCszGq5kaowMwQOaj2pW7r8S5lTUNUQvtPdn+umg9o9NmHCkVmEaAL2/UdHH73snZfx0F8/xMJNC8YLmuOgbhKeCSPcwhBO49u7y8trUlgmm/I7AvU6PAEPocmQI1DbmLRqCKh2HldPKQ2BumC+QJ3WnOg8h/4Qng5Tq3moumL4cschvq3zjRWW2nJQ16t1yvmyZcUqJaGw9C23iU0SU2i+RkayRc9ZJ3in5wiFdJLdCNR6CkLjaEd1/FE/bpOrYkaNaCJK4cQ6R/r4DnjxG51vcF11hZ7SnQqATZCxrUSy5hlI+4EjUHdBvlSlLu3t9FjP3JjxUDuZKRKd7X5y0SxFdATqzhkLerl19xS37m69sYid8IV9+Mf8ZFMuyO83fwcdRHw0XYRWJDIbIaUFUVZMEKhTOsFgCU/MWXBZJTrX8YTF4/fw0w/89NoLTgb1Ki63C2VOMSI+YluMRpTdOMIaDZ+yK15HoD6L6ELUaZJoY9JaGSXgwWvRmKtWWBWoe5BDveZQt+8CgEN/CE8bjlxdTuPLHO5OoFaXIdK6g7rY6Idk1edrNBHl+WNeZO4EpshNegrVbZwrR+Bbwzs+R0TROdKVQJ2G4LjlK2RbRZlXSB9Mr73QdcTHyhkRH7Ftse4O0IKI6Z3ERZZiWic4IrHE9h0BmkC2USrnRHwYzI0ZD7WTWd2U7SVVZyDt0HuUeYXUqYB5WW7raVegXtEsPYCJzEZQ1RC1zOmut2VEfBTxTjiLL6tEE+Y1zXEyqM9ASTQEao/fKDXOdZHnpqfBG0JN1Sw7ge6U6ELUcVDbmLRWtn2s23RDoF7qgUCdXp232PscO/Qeb9iLJ+hBLU1A5kh3G1tXxt8KxXRDoLao2KokFAqFsFHpVqt0tzEpQUui5ox7ghPxsY7wJBGliHq6C4G6UY2orWiWrpBtFSWhnJlBHd8G2YbpoxPOivgIjFvzd74bQvPz/PVf/ziFk+b1ies1jkDdBRndEVDXMxdrOKgbK9fdklbLjAW9tnbSOPSeaCLK8jGPecLeepwM6jPwj/nRShGkutL1tvS04aD2TToC9SqhCShrxp9uabg+HAyiiehabl58O6QPdb4xdRkiU5bOyOwUZUFxBGobk9Yqto+fGA/7EKI3Duq0Vibi9+DzOONqh94ihCA8HSabj3cfi9WuQJ2xvoNaShc13zjkT3W3sbIKLg9quo5wC3wRe99/zyA8RSjUZQZ1I+JDT+q2bpDYRJlX0JM61WJDkPb4jeqI7NHONtiI+JBSGk0SnYiaDcR3xhm74gqkHPSRtI4zQumCZrMRR6A2mFb8CAEnM+Y5qJ14D4deo8wrnD5Yh2IOqiZPCNsQqKvFKhWtYukBjBAC6RvHXUx2va2mg9o/PWPCkVkEIUCZNadxjuY0SVzPqoMaDMdHposJd2EJwtMUM0XLTqA7JZqIoq1oa5MXB1uRVsu2b+DncbuYCPt6FPHh9M1x6B/h6TDplNLd8xIaz8zWBWo9bcxDrSpWRReMKMCymOx+vKcljQiKtE5wPDgyGbV9IRDD6ymhL2c730bTQZ10HNRgjKUB8ifXuajHFzuP+WgI1OVCmXq1btmqiW5IXJ/g3d96N9OXtddodpA4AnUXNJuNjDmlcgB43S6mFb95DmrNmag49B4loVA4qSEjM+Z1xG7ShkCtJQ3Xq5Ud1AAyOIm7lul6O3pKxe8v4wo7IuoZRBPdxU80cTKozyC6EKWUK1HKl0xwUC9RD05SKzkRH2fTnHif0eXdwTY4ER8GkxF/zxzUzvl16BeRmQgrp8ImRHystJdBbXEHdVPk06ux7hslNhy+xZTjPt2Ay0W5rlDPd1H12RhLWz3CsVWU+YZAvb7XyPgOSB/sbIONDOpmrI9zDVsDR6DugqzuOKjPZnYsaJpAnVIrjIed8meH3qIkFOrVOvXgtPk51G0I1HrScHxY2UEN4IpO4RNduBEa1LJpKlUfuOzdEXsD0XlzrmMng/oMVl0fx/PdC9SFZaoeQ/x3BtNnsipQOzEftsRwUDsC6pTiZ7nQmwxqu0eoOPSP0HSI00cDJkR8tOegtnoGtT/qxxv2UlCV7gVqLQmhiVUHtcOZVF1jCG0FWe8wH0FPUffFKOfLjoOadQL1GTnUi5DqVKA24n9Wqyaca9gSOAJ1FzQjPsacJomrzI8FTGuSmFJLjIedc+vQW5oPy7Jr0vwcasdBvQH3xCwBb/eNGmr5FOWqM9jbQHTOPAe1k0G9SjSxztlrgoO6ImKAdR1eneII1PalXK2jlmtO5RyGQL3SCwe1E6Hi0EfC02FOH3QjtZXuIvQaLslWsbqDWghBNBElmwl3P2/RGhnJKd2ygn431LzjhILaqgDaNlqaci0MWH9+1wpnjKWbjO/oMuJjyvKLUnbDEai7IKNViPg9ThO/dcw1HNSyyyR2KSVpx0Ht0AeaD8tiLe44qPuAb2qOgF+nVuqu87hU01TqYZOOykJEE907aqRczc1zMDjDQR3b1p0jrLBEWY4B1p1Ad8oZ59nBVmQasXkxx+FrOKjzpa7H0mfjRHw49JPwdJhaBWRkDrLHOttIpQgVHQJjLX9ET+u4vC68Fl6MURIK6aVg9/MWLQWhCaPBnOM+3YAMTnTXKFFPUawYcxWrz+9aIRAP4Pa7z3RQdypQV8tGk89ADD1l7dx5u+Eoq12Q0ctOvMdZzI0F0Mo1cl02OFLLNcq1uuOgdug5TQe1qo85GdR9IDwXo1z2oh7pcLLSQBQzVIUjUG8gOt/9dVxWwe0FryOeNjnD9RGZhooGpQ5FVHWZYsXYniNQn4lf8eMf8zsOahuSagjU446AylTET7lWJ6eb1yy0WquTL1adeYtD3whPG2O0amC+86qjhkOSNpr3NRsQW7nhXzQRZfm419QmiY77dCNCmSYc1rsQqNPoujGvcyI+1tz/Z5gQJnZBMQcvfL29jTXiaXC5Vh3uzjVsDRyBuguyTjfsDcw1JtvdxnykCsZExXF6OPSayGwEBORy4e6dp+up1wwBq0XXh10c1JG5CKoaQj/aXdMcUclScysmHZWFUOa7j/hw8qc34A15CcQDxqBaiO5c1IXTqEVj4u4I1BuJLkQdgdqGpFWjqsaJoIDpqHFfWC6Y09MFIKM3z68zrnboD02BuuSahUyHz0t1CSKtx3uAkUFtdSelklA4fciFNKFJogyOU8xY/5x1gjs2TTisoZ7uUKDWUmiqUQ1udQNSqyjzypkOam8Afuhv4d9/rr1Ki+biFWu5804VgDVwBOouyOgVYkFnoLeeubGmQN3doLrppJmIOOfXobe4PC4iMxHSK0FzHdTFLPgjLTfx05Ia3pAXT8Bj3jEMIZFZQ6Aunep8UC2lRFTy1D1RE4/MIkTnTejq7uRPb0Y0sU447SaHurCMqjkC9bk44zw72IbViA9HQGUqYggaSznzcqjXzq+zAODQH5oCtV6bhkyHpoQ286dhzUFtZZSEQjYVNiI+uokC0pJUUEA64t5meKfmDYG6i4iPQs54pjkOagMloWyMcdt+C9z4s/DZn4RaixGQ6jKEJwEj1ke4BT5HN7IEjkDdBRmtzJgz0DuDuTHj4XYy06VArRqDcsfp4dAPlIRC8oTPXAd1G/EeYDio7bC6bgjUQSrLnZ/rilYh4NORbWQS2obIjJEp2OoAbzO0FARjph2SVThjUN2pQC0lqEsUcsbvutUn0Z2gLCiOQG1DViM+nAxqphRDoF4umCdQpzXHQe3QXyIzEQDyxfEuKo6WIDzd1keK6aLlS/2jiSiVihcpvMZ8o1O0tYxkq5+zTvBOzRHqNOJDStDT5FOG8cjqFbKt0nRQb+ixcMv7wR+Fb/xeaxtat3ilp3SC8aClY33shCNQd0FGqxALOgL1eqYVPy4Bp7qN+GiUek44TRId+oAyr7B02A35U905EdajZ9oWqO0weInMRNC0EPXMUsfbKKaLBAIlhBNDsRG3xxiw5U91vg09DSHHQX02SkJZ6zwe39ZZyXIxC24/WhbcfrflKyY6IboQpXCqQK1SG/ShOPSRTENAdRy+6wTqvIkCtepE5zn0l6ZjNJsbg+QLnW1knUuyVezioAaoeCa7M9doKUpl4+fkOKg34lKmUcZKnQnUpTx4AqipCt6w9StkW0VJKFS0CqWzK4RcLnjLx+Gpz8G+/7jwhs6K+HAWWKyDI1B3iJTSiPhwBtJn4HG7mFYCnOgy4mN1IO00SXToA0pCIX20ZORgaSlzNtqmg1pLarZwULt9bsr1KLLQuUCtp3WCwSKuiCOibkp0rrsJi5NBvSnRRBT1tEq9WofxnXDse1Cvt7cRdRkiU7aYQHdKdCEKEgonC4M+FFMRQlwshHhs3Z+cEOKXhBDjQoi7hBAvNP6ON94vhBAfEULsF0I8IYS4ZtDfQy9Jq2VCPjcBb2uxWFYmGvDg87hMFaidBQCHfuPyuAhOBDm1NG80QTt0T/sbUZeNxsRtYIeGf83GzcX6RHfxhHoKTTPmHk4G9SaEJwlH9M4yqPWU0YByxR4GpFZR5o3FlQ0xHwDhCXjr/4Yv/n8XrrpYt3hVTBedBRYL4QjUHVIoVanVpZNBvQmzYwFOdSlQJ9UyXrcg4ndWGx16TzQRRVvRkJE5yJsU89FBxIddBjBVbxyXnuz483pKJxAo4Yo6AvWmRLtslOhkUG9KdCGKrEsKpwqw83bwBOHeD7e3kUa5cilTcgTqcxBdMCbeq251iyCl3CelvEpKeRVwLaABnwd+A/iGlPIi4BuN/wO8Drio8ec9wMf6ftB9JKWVHXdvAyEEUxG/uQ5qrWn8cM6xQ/8IT4cpLJXgtt+Cb/x++1WK61ySrSCltMUCcGQ2gnAJtNJY54YEKUFLUigY58oR+DYhPEkooHbmoG7E5dnFgNQqzcWVMxolrmfry+CWX4TP/ieols+9ofURH2ndWWCxEI5A3SFNJ4KTQb2R+ViAE11GfKTVMuNhn5Ml5NAXmqu5Vd+00XDEDBwH9TmRwUnc1UzHnzciPop4Y+2VfdqGaKI7R43W3rVrF5oltbljOSNK5Yf+Fh74GBx5sPWNqEuOg/oCrArU1s6hvgN4UUp5GHgT8A+N1/8BeHPj328C/lEaPADEhBBzfT/SPpHRnKrE9UwpftMzqL1uQdjnONQd+kd4OmyIe5e/DYoZeOGu9jZQWGpLoK5oFeqVuuXFKpfHRWQ2Qi4X7lygrmgA6Fnjv1Z3nXdEIIbHXUFfybb/WT0FoXG0Fc1pkLiO5pz7vCaEm37B6Klz138793vWLV7pKetXTdgJR6DukKzuNBs5F7PRICczxY3h922QVB0njUP/aApPJcYH4qCWdWmUJ9lEoHYp03jJdPx5PW04qL0T7XV2tw1KtxEfTgb1ZjRdH6uD6rEEvPEj8G8/3XqTosIyhKcdgfo82ESgfgfwqca/Z6SUzRWlU8BM498J4Oi6zxxrvGZJ0lrZaZC4jinFXAd1RisTCznGD4f+Ep4OG/EILjfc9tvwzd9rLxprnUuyFYoZo4LXDs9XJaGQSYY6n7doKQhNoKcMU5nVRf2OEIKyjBpjt3bRjGpEO1XItsJqxMe5HNQAQsCb/wr2fRme+eLm71GXIbQW8eEI1NbByU/oECfL7dzMxwLolRo5vdqxwzytlZmIOBMVh/7QfFjq5RgRMx3UsS0tvbWYKSLr0jYDGFd8Br9WQErZ0WRZTxkZ1L6p9nIJbUM0AScf6/zzTgb1pjQXss7Izbv4dXDgW/CFX4Af/idjUH0+1CWIGAJ1fIdzjjcjEAvgCXosK1ALIXzAG4HfPPtrUkophGhrdV8I8R6MCBBmZmbYu3evGYfZd06saGyPukw//kKhMJLnpJIvcTxVNe3YXzhSxCfrzvl1MIVWf+6ZSobsiazxXqlwbUHjyGf/J8vTL29pPzenj/PQE/sp72utP4x60IhiOHDiAPm95xHAhpxWzm/JX+L4wTrJQ0/zZAe/g5H8i1xS8/H8E8/j8ru454EOMsJHlHbuW1dUg3jqWb555zdx+Vr3diaOfZeQppM7lSNQCtjqPnmh8+uJeHjuu89R23v+ZtjKjvdx+ed/gUcOqxSDZxaQ3Zg8xmNPvYj+QgE9o7OUX7LVOe41g3y2OwJ1h2R0IxMnFnQE6rOZGzNWYE9k9c4FarXMpfNRMw/LweGcrOZhqQpTZjqo565o6a1a0iizs4uD2jc1R3hZpZTtLIfXiPgo4Zt0BOpNic53F1XjZFBvSmgyhNvn3liW+Or/AX/3avje38INP3P+jRSWYO5Kipk0/pi/dwc7wgghiC5EyR8bXXHhArwOeERKebrx/9NCiDkp5clGhEezg+xxYP0q50LjtTOQUn4C+ATAddddJ/fs2dOzA+8lxW/dycWL8+zZc5mp2927dy+jeE4eqz7Pt469wC2veCVed/cFr3+1734SIdiz5yYTjm6NUT2/Dt3R6s9dfEdw4t9P8IqbX4Hb54Ytf8pL/+PX4Yd+w4jKOh/1Gny7wM2v+gFwtzafPOI5wkM8xDW3XMPOPTtb+sww0sr51a7UOH3ni0x4S539Dr5Yh9RWJsOTZCeytvo9bue+lbt/jnBY46qdVzG+s42x8d4HkNUo1UKVi664yDm/63hm2zNERbSFc7IHZurc+NjH4CfvBG9jzigl3JPnxtvfQLHo4dv1b3PJVZdwk8nPNzszyGe7E/HRIU4G9bmZHTNuHt00SkyqTqmnQ/8IxAO4/W6ymfBAMqj1pFFeZxcHtX9ujkCgROFEpqPP62mNQKCECDkO1E2JdhnxoTkO6s0QQqAklI2dxz1+eOv/gb1/BCefOP9G1GVk2MmgvhDRhahlHdTAO1mL9wD4IvCuxr/fBXxh3es/IQxuBLLrokAsRbVWJ1esONFu65hS/EgJycJ5mkS1QUYrE3fmLA59JjwdBkBdbjSZ23m7kS37xL9c+MN6GvzRlsVp4yP2iatQEgorx33ITsd7mpGRXEwXnQaJ58E3M08opPHCl19o74NaijJG5Z2TQX0myvwmY+lzccN7IL4dvvZba6+VG/cTX3g1osaJ+LAOjkDdIZlGN+wxx0G9gfnGpLvTRonVWp2sXnEEaoe+IYQgmoiSPu3vrrncetoQqO3moFbmY+h6AO3YBjNgS1TTGWp1T1uTFluhzBvXcTs5j+txMqjPSTQR3XxQPbETXvvH8NmfhFLh3BsoLFHzTlAr1xyB+jxYVaAWQoSBVwOfW/fyHwOvFkK8ALyq8X+ArwAHgP3A3wDv7eOh9pWsXkFKHAF1HVMRo8LCrBzqtOYsADj0n1WBeqkhKAkBd/wO7P1jqF7g2m6zQSLYK4M6moiiaUFjzFHpwBS2LoPaEffOTWBugdmL3Dz1qafa+6CeolQxhGm7zO9aRZlXzp9BvR4h4I1/AS9+E576N+O1ZoNEISimjWvfDotSdsERqDsko1UI+dz4PU437LOZivhxic4d1OmGO90RqB36iZJQWDrq6c55uh7HQX1OIrMRVDVE8cTRC795E2qFFOWqMxA5J94ABKLGAK5dpIRiBgIxs4/KEigJ5dzC6RVvhy0vg6/82rk3oC5RrBmRQnaYQHdKdCFK/kQeWe+82fIwIqVUpZQTUsrsuteSUso7pJQXSSlfJaVMNV6XUsqfl1LulFJeLqV8aHBH3lua4764M+5bZUppCNSFzqsRm0gpV5skOjj0kw0CNcDWG2H6JfDw35//w+oyRNqLcmuKVXYQXI2+GIKad7KzRolaEoKOg/qChCfYclWIYw8cI32wxYbYAHqaYsmY19llftcqSkIhfzJPvdaikSYwBm/7e2N8vbK/0TzVaJC4WjXhXMOWwRGoOySjV5z86XPgcbuYiQY4kelUoDbc6Y7Tw6GfKPMKy4cllPKdORHOxnFQnxNDoA5SWe7Qra5lqMiwuQdlNaLznU1YSjnwBMHj3H83Q0ko5I7nkPIcwunr/wSOfQ8e36R8WUooLKOXjJJPR6A+NztevYNX/PYrqJXP30DHwRo4476NrArUJjio1XKNSk06DnWHvrOpQA1w+3+F73xwrVR/M9TlVRGqVVYd1GPWf742++eUxHhn8YT6moPacZ+eh/AU0zuMBthPf/rp1j+npdBU4z7uRHyciTKvIGsSbVlr/UPzV8Ftvw3/+i7IHl2trrDTopRdcATqDsloFcacgfQ5mR0LcCrXWcRHSjUmKhOOk8ahjxjZsipSmek+5qNNF6qe1BEuYYsBNRiDCL0YppY+1dHnZTFDlYjJR2UxlPnOqgGc/OnzEk1EqerV1UnwBnxhw+Xxtd8yXB7rKReMckTVqLxyBOpzs3jbInt+dw+egNPL2w6kVUegPptJEyM+nPPrMChWBerTZwnRc1fCtpvhwY+f+8PqMoTbc1DraR2f4sPlsb7EYTioQa/EO5u3aElDoE7rBMad8cg5CU3iF3kWblxoL+ZDT6Hmjfu4XQxIrdJcXNnQdPxCXPeTMHWJMcZuCNTNDGpnkcU6WP/u3SOyutNs5HzMjwU52aGDuilQO6WeDv1EmVeoaBVkaLZ7gbqUB0+gZReqltQIjgcRLtHdfkcEIQRlxpC5DiIoAFHKUnMrJh+VxYh2KFDraXCaT56T5oTwvM1dZi+D234LPvufzszYbORp2ikj08GhFZqNx2POuHqVgNdNNOAxRaB2zq/DoPBH/bh97o0OajDckPd/FPTM5h/uIIO6lCnZ5tnqV/z4FB95VenQkJCk5hujolYcce98hKdAXeayd17G6SdOs/xMi3MXLU0+Y9xzHQf1mSjzjbF0qznUTYSAH/iwYQY5K+LDcVBbB0eg7pCMVnEGeudhdizAyWzx3GXQ58FxUDsMguZqbsU92X0OdRvxHmA4qO22ul7zxBF6su3PSSlx1/PUvdEeHJWFiCY6FKgdB/X5iC606Pq47qeMruN3/be11wpLEJl2BGoHh7NINSI+nN4jZzKl+P//9u48Ps663P//68q+TZouaZqmTYGWttCVUvaWln0RKBxFQFBAz+GI6M/1q6Ael+/3uBwXlE0URakHjhxFZRFEsFCkQCkFutKWFrD7nqVNZibr5/fHPQlpmmUmyd3JzP1+Ph55tJ25J3y4PvfMfOaa674+7K0bgArqsAo/JDnMjMKywq4T1COOhUkXwct3df3g+r1QlFiCOlIdrHYVxWOKqa0u7GMFdRUNzd7ViOrf24PCEVD9T6acn4dlGGsejqOKuqUZGus4WJVBZm4m2coZHSKuYo/u5IbghifhtFsAr8VHZo5inE6UoO6jmkgTQ/K10OtO+ZA8Ik0t1EaaEn5sW4Jam7nIkdT2bW60dVj/K6gj1ZBfEv/h+yOB20DD5Q0ns7kq4cc1HmwkLycKuUN8GFUaKS6H2m2JPy5SA/nDBnw46aL9ssTuNkpsYwaX3Qnrn4L1T3q31e+BQiWoRTqrDjeSk5lBQY42Hu+oNJQ7MC0+2nt86wO8HHmFI7tJUAPM+wosvx/quqhKrd+bcAV1tCYaqErK4opiqvfkwYHtiT84XEU06n32CFLMEjbsGDj90xQ9djkf/sRrbPrzq70X4EVrIK+Y8P4oBSMKMAvGFbLxKiorwjIs8QrqNqFR7RuoRqoj5A3NU4zTiBLUfeCco1YV1D0qH+J9E7uzNvE2H1X1jYRys8gJQP8wGTzavs2tixTDwb71Rm4XqY67/zTEWnwErIK6deh4huVvbr80K16Rqgj5+VGsoMSfgaWLcafDpr9D1buJPU49qHvUflliPFUf+UPhQ/fDE5/1viyo2wNFpYHaxEkkHjX13ppaHzAPVRrKG+AWHyr8kCOvxwR1SSVM+zAsuf3w+/rQgzpaHQ3Ul7+hihB7t2X1eZPEcNj77BGkqvOEmcGcz8OnX2PYxOFce9FPOPi/34LGHjb4C1dB/jAi+4JXgBSPjKwMCssKE+9B3YVoVVTnb5pRBrAPwo0tNLa0UpKvBHV3ymOLg521iW+UWB1uZFiRFtFyZLUnng4WJaXFR9AWMJXXXkNRYR3rfvFoQo+LVEfIy2vACpVE7dGwY2DuF+HRW6C1Nf7HRaqhQBXU3cnMyaSgtCD+RfXYk+HUT8Ejn/CuzIhVUGflZWkDQJGYqnCj2nt0YWQolz0DWEGtzy2SDD0mqMFbq6z8HdRsPfT2ur3tfWbjFa0JVrIqVBFi8/p8XO02+PMn409UN0WgtZlwbCmjFh9xKBxB6OP38uuF1xJe8yrcdSK88d/Q2nL4sZEqKBhGeH9Y/ae7ERodom5HXb9/T1sFtaQPJaj7oCaizUZ6MzpWQb2jDxslVtU3aqdxOeKy87PJG5pHzb78AWrxEX8CNYgV1KNOqGBL7Sk0LX2QlqYuFnfdiFZHycuLkjlkuI+jSxOn3gyuFZb9Iv7HqAd1r4orihPrm3fG5yA7H169r70HtRbTIu+rCTdqTd2F0lAu4cYW6hua+/V7asJNhPKyyMrUxz458toS1N22RQiVwYk3wj9+8P5tzsV6UCdWQR2pjpBbktuP0aaW4opiwnV51H3oOa/twb2nw4s/hqZePn+Hq6BgOJHq2BVdWpPEJX9YPsNPPonfLbwAd+VCWPEQ/HwObHzWO2fbRKohfxjhfcH7fBev4origamgro7qC5Y0o5VKH9TEKhHUg7p7paFcMjOMXX1s8aENEiUZiiuK2b8z94hWUDeFm2iONAdyAVN4wSeYdNRK3vp9HBuOxESqvArqrJLE+hIGUkYmXP4zeOEHsG9TfI+JLaqle8VjEkxQZ2TAv9znJamLR3sJ6gBdgizSm+pwkyqou1Ba5CXa+tvmozqswg9JnsKyQloaWohU9XBV7Rn/n7dfw/53vH831nmtFXIK4/7vtDa30niwMXAV1AAH9zo491vwb4tg+xtwz8mw7olDk6YdhfdD/jCisQS1Enzxm3L1FA5sO8DWLaPgxr/C2V+Hp2+D314GO1Z4B4W9CurI/kggP9/Fo2h0Ud97UHcQtI1Rg0AJ6j6oDauCujeZGUZZKJcdfWnxUd+oncYlKUKjQ+zZkuX1oO5tA4yeJJCgDu/3epgFrcUHwLgPfoBmCvnnwv/pfcORmEi114M6e3hil30G1vDxMP9WePTmri9D7Ew9qHsVqgj1vkliZ0Uj4VOvwMQLlaAW6aS6vlH9kbtQGoolqOv6m6Bu0gaJkjTlJ5QDsP3VHjbyyx/qXfX1/He9f9f3ob1HbfA2IG7fuLmtEnXYMXD1Q3DpHfDcd+C3C2D3W4c/MNaCou1LgyDFrL8mL5hMVn4Wq3+32vsSZfIH4FNLYcoV8D9XwR//DXatxuWVEKmKqMVHN4orionsj9DczyuEIlVq8ZFulKDug7YWH6pG6NmoIXls3h+OO/EE3gaU++vVi1CSI1QRonprxKt0DFf1/RdFa+JO8kX2e4vDIC5gLMOIVl5GRd4SNv9jc1yP8Vp8NJAzoszn0aWRk/4NMnPglXt6P1Y9qHsVqggR3hdOfFFdOAIyMpWgFunAOUdNRAnUrrQnqPtZQe21UNG6WpKj4pQKMrIy2LJkS88HnnIzvPcP2LU61n868Q0SIVjtKtorqDtf1TX+LPjkEph8CSy8FJ780qGfa8L7Yy0+IuQOySVD7X/illOUw8RLJvLWH96itTm2x0tmFsz+OHxmufclwRsLac4Yimt1gSxAikf73k/9qKJubWmlobYhUM/5INCrUR/UqII6LvMnjeT1zdX86sX34n5MpKmFhuZWJaglKUKjQ9TtqsOFyuFgP9p8RGoSrqAO6iVgZdd+muOO38RrP/lHXMe3V1APUw/quGVkwIK74aWfwt4NPR+rHtS9aqtY6uuiWglqkfcdiDbT0upU9NGFgUpQV2sTSkminMIcymeVs+XFXhLUuUUw9wte5W/9XihMrJVbtCZ4FdSFIwuxTOu6l29mFpxyE3z6Ne/fd58Ey34JLc3tLSii1cHaVHKgTL1mKuG9Yd57rlOOIzcEZ90Gn1/LgbHXAMEsQIpH+5cr/UhQN9R6741qUZNeAp+gbmiOf3OuNjWRth7USlD35NNnTeAD08v5zlPreGxFD5d1dbC/zovtMH1QkSQIVYRwLY6W3JHx74TdlQRafLRXUAf0G/bssnFEcifCpqfZ//b+Xo9v60FtSqImZtjRcNbXvFYfLT1U/qoHda+6rViKU7RaCWqRNtX13rpPCerDDS3IITPD+l9BXd+kohpJqsq5lWxftp3maC9XHp14o1dBveEpKEosQR2p9tbTQUq4ZmRmECoP9bweKRgGH/gRXP84vPWYt6nfO895FdRqj9Anx150LLnFuaz5XTd76BQMI1xrQHALkHrTXkHdx7U0BPM5HwS9JqjNbKyZPW9mb5nZWjP7bOz2YWb2rJltjP05NHa7mdmdZrbJzFaZ2Sy//yf6wjnHLQ+9wRf+d2XCj60NN5GXnUFedqYPI0sfGRnG7R+ewanHDONLf1jJS5v29fqY6tgGlKr0kGRoe7NssOH9rKBOvAd1kBcwBWffyIwZ61l6x9Jej22sOeD1fMsObrz6bPbHveqOl+/s+v7WFojWQt6QIzuuFFM8plPPxwQ451RBLWnn1Xf3c8/zcW7E2knbum9ooRKonWVmGMMLc/qVoG5qaeVgQ7O+AJCkqpxbSUtjCzuW97K2zs6D+V+BFQ+pgjpOcW/cXDYFrn8Czv4a7F4LQ8Z4FdSqPk1YVl4Wk6+YzLo/reu23VuQWzjGo79XIwLv91DXlyxpJZ4K6mbgi86544FTgVvM7HjgVmCRc+5YYFHs3wAXAcfGfm4C7h3wUQ8AM+PYsiKeXL2T1zcn1mu2OtxISb4WevHIzcrkFx+dzfjSIv79v19n7Y7aHo+vaqukUYJakqDtzTLSNFQV1EdQ3qlXcvT4nbz98MvtCfvuuLoqGpu1mO4TM7jsLnjl7q43zYnWQk7IuyxUutW+qO5D1UdTuInW5tbAfYCW9PbSO/v50TMb2BXbpCwRbW3zlEDtWmkot1+bJL4fX30BIMlTeUYlAJtfjGO/kRkfgWHj1YM6TqGKUPxfmJvBcZfCZ1fCrOuJVEVUfdpHU6+ZSsOBBjb9tesvZ8P7vM8zQf5815O8oXlk5mb2qdijTdtzXudweuk1Qe2c2+mceyP294PAOqACWAAsjB22ELg89vcFwG+dZylQYmblAz3wgXDTmccwMpTLfz65LqGN/GrCulQuEUPys3ngxpMpzsviht+8xtaq7hNQbQlqVVBLMrRdul8XDh3RCuqcohwycwJ8RUZuiJZx5zBp/Fpe/8XrPR7q6qppai08QgNLQyWVcM434dFPQkvTofdFqqFArVN6kzskl+yCbA5sS3xRHdQKL0lvC2aOxjn4y6rE3zer1OKjRyNDuew5mHjiv01NrEJdmyRKMhWMKGDEcSPYumRr7wdnZsF1j8DMaxL6bwT1/TVU0UuLj66YgRmR6gh5w4IVr4Fy9NlHUzCigDUPd93mQ1fI9szMvL2fdtT1+Xe0t/jQVQBpJaEe1GZ2FHAC8CpQ5pxrKzHcBZTF/l4BdHz32Ra7bdApyMniS+dP4s0tNTy5Ov5qyZpIk/pPJ2jUkDwWfvxkGppauP43y9p7DnamBLUkU9tmI7XVBX2voG6KgHNxt6CI7I9o8QLknXkDJ899l2V3Lev2cjkAGmpopujIDSwdzfqYd+nskp8censCX6wEmZn17QMhwf0ALeltfGkR0yqG8NiKxBPU7S0+lEDtUmkot18tPqpVoS6DROWcSra8tIXWltbeDx52TMLtxiLVETKyM8gOWBFZcUUxDQcaaDiQ2OuEc04V1P2QmZ3J8Vcez4bHN9BYd3heI7wvTEZWBrnFuUkYXWoorigekArqoF01ke7ivo7XzIqAPwKfc84dMLP2+5xzzsziL0H2ft9NeC1AKCsrY/HixYk8fMCMcI6xoQy+/ecV5O7bQHaG9fqYHXvDlBVm+Drmurq6pMXET7dMz+KHy+u58q5FfPmkPHIyD433ircbyTR4Y+kSOp5jAy1d4ys9i2fes4dms/GtesYXb2R5H86RnIb9nJhZwCsvvBDX8dve3kZLTktanI/9eV5Zq3FKqJrcpi088q1HGHXBqC6Pc5Fq6puyWZ0G8UrUQL5u5Y64hhOXfIFVB0ZQFzoGgGH7lzMmAqsCGFtILL4thS1sfWtrwvNRu9prc7Vh8wb2Lt6b4AilN3pvT54FM0fzn0+u4529dYwvjf9LxJpwE5kZRihPrYW6UhrKZV9dI62tjow4PqN01lb4oSs/Jdkq51byxi/fYO/avZRNL+v9AQlq29/Bz8+Pg9Hok0YDsPb3a5n1r/Fv/dUUbqK1qVXVp/0w9eqpLL93ORue2MC0a6Ydcl9bAVLQzsdEhEaH2Plm31tqtvWg1pcs6SWu1aCZZeMlpx9yzv0pdvNuMyt3zu2MtfDYE7t9OzC2w8PHxG47hHPuPuA+gNmzZ7v58+f37f9gAOSM2cd197/Ke1mV3HTm+F6Pb3r57xxbOZL586f7NqbFixeTzJj4ZT4wbuJObn7oDf6wPcTPrzuRzA4L7r9VrWLY3j2cddZZvo4jXeMrPYtn3jcevRHX0ExR64G+nSO718KmUXE/dhObKDmqJC3Ox/4+r1zDtZy6bj3L/3ocV333qsMWda0trTzGveSERqZFvBI14K9boxqZ/crP4N+eg6wcWLkb3PhAxhYSi2/11Gq2LNmScKzern+bFazglHmnUHHyoLy4LKXpvT15Lpk+mu88tY7HVuzgC+dNjPtxVeFGSvKz+5R8DYLSolxaWh3V4UaGFyVeiVcT1t4uMjhUznm/D7UvCerqaCATVUfNP4ryE8t56b9eYuaNM8nIjO8CeW0w13+VcyopHlPMmt+tOSxBHd4X1gaJvQhVhHj7L2/jnOtTIj9SHSErL4ssfcGdVnp9BTPvbLkfWOecu73DXY8D18f+fj3wWIfbP2aeU4HaDq1ABqU5x45g/qRS7npuU3ulQU9qwk0MUSVCn104tZxvXTqFZ9/azTceW3NI/++q+kaG6TJESaLiimL2bW6Fxjpo6kPfxwTbJET2R7SBRozNuJppU9exe+Uu3nvuvcPub6htIC8vCrmJXfYp3ZhxDQypgH/80Pt3pAoKhiV3TCliyFFDOLDtAAd3JtbmQy0+JF2NGpLHaccM5/EV2xPc16VR1b09KA15rxV93SixWpskyiBRclQJoYpQfH2o+6CtgjpozIw5t82halMVbz3SxQbY3WjfYE4V1H1mGcaUq6aw6elN7Qn/Nvp817vQ6BBN4aaE29O0iVZHdf6moXi+YjsD+ChwtpmtiP1cDHwfOM/MNgLnxv4N8BTwLrAJ+CXwqYEf9sD76sXHUd/QzJ2LNvZ4XLSphYbmVkrylUTtj+tPP4qb54/noVe3cM/z7+9+W1XfyNBCLaIleYpGF3FwRz0UjYKDffhuLcEEdXh/WD2o25TPIGfoECZOr2Lp7UsPuztSHSE/v0Eb+Q0UM7jkp7D817DjTfWgTsDMG2binOPlH76c0OPaE9SqWJI0tGDmaP65P8yqbbVxP6aqvlH7jvSgNORVTfe1D3VNuJGcrAzyswO8EbMMCmbGuLnj2Pzi5oS+xIpXtDoa2PfW4644juGThrPke0vijm37BnMBrDofSFOvnkprUyvr/rzukNvD+1VB3ZtQRQigT3u6QLCf8+ms1wS1c26Jc86cc9OdczNjP0855/Y7585xzh3rnDvXOVcVO945525xzo13zk1zzi33/3+j/yaWhbj65EoeXLqZd/d2v5toTawSQdUe/fflCybxL7Mq+NEzb/OH5d636VX1jQwv1GYCkjzFFcVEqiK0HoEEdWtLK9GaqBLUbcywGVcz74pdbHxqI3vXHdqjN1odJS8vSkaRkqgDprgcLvwe/Plm73zPVwV1PIaNH8b066az/OfLqdsd/w7k7QnqIVpQS/q5cGo5OZkZPLrisM5+3aoJN1GiK+e61d8EdXW4kaEF2eqDKoPC2DljObj9IDX/rBnw3x3UCmrwKnnn3DqH3St3s+npTb0/ALX4GCjlJ5YzbMIw1vxuzSG3h/epAKk3odGxBPWOviWotclneoqvSVFAfP7cieRmZfD9v67v9pi23cZL8pWg7i8z478+OJ25x47g1j+t5vkNe1RBLUnX9mbZnFUKB3Yk/gsi1ZBfEteh0eooOHQJWEfTP0x57jJyC2HpTw+too5URcjLayCzeHiSBpempl0Jw8fDit+pgjoBc782l5aGFl7+UfxV1NGaKNkF2WTmqJpR0s+Q/GzOmlzKEyt30tIaXxVfWwJVutb/BHUTQ/UFgAwS4+aOA2DLki0D/rsj1ZFAJ1unfWQaxWOLWfLdJXEdrxYfA8PMmHL1FP75/D+p2+UVLDjn2jdJlO4VVxQDcGD7gT49PujP+XSlBHUHpaFcbp4/nmfe2s3Sd/d3eUxbBbV6UA+M7MwM7r3uRI4rD/GpB9+gJtKkHtSSVG2XG0Vbh/peQR3eHwbQAqajIWOw8qmc+4lmVv12FfV769vv8lp8RMksGZHEAaYhM7jkJ5AbgqLSZI8mZQw/djjTPjKN5T9bTv2e+t4fQLArvCQYFsysYF9dA6+80/U6uiPnHNX1TdrArweFOZnkZ2f2q8WHrvqUwaJ0Sim5Q3LZ8uLAJqidc4F/f83MyeT0L53OliVb4voCoK2CWhWo/Tftmmm4VsfaP6wFoOFAA63NrWrx0Yv+VlCrB3V6UoK6k0/MOYbyIXl896l1tHZR/VEbaaug1mJ6oBTlZvHrG05iRCgH51AvQkmqtm9z6xuG9KOCOr4EdWS/tzhUBXUn069i2tS3aI42s/zn73eJ8lp8NJAzXAnqAVc0Ej61FI6en+yRpJS5X59Lc7SZl38cXxV1tDrYH6Al/Z09eSRFuVk8Fkebj3BjC40trarw7YGZMbI4lz2qoJY0kJGZQeUZlQNeQd0UbqK1qTXwydZZ/zqLghEFLPle71XUkeoIlmnkhPT60F+lx5cyctpI1j7sJaj1+S4+2QXZ5JXk9bkHtSqo05MS1J3k52Tyfy6YxKpttTy+8vDklHpQ+2NkKI+FN57MjLElnFCpS8wledq+zd1bPxFWPwK12xL7Baqg7r/jF5C7bxlTLi3ntbtfoznaDLS1+IiSU1qW5AGmqVAZZGhZkIgRk0Yw9eqpvHbPa4T3hXs9PugVXpL+8rIzuXDqKJ5es4toU0uPx7a1zdOVcz0rLcrtZwW14iuDR+XcSvat2xfXe2a82vd3CPj7a3ZBNqd89hQ2PrWRXSt39XhsW/9e9acfGFOvmcrWl7dSs7mm/dxWBXXvQqNDfaqgbmlqofFgY+C/lEpH+iTahctnVjC1opgfPL3+sMV1TcRLUKsaYeAdU1rEY7ecwYyxJckeigRY7pBcsguy2bmrHE69GR75OLQ0xf8LVEHdf3nFMOFc5l1ZRf2eelb/z2og1uKjoIGsIepBLYPH3K/PpSncFFcVtRLUwWZmJWb2iJmtN7N1ZnaamX3LzLab2YrYz8Udjr/NzDaZ2QYzuyCZY0/EgpmjOdjQzPPr9/R4XHW9ij7iURrKZW9d4glq5xw14Sb1+JZBpXJOJTCwfajb+imrmhJOuuUkckI5vPT9l3o8Tu0RBtbUq6cCsObhNSpASkCoom8J6vYvpfScTztKUHchI8P42sXHs6M2yv1L3jvkvppwEzlZGeRlK3Qi6cjMCI0OUbejDs74HOQNgUXfjv8XJFJBvU8LmG7NuJoRDYsom17GK7e/4vUXrI6Sn9cAeSXJHp1Iu9LjSpl61VReu/u19g8l3VGCOvDuAJ52zk0GZgDrYrf/xDk3M/bzFICZHQ9cDUwBLgR+ZmYpsbvmaccMZ0RRLo+t6LlNVlsFtXpQ96w01LcK6oMNzTS3OhXVyKAy+qTRZOZmDmyCWhXU7fKH5jP75tms/f1aqjZVdXtctDqq5N4AGnr0UCpOqWDtw2vfL0BSBXWvQqNDfWrxoU0+05eyrN04bfxwzj2ujHsXv8O+DlULtZFGSvKzdTmMSBoLVYS8HYUzMuCKX8DaR2H9k/E9OFITd4L6nb+9Q8lRJeQW5/Z5rGlr/NlY1bvM+//GsnftXt599l0aqg+SkdkKOYXJHp3IIc78jzNprG/kldtf6fG4aE2U3BI934PIzIYAZwL3AzjnGp1zNT08ZAHwsHOuwTn3HrAJONn3gQ6ArMwMLp1RznPr91Ab6f4KpPYEtRKoPZowsojaSBOvb+4+2dSVGlWoyyCUlZtFxUkVA7pR4s43vE3Nh1QOGbDfmcpO+/xpZGRn8NIPuq+ijlRFlNwbYFOvmcquFbvav3zRFbK9C1WEOLjzIK6Lvd96EqnWJp/pSgnqHtx28WQiTS389O9vt99WE27SQk8kzR3SD6tgGHzoN/DEZ6H6n70/OM4K6tqttby76F2mf2y6vvDqSmY2TP0gk8atoKi8iFduf4XWg1U0NueD4iWDTOnxpUy5cgrL7lpGpCrS5THOOVVQB9vRwF7gN2b2ppn9yszavm37tJmtMrNfm1nbG0gFsLXD47fFbksJC2ZW0NjSyt/WdN8Htbq+LUGtdXVPPnTiGEYU5XD7s2/3fnAH+gJABqvKuZXsfGMnjbHXgP5a8cAKymeVM2KSNtEGKBpVxMwbZ7Jy4cpu2ydEqiNK7g2wKVdOAYNVD67CMkzrvTiERodwLY76PfUJPa5tra2rANJPVrIHMJiNLy3i2lMqeejVLdxw+lFMGBmiOtxISb4WeiLpLFThXW7knPOSx2NPgjlfgD/cAB//G2R1UwHZ3AjNUcgN9frfWPXgKnAw42MzBnbw6WTGVWQ88glOvuVOnvv684w+po6mWQVoOS2D0dyvz2Xt79fyyk9e4ez/d/Zh9zfVN+FanD6wBFcWMAv4jHPuVTO7A7gVuBv4f4CL/flj4OPx/lIzuwm4CaCsrIzFixcP8LD7xjnHyALjgcVrGFn/TpfHvLnRS06tWPYymRn+fPFYV1c3aGLSH+eNgd+t38+9f1zEccPj6/Syaq+3wfB7G9aweM+6Xo7um3SJrySmv/NeU1xDa3MrT/7iSYbOiu+qw27H8k4du97cxYTPTEibc3EgnleZczNpua+F33/+94y/efxh9x/cc5D94f1pE7NE+Pm6VTKzhJo3a8geks0L/3jBl//GYJdIfKuj1QA8/oPHGX3Z6Lj/G7tf2g3A6o2reaeh6zWG9F0y39uVoO7FZ885lj+/sZ3vPrWeX99wEjXhJsYO0+UaIuksNDpEc7SZaE30/eqCU2+GzS/BM1+Hi3/Y9QOjNV5/5F4qfJ1zrHxgJZVzKxk2ftiAjj2tjJ4FGVmctAD+8Z0srOEAzVaU7FGJdKlsWhnHffA4lt25jNO+cNphlUnqkRl424BtzrlXY/9+BLjVObe77QAz+yXwl9g/twNjOzx+TOy2Qzjn7gPuA5g9e7abP3/+wI+8j65ufpu7ntvI8bNOZWTx4ef987VrGLJjB+ecfZZvY1i8eDGDKSZ9dWpTC8//cDGL9uTzyX85La4rr2re3A6vr+DsOacwvtSf9850ia8kpr/zHp0ZZc1X1zD04NB+nz9/e+JvZGRncMU3rkibnr8D9byKPBVh/aPr+ci9HzmknYdrdbxQ9wITpk0I5PPXz9et0CdD/OXf/0LxqOJAxhYSi6+b56h5rIZtC7dx+dcuj7styrK1y1jPeuZdOI/CkWr9ONCS+d6uFh+9GF6Uyy1nT+C59Xt4adM+aiNNlOTrUkSRdFZcUQxw6KYNZrDgHtj4DKz5U9cPjLO9x/ZXt7P/7f3MuF7V0z0ygxlXkffPR5l5w0zy8xtoyei9Ol0kWeZ9Yx4NBxp49Y5XD7uvLUGtS2qDyTm3C9hqZpNiN50DvGVm5R0OuwJYE/v748DVZpZrZkcDxwLLjtiAB8BlM0bjHDy+suvNEqvCTWrvEae87ExuOXsCyzdX84+N++J6jFp8yGCVV5JH2fQyti7Z2vvBPWhpamH1g6uZdOmktElOD6Q5t86hqb6JV+86dE0SrY2CU3sEPxz3wePIyMrQ+RgnM+Piey4mWhvlua89F/fj2jZJ1DmcfpSgjsMNpx9FRUk+33lyndfiQ4tpkbQWqvCSoIf1bcsvgSsXwlNfgn2bDn9gnAnqFQtXkJWf5fUqk55N+zCs/TOnfmYWeflRyNMGODJ4lU0vY/IVk1n606XtCek2qqAW4DPAQ2a2CpgJfBf4gZmtjt12FvB5AOfcWuD3wFvA08AtzrmWpIy6jyaMLGJqRXG3CeqacCMlSp7G7arZY6koyefHz2zAud43lKoON2EGQ1RYI4NQ5ZxKtr6yldbm1j7/jk1Pb6J+Tz0zblDBR1dGTh3JxEsnsuzOZTTWvd/vuy25p00SB17B8AJO+dwpTLpsUu8HC+BdgXjyZ07m9fteZ8fyrtcLnUWqImQXZpOZHV/LK0kdSlDHIS87ky9fOIm3dh4g2tSqxbRImguN9hLUB7YfOPzO0TPhrK/CH66Hpk6bocWRoG6ONrP24bUcd8Vx5BZ308ta3jd0HJROZjivc843TmTY1GOSPSKRHs37xjwaaht49c5OFUtKUAeec26Fc262c266c+5y51y1c+6jzrlpsdsuc87t7HD8d5xz451zk5xzf03m2Pvq8pkVrNpWy7t76w67rzrcyLBCranjlZOVwWfPOZZV22r5+7o9vR5fE26kOC/bt/7eIv1RObeSpvomdq3ofiPV3qx8YCWFIwuZcOGEARxZeplz2xwiVRFe/+Xr7be1bTCnK7r8cf4Pz+eML5+R7GGklPnfmk9RWRFPfupJXGvvX8BGq6M6f9OUEtRxumzGaGaMLQFQBbVImmtLUB/S4qOj2Z+A0knw168censcCeoNT2wgWhNVe49EzLgKVj1MSSlkFg9P9mhEejRq5igmLZjE0p8s9S6jjVGCWoLokumjMYPHVhxeFVVd36Q1dYL+ZVYFRw0v4MfPbKC1lw/x1WqhIoNY5ZxKADa/uLlPjw/vC7PhiQ1Mu3aaqih7MPa0sYybN45XfvwKzQ3exqmR6liCWhXUMkjkDcnjvB+ex47XdvDG/W/0enykOqLzN00pQR0nM+M/PnAcmRlGpTZJFElrWblZ5A/PP7zFRxszuPQOb9PElQ+/f3scCeqVC1cSqghx9DlHD+CI09zxl8O7L0D1P71NKEUGuXnfmEe0Jsqyu95vGawEtQTRqCF5nHr0cB5fueOwthTV4Ub1R05QVmYGnzt3Iut3HeSva3quPFULFRnMiiuKKTm6hC0vbunT41f/bjWtTa3MvGHmwA4sDc396lwObj/IqgdXAerfK4PTtGunUTm3kkW3LSK8P9zjsdHqqM7fNKUEdQJmHzWM5V87lzkTRiR7KCLis+KK4u4rqAFyQ/Dh38Lfvgp71nu39ZKgrttVx6anNzH9o9PJyNTLb9zyS2D8WbD2z+pBLSmhfFY5Ey+ZyCu3v0LDgQbg/Yql3CFq7SPBcvkJo3lvXz2rt9e23xZtaiHc2KIWH31w6YzRHDuyiNuf3UBLD1XU3hcAqqCWwWvc3HFsWbIlrp7qna18YCWjThhF2fQyH0aWXo457xjKZ5Xz0n+9RGtL6/stPlSBKoNI+4aJNb1vmBipiqjFR5pShiRBQwtzMFMvN5F0Fxod6r6Cuk3ZFDjv/8LvPwaN9b0mqFc9tArX4ph5/cyBHWwQTL8amuq9ZLVICpj3zXlEq6Msu9uroo7WRLWhiwTShVPKycnMOKTNR024CVDbvL7IzDC+cN5E3tlbz2Mrtnd7XHV9kyrUZVAbO2cs4b1h9r+9P6HH7V61m51v7FT1dJzMjDm3zaFqYxXr/rju/RYfSvDJIBPvhomR6ogqqNOUEtQiIl0onVrKrhW72L+xl0XzCdfBmNnwly9AuKrbBLVzjpULV1JxcgUjJusqjIRNOBfyh6nFh6SM0bNHc+zFx/LKj1+h4WAD0Zqo2ntIIA0pyGb+pFKeWLmjveK3OtwIoARqH10wZRTHlxdzx6KNNLW0dnlMTbiRoapQl0Fs3NxxAGxZklibjxULV5CRncG0j0zzY1hpafIVkxk+cThLvreEyP4IWXlZZOVlJXtYIoeZ/635FI4s5Klbnup2w0S1+EhfSlCLiHTh9C+eTlZeFotuXdT7wRf/CHatgo3PdJug3rViF3tW79HmiH2VlQPXPQJjT0n2SETiNu+b84hURXjtntdoqGlQgloCa8HMCvYcbGDpu96XvtX1SlD3R0aG8cXzJ7J5f5g/vr7tsPsbm1upb2xRiw8Z1IZPGk7BiIKE+lC3NLWw+sHVTLxkIgUjtC9UvDIyMzjj1jPYtWIX6/60Tu09ZNDKG5LH+T86n+3LtvPmr9887P7mhmaawk06h9OUEtQiIl0oGlXEGV85g3V/Wtf7DuM5BXDlQnAOikq7PGTlwpVk5mQy9eqpPow2ICpOhGwl+CR1VJxcwYQLJ/Dyj17mwLYDSlBLYJ1z3EiKcrPaW1JUx1p8DC1UArWvzp48kpljS7jruU00NLcccl9NrEJdmyTKYGZmVM6pTKiCetPTm6jfU6/2Hn0w/drpFI8ppua9GlWfyqDWtmHi32/9e3vP9DZtm3yqRU16UoJaRKQbp33hNEIVIZ754jPdXmLUrnQifG4VlB9eId3S1MLq/1nNxEsn6ttekYCZ9815RPZH2L5suxLUElh52ZlcMGUUf12zi2hTS3uLj2FKoPaZmVdFvb0mwv++tvWQ+9q/AFB8ZZAbO2cs1e9Uc3BnL/u+xKx8YCUFpQVMuGiCzyNLP5k5mZz2pdMAbZAog5uZcfHd3oaJi7526NXMbT3U9SVLelKCWkSkG9kF2Zz9nbPZ8doO1jy8pvcHFHbdW3rTXzcR3htWtYdIAI05dQzjzx8PoAS1BNqCmaM5GG1m8YY97S0+VOHbP3MmjODko4Zx93ObiDa9X0X9fo9vVajL4NbehzqONh/h/WE2PLGB6ddN14bDfTTrX2dRMKKAorKiZA9FpEdl08s4+dMn8/ovDt0wURXU6U0JahGRHsz46AxGnTCKRbctojna3KffseKBFRSOLGT8BeMHeHQikgrO/MaZgBLUEmynjx/OiKJcHluxg+pwE4U5meRk6aNIf7RVUe852MCDS99vR6YWH5IqRp0wiuyC7LjafKz53Rpam1pV8NEPOYU53PjijZx/+/nJHopIr+Z/+/ANE9sqqHUVQHrSqlBEpAeWYZz/4/Op3VLL0juWJvz48P4wb//lbaZdO03VHiIBVXlGJRf89AJO+MQJyR6KSNJkZWZwyfRyFq3fw5aqMEMLlTwdCKccM5w5E0bws8XvUN/gfZGuHt+SKjKzMxlz6pi4KqhXPLCCUSeMomx62REYWfoaMXkEQ8YOSfYwRHqVNySP83543iEbJrb1pFaLj/SkBLWISC+OPutoJl46kSXfXUL93vqEHttW7THj+sN7U4tIcJz62VMpP6E82cMQSaoFM0fT2NzK8xv2qD/yAPrC+ROpqm/kgZf/CXRs8aEYy+BXObeS3at2E62NdnvM7tW72fn6TlVPiwTM9OumUznn/Q0T1eIjvSlBLSISh/N+cB6N9Y288O0XEnrcyoUrKZtRxqgZo3wamYiISGqYObaEccMLaGl1lKg/8oCZVTmUcyaP5L5/vMuBaBM14SbysjPI05VbkgIq51TiWh3bXtnW7TErF64kIzuDaR+ZdgRHJiLJZmZcfM/7Gya2b5KotnlpSQlqEZE4jJg8ghP//USW/3w5+9bvi+sxe9/ay47lO1Q9LSIigvdBc8GM0QAMU4uPAfX58yZSG2ni/hffo7q+UdXTkjLGnDoGyzQ2v7i5y/tbmlpY9eAqJl4ykYIRBUd4dCKSbB03THxv0XvkFueSoT0s0pJmVUQkTvO/NZ/sgmye/fKzcR2/YuEKMrIymH7tdJ9HJiIikhoum1kBqP3EQJtaMYSLpo7i/iXv8d6+em2QKCkjpyiH8lnlbF2ytcv73/nbO9Tvrld7D5EAa9swccuLW9R/Oo0pQS0iEqfC0kLmfnUubz/xNu89/16Px7a2tLL6wdVMuGgChSMLj9AIRUREBrcJI4u47aLJfHDWmGQPJe18/ryJ1Dc2s3xzNUPVQkVSSOWcSra9uo3m2EafHa14YAUFpQVMuGhCEkYmIoNB24aJoP7T6UwJahGRBJz6uVMZUjmEZ774DK7VdXvcu8++y8EdB9XeQ0REpJN/nzeeaWOGJHsYaWdiWYjLYi1UVKEuqaRybiUtDS3sfH3nIbeH94fZ8PgGpl83nUz1VBcJtOnXTWf8+eMZOW1ksociPlGCWkQkAVl5WZzzvXPY9eYuVj24qtvjVi5cSd7QPCZeMvEIjk5ERESC7LPnHEuGwfAiJagldVSeUQlwWB/qNb9bQ2tTq9p7iAhmxrV/vZbLF16e7KGIT5SgFhFJ0NSrpzL6pNEs+uoimsJNh90frY2y/tH1TL1mKlm5WUkYoYiIiATRMaVF/Pbjp3DTmcckeygicSscWcjwScPZ8uKWQ25f8cAKRp0wirLpZUkamYgMJpZhmFmyhyE+UYJaRCRBlmGc/+PzObj9IK/c/sph96/9/Vqao83MvH7mkR+ciIiIBNqcY0cwZmhBsochkpDKOZVsfWlrewu93at3s/P1naqeFhEJCCWoRUT6YNzccUy+YjJLvr+Eul11h9y3cuFKRhw3gtEnjU7S6EREREREUkfl3EqiNVH2rN0DeOvpjOwMpn1kWpJHJiIiR4IS1CIifXTuf51LS0MLz3/z+fbbqjZVsfWlrcy4foYuPxIRERERicO4ueMA2LJkCy1NLax6cBUTL5lIwQhdDSAiEgRKUIuI9NHwY4cz+1OzefNXb7JnjVftsWLhCizDmH7d9CSPTkREREQkNZQcXUJReRFbXtzCO397h/rd9WrvISISIEpQi4j0w7xvzCO3OJdn/8+zuFbHqt+u4phzj6G4ojjZQxMRERERSQlmxri549jy4hZWPLCCgtICJlw0IdnDEhGRI0QJahGRfigYXsDcr89l09ObeO7rz1G7pZYZ189I9rBERERERFLK2DljObDtAOsfXc/066aTmZ2Z7CGJiMgRogS1iEg/nfzpkyk5uoQl31tCTiiHyZdPTvaQRERERERSSlsfatfi1N5DRCRglKAWEemnrNwszv3+uQBMuWoK2QXZSR6RiIgMNmZWYmaPmNl6M1tnZqeZ2TAze9bMNsb+HBo71szsTjPbZGarzGxWsscvIuK3kdNGklucy6gTRlE2vSzZwxERkSMoK9kDEBFJB8dfeTwX77uYiZdOTPZQRERkcLoDeNo59yEzywEKgK8Ci5xz3zezW4Fbga8AFwHHxn5OAe6N/SkikrYyMjO44sErCJWHkj0UERE5wpSgFhEZAGbGSZ86KdnDEBGRQcjMhgBnAjcAOOcagUYzWwDMjx22EFiMl6BeAPzWOeeApbHq63Ln3M4jPHQRkSNq0qWTkj0EERFJArX4EBERERHx19HAXuA3Zvammf3KzAqBsg5J511A2zXtFcDWDo/fFrtNRERERCTtqIJaRERERMRfWcAs4DPOuVfN7A68dh7tnHPOzFwiv9TMbgJuAigrK2Px4sUDNNz0UFdXp5j4SPENJs27vxRffym+/lJ8U18y51AJahERERERf20DtjnnXo39+xG8BPXuttYdZlYO7Indvx0Y2+HxY2K3HcI5dx9wH8Ds2bPd/PnzfRp+alq8eDGKiX8U32DSvPtL8fWX4usvxTf1JXMO1eJDRERERMRHzrldwFYza2uueg7wFvA4cH3stuuBx2J/fxz4mHlOBWrVf1pERERE0pUqqEVERERE/PcZ4CEzywHeBW7EKxb5vZl9AtgMfDh27FPAxcAmIBw7VkREREQkLfWaoDazXwOXAHucc1Njt80Efg7kAc3Ap5xzy8zMgDvwFtRh4Abn3Bs+jV1EREREJCU451YAs7u465wujnXALX6PSURERERkMIinxccDwIWdbvsB8G3n3EzgG7F/A1wEHBv7uQm4d0BGKSIiIiIiIiIiIiJpp9cEtXPuH0BV55uB4tjfhwA7Yn9fAPzWeZYCJbENX0REREREREREREREDtHXHtSfA/5mZj/CS3KfHru9Atja4bhtsdu0qYuIiIiIiIiIiIiIHKKvCeqbgc875/5oZh8G7gfOTeQXmNlNeG1AKCsrY/HixX0cSnqqq6tTTHyk+AaT5t1fiq+/FF9/Kb6pT3MoIiIiIpKa+pqgvh74bOzvfwB+Ffv7dmBsh+PGxG47jHPuPuA+gNmzZ7v58+f3cSjpafHixSgm/lF8g0nz7i/F11+Kr78U39SnORQRERERSU19TVDvAOYBi4GzgY2x2x8HPm1mDwOnALXOuV7be7z++uv7zGxzH8eSrkYA+5I9iDSm+AaT5t1fiq+/FF9/Kb6pb6DmcNwA/I4jTuvpLul57S/FN5g07/5SfP2l+PpL8U19SVtPm3Ou5wPMfgfMxxvkbuCbwAbgDrwEdxT4lHPudTMz4G7gQiAM3OicW57ooATMbLlzbnayx5GuFN9g0rz7S/H1l+LrL8U39WkOpTOdE/5SfINJ8+4vxddfiq+/FN/Ul8w57LWC2jl3TTd3ndjFsQ64pb+DEhEREREREREREZH0l5HsAYiIiIiIiIiIiIhIMClBPXjdl+wBpDnFN5g07/5SfP2l+PpL8U19mkPpTOeEvxTfYNK8+0vx9Zfi6y/FN/UlbQ577UEtIiIiIiIiIiIiIuIHVVCLiIiIiIiIiIiISFIoQS0iIiIiIiIiIiIiSaEEtUgfmZklewwi6UbPK0llOn9FRBKj102RgafnlaQynb/BpQR1mjGzU83swmSPI12Z2QgzGwLgnHNmpudQAJhZdrLHkM7MbLyZzYb255UWJQPIzOaZ2XXJHke6MrPRZjYWdP6mKr3GS2daT/tL6+lg0mutv7Se9pfW0/7Sejr1DcRrvBYDacTMLgDuBfZ1ul1P7gFgZhcBTwG/NLNHAJxzrckdlfjNzM4DvmJmRyd7LOnIzD4APAH80MyWghYlAyn2vvAT4L1Otyu+A8DMLsZ7X/iVmT0POn9TjV7jpTOtp/2l9XQw6bXWX1pP+0vraX9pPZ36Buo1XgnqNGFm84GHgI8755abWUHbE1pP7v4zs7Pw3pS+BvwbUGRmtyZ3VOI3MzsF783yROCDWlQPLDObAvwncJ1z7ixgj5kdA97rVlIHlwbM7Ezgj8D1zrmXzCxkZkWg+A6EWHxvBz7tnLsAaDCzu0DxTRV6jZfOtJ72l9bTwaTXWn9pPe0vraf9pfV06hvI13glqNNAbLE8AngXyI69YP4W+K2Z/dnM8rSo7hvz5ALHA7c55551ztUC9wOh5I5OjgAHfAz4KVABfLjjC66eU/1WB7wJ7DWz4cAZwHfM7OnYYlsx7p8osAs42szygf8FFprZU2Z2HCi+fWVmWUAZ8HXn3JLYzf8BZCZvVNIHeo2XdlpP+0fr6cDTa62/tJ72l9bTPtF6Om0M2Gu8EtRpIPbN0l/xvjn9HvBP4CXg60Ar8OcOx0kCnKcBeARY1uHJtQs4NXkjkyPBObcMeNQ59wLwF7w30KtV+TFg6vFeo76L95r1fefcNcBbeBVWet3qh9j5ezXee8Me4Em8xcMG4I7YMYpvHzjnmvHed5d0uDkMzDazHFCvzVSg13jpSOtp/2g9HWx6rfWd1tM+0nraP1pPp4eBfI3PGujByZFjZuOcc5sBnHP1ZrYIyAeGO+d+FjvmKuCPZlbsnDuQxOGmHDM7A2/RvAF40zm3vcPdEaAodty/ApXOuW8c+VHKQDOz84ELgHXAG865NwCcc4vM28TnIuA8MxsHDANuTtpgU1AsvucD64EXgFuAo/ASAI8BOOe+YGbPmNmxzrmNyRprKjKzScBu51wNQOwS9ZuAk5xz98QO+3ys6mO0c25HssaaimKX/58LbAVedM69Fbs9E+99IdM512hmHwemmtkX9aFlcNFrvHSm9bS/tJ4OJr3W+kvraX9pPe0vradTn1+v8aqgTlFmdhnwnpn9R9ttzrl64FHgFx0O/QgwHK/sXuJkZpfgxXEMsAD4hJnldaj4eBdYaWZXAjfhVYRIijOvB9bdwDZgJPBI7FwAwDn3LPAr4KN435z/MhnjTFUd4rsd75vVvwHnO+c2AJuAE81shJldEbu/OmmDTUGxc3UdcKuZjWi73Tm3FC/ubcddg3cZe+SIDzKFxeJ7J9AIHA18ycxKAZxzLXjVlitjSZZPAgu1mB5c9BovnWk97S+tp4NJr7X+0nraX1pP+0vr6dTn52u8KqhTkJmNBD6It8HIh8ys2Tn3PYDY5XPEvrW4FvgycJVz7mCyxptqzOxY4Ft4G+QsM7NzgFuBu51z0bbDgH8F5gAfdM6tS8pgZaAdBTzhnPsJgJmtBv7bzK5zzj0ZO2YSMAvvG/S3kjPMlHUUh8Z3FV5vz8vxLpf7T7zXtnF4G73sS9I4U46ZDcGrRPgqcALwGTO70zm3H9o398rES7LcCnzYOacPLHEys0rgs8AnnXMvm9lkvPO1ENgbOywPuAo4E7jEObc+KYOVnhyFXuMlRutpf2k9HWhHoddaPx2F1tO+0HraX1pPp42j8Ok1XhXUqWkv8IvYIvpq4KNmdlunY4rxqhWudM6tPdIDTHHv4TV4XwXeZQp4vb1mdDimAfg9cLkW02llL94lKAA4557A++bvdjObGbt5AzBbi+k+6Sq+1wP34fWhvAH4ErDAObc6GQNMVS622ZRz7vvA/wFm4y2qSzsclh37+aDeFxK2HbgXbxMiYovlJmBu2wHOuTDwM+ADWkwPWnqNl460nvaX1tPBpddaf2k97ROtp32n9XR68O013lQtn1rMzDpf4hCrUHgMeNA5910zOxdvU4RdzrnWZIwzVZlZRseYmVmmc67FzP4E/MY594SZnYwX3+YOFSCSBszbjOHvwFvOuU92uP3bsdv+N2mDSwM9xPf/AWsU34ETq1C4F1junPtm7DLPtc65t5M8tJTT+X23w/vCPXjx/Y2ZnY33vrDPeRu+yCCk13hpo/W0v7SeDja91vpL6+kjR+vpgaP1dPrw8zVeFdQppovFdJbzNj1YAHzQzP6G19MnW4vpxHURs7bnyFZgp5ldCvwXENJiOr3EPkw14jX7P9PMftGhR2I+MCV5o0t9vcQ3F8V3wMTeF7bgbUYxycz+jreLu76R7oPO77t4l6QDbMF7X/gA8B0gR4vpwUuv8dKR1tP+0no6uPRa6y+tp48cracHltbT6cHv13j1oE4xbRUJbd9AtT15nXMbzewveDv4znex3cglMV3Etyl213685u6NwL8653Ymb5Tih9i85zrnImY2C/gj8ICZOeBkvF5u0keKr/+6eF/YYmZr8Xq9zXPawb1fOscX79L0XwE78Hqsbkne6KQnsbnTa5C003raX1pPB5dea/2l+PpP62l/aT2duo7EeloJ6kHOvA1FTsbbzfSl2AtkjnOu0cxmAzOcc/eb2QRgMnCOc25NEoecUuKI7wnOuV/i9SA8HjjeOfdO8kYsA8HMjgJ2O+ciHW4z51yDmc0DjgUuA04HRgHf0WIkfoqvv3qIrzOz04G5zrn/MrNRwGjgXKceeXGLI75nOq83YRNeD8KPOOc2JWe00hUzmwucBOwGnnfO7YhdSqrXoIDSetpfWk8Hk9Z7/lJ8/aX1tL+0nk59yVhPq8XHIGZeD56f4T1hTwCeMbNpscXeXOB+vIUgwDvAvznnViZlsCkowfh+DZimxXTqM7PLgHeBm80s1HZ77M1yFnA7sNc51+Kce9E59wct9uKn+PorjvjeBayJ3bYL+IJzbkUyxpqKEokvXhXgqVpMDy5mdglwN95C+TTga2ZW5Lw+h3oNCiCtp/2l9XQwab3nL8XXX1pP+0vr6dSXrPW0NkkcxMzsC0CJc+4bsX9/BvgPYB5QDhQ6b5ORTOdcSxKHmpISiG+2e//SRElhZjYc+AGwDzgOeBZvs5662P2XAPXOuefbvuFN3mhTj+LrrwTje8gGVdK7BOOr94VByMzGAw/gfZB8LbaA/jJwi3Nuv16DgknraX9pPR08Wu/5S/H1l9bT/tJ6OvUlcz2tFh+DUIdJ3gqMa7vdOXeXef3H/we40Dm3O3asFtMJ6EN89aKZPg4A9zrnlscuOf0B4Mzsv51ztc65v0D7phjanCFxiq+/FF9/JRJfvS8MTnuAnwOvAzjn3jCzYrxLD5/oMIdKRAaA1tP+0no60LQe8Zfi6y/F119aT6e+pK2n1eJjEOrwDcQ/gLPN7DZoXwjeBbwAzO50rMRJ8Q2u2JvgG7G/Lwe+AvwL8DEAM7vIzMq1GOkbxddfiq+/FN/U55w7CPyv8zZwaSvC2As0A5jZHDMboURkMGi95y/FN7j0fukvxddfiq+/FN/Ul8z1tBLUg0jsyXpn27+dc7uBBcBnzOy2Dou7LGB8MsaYyhTfYOo874DFbs9wzr2G96Z5npn9CbgHyE/CMFOW4usvxddfim/q62IOXac/dwFVZnY58D0g9wgOT5JA6z1/Kb7BpPdLfym+/lJ8/aX4pr7Bsp5WD+pBwrydTB8BdgDrnXPXdbjvmNh9L+Mt9s4E/sU5tz4ZY01Fim8wdTfvbZejtF2eama3A9cBZzvn1vTwK6UDxddfiq+/FN/U18MctveMNLNvAx8CwsCNmsP0pvWevxTfYNL7pb8UX38pvv5SfFPfYFpPq4J68CgEvgWcAeSa2f+03eGcexe4EHgCWAVcocVewhTfYOpy3mNvlpmxN8sKoAI4X2+WCVN8/aX4+kvxTX3dzWGrmWXHjmkEhgPXaA4DQes9fym+waT3S38pvv5SfP2l+Ka+QbOeVgX1IGJmxc65A2Y2DK8peYtz7pqO9yV3hKlN8Q2mXuZ9mHOuyswKnXP1yR1palJ8/aX4+kvxTX29zGEe3qJ7qHNuUzLHKUeO1nv+UnyDSe+X/lJ8/aX4+kvxTX2DZT2tBPUgZWYjgHuB/cBSYCLwf51z0aQOLE0ovsHUxbxPAr7pnGtM6sDShOLrL8XXX4pv6utiDo8Dvuq0KWJgab3nL8U3mPR+6S/F11+Kr78U39SXzPW0EtRJ1NaPp5djNgAjgXnOuVVHZmTpQfENJs27vxRffym+/lJ8U5/mUDrTOeEvxTeYNO/+Unz9pfj6S/FNfYN1DtWDOgnMbJiZFXQ8IcwsK/ZnuZmFYn+/HMgG5uhJHT/FN5g07/5SfP2l+PpL8U19mkPpTOeEvxTfYNK8+0vx9Zfi6y/FN/UN9jlUgvoIM7MFwELgQTP7qJnNBnDONZvZWcA9wIjY4Y3ARc65tckZbepRfINJ8+4vxddfiq+/FN/UpzmUznRO+EvxDSbNu78UX38pvv5SfFNfKsyhWnwcQWY2EfgjcBXexF8KjAF+htfb5UXgh865PyZtkClM8Q0mzbu/FF9/Kb7+UnxTn+ZQOtM54S/FN5g07/5SfP2l+PpL8U19qTKHWcn8jwfQCGCbc+4tADMbCnwK+DCwF1jgnNttZgbQW08YOYziG0yad38pvv5SfP2l+KY+zaF0pnPCX4pvMGne/aX4+kvx9Zfim/pSYg7V4uPIWgMcMLOvx/59AvA2EAWOcs7tBu9k0JO6TxTfYNK8+0vx9Zfi6y/FN/VpDqUznRP+UnyDSfPuL8XXX4qvvxTf1JcSc6gWHz4zszHAQedcrXnNx88CbsH7csA55xaY2TXAhcANekInRvENJs27vxRffym+/lJ8U5/mUDrTOeEvxTeYNO/+Unz9pfj6S/FNfak4h2rx4SPzdr78PnCfmf23c24v8KyZLQJG4pXSA4SAmsFwQqQSxTeYNO/+Unz9pfj6S/FNfZpD6UznhL8U32DSvPtL8fWX4usvxTf1peocqoLaJ2ZWCjwMbAG2AXuAh2MnRsfjPgfcCFznnFt9pMeZqhTfYNK8+0vx9Zfi6y/FN/VpDqUznRP+UnyDSfPuL8XXX4qvvxTf1JfKc6ge1P6pBT4HfBJYAUwArjazkQBmXvNxIBO4drCcEClE8Q0mzbu/FF9/Kb7+UnxTn+ZQOtM54S/FN5g07/5SfP2l+PpL8U19KTuHqqAeYGZWCewCspxz4Q63fxCYB2x0zt1lZrOcc28ka5ypSvENJs27vxRffym+/lJ8U5/mUDrTOeEvxTeYNO/+Unz9pfj6S/FNfekwh6qgHkBm9gHgKeBu4DdmNrntPufcH4EXgFIzexR4wcwqkjLQFKX4BpPm3V+Kr78UX38pvqlPcyid6Zzwl+IbTJp3fym+/lJ8/aX4pr60mUPnnH76+QMYMBZYDcwHyoAvATuBKZ2OfRD4JzAt2eNOlR/FN5g/mnfFN5V/FF/FVz+aQ/3onBhMP4pvMH8074pvKv8ovoqvfoI1h1lIvznnnJntAF4BNgJ7nHM/MrMm4BkzO8s597aZlQOzgMvdIOrzMtgpvsGkefeX4usvxddfim/q0xxKZzon/KX4BpPm3V+Kr78UX38pvqkv3eZQPaj7ycwmAEOBd4GfAa87537Q4f4vA8cDNzvnImZW5JyrS85oU4/iG0yad38pvv5SfP2l+KY+zaF0pnPCX4pvMGne/aX4+kvx9Zfim/rScQ5VQd0PZnYJ8F2gGq+k/iHgTjPLdM59L3bY74HbgCjAYD8hBhPFN5g07/5SfP2l+PpL8U19mkPpTOeEvxTfYNK8+0vx9Zfi6y/FN/Wl6xwqQd1HZnY68EPgI865N83sPuBk4HRgqZllAg8Dc4ATgRK8k0fioPgGk+bdX4qvvxRffym+qU9zKJ3pnPCX4htMmnd/Kb7+Unz9pfimvnSeQ7X46KPYSTHROfdA7N+lwAPOuQ+Y2THA1/G+qTgFuGEw93kZjBTfYNK8+0vx9Zfi6y/FN/VpDqUznRP+UnyDSfPuL8XXX4qvvxTf1JfOc6gEdR/FvpUodM4diP29HHgCuNg5t9PMxgHbY8fUJnOsqUjxDSbNu78UX38pvv5SfFOf5lA60znhL8U3mDTv/lJ8/aX4+kvxTX3pPIcZyR5AqnLOtTjnDsT+aUANUBU7Ia4Dvgpkp9oJMVgovsGkefeX4usvxddfim/q0xxKZzon/KX4BpPm3V+Kr78UX38pvqkvnedQFdQDyMweAHYC55NipfSpQPENJs27vxRffym+/lJ8U5/mUDrTOeEvxTeYNO/+Unz9pfj6S/FNfekyh0pQDwAzMyAbWBf78xzn3Mbkjip9KL7BpHn3l+LrL8XXX4pv6tMcSmc6J/yl+AaT5t1fiq+/FF9/Kb6pL93mUAnqAWRmNwCvOefWJnss6UjxDSbNu78UX38pvv5SfFOf5lA60znhL8U3mDTv/lJ8/aX4+kvxTX3pModKUA8gMzOngPpG8Q0mzbu/FF9/Kb7+UnxTn+ZQOtM54S/FN5g07/5SfP2l+PpL8U196TKHSlCLiIiIiIiIiIiISFJkJHsAIiIiIiIiIiIiIhJMSlCLiIiIiIiIiIiISFIoQS0iIiIiIiIiIiIiSaEEtYiIiIiIiIiIiIgkhRLUIiIiIiIiIiIiIpIUSlCLiIiIiIiIiIiISFL8/811XwUUBzcSAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABagAAALYCAYAAACZoRUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hUVfrA8e+ZyUwmyaQ3klACoXeQJk2qNBVRFEXsXde2rru66291d3Wbuquu3bWtFQsWBJEapPceaiAkhJZepmRmMvf3x00gQMpMMjWcz/PwADO3nEwmk3Pf+573FYqiIEmSJEmSJEmSJEmSJEmSJEm+pvH3ACRJkiRJkiRJkiRJkiRJkqSLkwxQS5IkSZIkSZIkSZIkSZIkSX4hA9SSJEmSJEmSJEmSJEmSJEmSX8gAtSRJkiRJkiRJkiRJkiRJkuQXMkAtSZIkSZIkSZIkSZIkSZIk+YUMUEuSJEmSJEmSJEmSJEmSJEl+IQPUkiRJUosJITKFEHf5exySJEmSJEmSFAyEEIoQorO/xyFJkhQIZIBakiRJAmSQWZIkSZIkSZJaQs6nJUmSmkcGqCVJkiRJkiRJkiRJkiRJkiS/kAFqSZIkDxJC/E4IkS+EqBBC7BdCjBdCaIQQTwohsoUQRUKIL4UQcXX2uUUIcbTmuf8TQuQIISbUPPesEOIrIcQnNcfcJYToKoR4SghxWgiRJ4S4vM6xooUQ7wkhTtSM4zkhhLbmuduEEKuFEC8KIUqEEEeEEFNqnnseGAW8JoSoFEK81sTXOVEIsU8IUVazrfDCyylJkiRJkiRdZC6W+XSNqUKIw0KIQiHEC0IIGaORJOmiJD/8JEmSPEQI0Q34FTBYUZRIYBKQAzwEXA1cBqQCJcDrNfv0BN4AbgJSgGgg7bxDXwl8DMQC24CfUT+/04A/A2/X2fZDwAF0BgYAlwN1lxkOBfYDCcA/gfeEEEJRlD8Aq4BfKYpiVBTlV418nQnAPODpmuNkAyOafIEkSZIkSZIkqREXy3y6jhnAIGAgMB24w4V9JEmSWh0ZoJYkSfKcaiAU6CmE0CmKkqMoSjZwH/AHRVGOKYpSBTwLzBRChAAzgfmKoqxWFMUG/BFQzjvuKkVRflYUxQF8BSQCf1cUxQ58AaQLIWKEEMnAVOBRRVFMiqKcBv4N3FDnWEcVRXlXUZRq4CPUSXyym1/nVGCPoihf14zhZeCkm8eQJEmSJEmSpPNdLPPpWv9QFKVYUZRc1Dn1jc08jiRJUlAL8fcAJEmSWgtFUQ4JIR5FnTD3EkL8DPwa6AB8K4Rw1tm8GnUimwrk1TmGWQhRdN6hT9X5twUorJkQ1/4fwFhzLB1wQogzFTc0dY9PnUByzblq93XH+WNWhBB5jWwvSZIkSZIkSU26iObTteoe92jN+SVJki46MoNakiTJgxRF+UxRlJGok2gF+AfqxHOKoigxdf4YFEXJB04AbWv3F0KEAfHNPH0eUAUk1DlPlKIovVwdvovbnQDa1f5HqLPydg1vLkmSJEmSJEmuuUjm07XqzqHbA8fd3F+SJKlVkAFqSZIkDxFCdBNCjBNChAJW1GwMJ/AW8LwQokPNdolCiOk1u30NXCmEGC6E0KNmizSr4aCiKCeAxcBLQoiommYyGUKIy1w8xCmgkwvbLUDNaLmmZlnlw0Cb5oxZkiRJkiRJkmpdRPPpWk8IIWKFEO2AR4C5bg5ZkiSpVZABakmSJM8JBf4OFKIu/UsCngJeAX4AFgshKoD1qM1VUBRlD2rTly9Qsz8qgdOomRvNcQugB7JQm8d8jVoXzxWvoNbyKxFCvNrQRoqiFALXoX6tRUAXYE0zxytJkiRJkiRJtS6K+XQd3wNbgO2oSSDvuT1aSZKkVkAoirsrUCRJkiRvEUIYgVKgi6IoR/w8HEmSJEmSJEkKKnI+LUmSFHxkBrUkSZKfCSGuFEKECyEigBeBXUCOf0clSZIkSZIkScFBzqclSZKCmwxQS5Ik+d901IYox1HLZdyg+Hl5ixBilBCisr4//hyXJEmSJEmSJNVDzqclSZKCmCzxIUmSJEmSJEmSJEmSJEmSJPmFzKCWJEmSJEmSJEmSJEmSJEmS/EIGqCVJkiRJkiRJkiRJkiRJkiS/CPH3AAASEhKU9PR0fw8joJhMJiIiIvw9jFZLvr4XJ/l99y75+nqXfH29S76+wc9T38MtW7YUKoqS6IEh+ZScT19I/lx7l3x9L07y++5d8vX1Lvn6epd8fYOfP+fTARGgTk9PZ/Pmzf4eRkDJzMxkzJgx/h5GqyVf34uT/L57l3x9vUu+vt4lX9/g56nvoRDiaMtH43tyPn0h+XPtXfL1vTjJ77t3ydfXu+Tr613y9Q1+/pxPyxIfkiRJkiRJkiRJkiRJkiRJkl/IALUkSZIkSZIkSZIkSZIkSZLkFzJALUmSJEmSJEmSJEmSJEmSJPlFQNSgro/dbufYsWNYrVZ/D8UvoqOj2bt3r8vbGwwG2rZti06n8+KoJEmSJEmSpGAh59NyPi1JkiRJkhQMAjZAfezYMSIjI0lPT0cI4e/h+FxFRQWRkZEubasoCkVFRRw7doyOHTt6eWSSJEmSJElSMJDzaTmfliRJkiRJCgYBW+LDarUSHx9/UU6m3SWEID4+/qLNjpEkSZIkSZIuJOfTrpPzaUmSJEmSJP8J2AA1ICfTbpCvlSRJkiRJknQ+OUd0nXytJEmSJEmS/COgA9T+VFpayhtvvOH2flOnTqW0tNTzA5IkSZIkSZKkICPn1JIkSZIkSVJTZIC6AQ1Nph0OR6P7LVy4kJiYGC+NSpIkSZIkSZKCh5xTS5IkSZIkSU0J2CaJ/vbkk0+SnZ1N//790el0GAwGYmNj2bdvHwcOHODqq68mLy8Pq9XKI488wj333ANAeno6mzdvprKykilTpjBy5EjWrl1LWloa33//PWFhYX7+yiRJkiRPqLZXU1VeBQqEJ4T7eziSJEkBSc6pJUmSJKlhdosdXZjO38OQJL8LigD1n+bvIet4uUeP2TM1imeu7NXg83//+9/ZvXs327dvJzMzk2nTprF79+4zXb3ff/994uLisFgsDB48mGuvvZb4+PhzjnHw4EE+//xz3n33Xa6//nq++eYb5syZ49GvQ5IkSfKc3NW55K3No6q8Sv1TVnX23+VVWMusZ/7tsNRk/wm4LfM2Oozu4N/BS5IkNcIf82mQc2pJkiRJakjJ4RJe6/YaMz6ZQe9Zvf09HEnyq6AIUAeCIUOGnJlIA7z66qt8++23AOTl5XHw4MELJtMdO3akf//+AFxyySXk5OT4ariSJEmSmxSnwtwZczEXmhEaQWhUKKHRoerfUaGEJ4YT1zkOfZSe0KhQDNEGQqNCWfPPNSz+zWLu2nCXbLAlSZLUBDmnliRJauUcNnBYwBDt75EEvOJDxTgdTn566Cc6TehEeLxclSldvIIiQN1UZoYvREREnPl3ZmYmS5cuZd26dYSHhzNmzBisVusF+4SGhp75t1arxWKx+GSskiRJkvsK9xViLjRzxTtXMPCugS4Hm/WRen644weyvsqi1/X+/30lSZJUn0CYT4OcU0uSJLV6q16E3PVw6w/+HknAMxeZ1b8LzCx+fDFXf3i1fwckSX4kmyQ2IDIykoqKinqfKysrIzY2lvDwcPbt28f69et9PDpJkiTJ046uOgpAx7Ed3cqE7ndLP5J6J7HsqWVU26q9NTxJkqSgJOfUkiRJF5l9C9UA9cnd/h5JwLMUqTdcB9w1gB0f7eDw0sN+HpEk+Y8MUDcgPj6eESNG0Lt3b5544olznps8eTIOh4MePXrw5JNPMmzYMD+NUpIkSfKUvNV5GNsYic2IdWs/jVbDhH9OoORwCZvf3uyl0UmSJAUnOaeWJEm6iJTmQcVxGPU4rH/T36MJeJZiNUA9+d+Tiescx4/3/ojdbPfzqCTJP4KixIe/fPbZZ/U+Hhoayk8//VTvc7U18RISEti9++wdw9/85jceH58kSZLkOUdXHaX9yPbNqiPdeXJn0sem88uff6H/rf0JjQpteidJkqSLhJxTS5IkXSQOLMKSMJLTtol02Hc1VD4DxiR/jypgmYvMhEaHojfqueKdK/jfuP+R+adMJv5jor+HJkk+JzOoJUmSpIteWV4ZZUfLaD+qfbP2F0Iw8Z8TMReaWfPPNR4enSRJkiRJkiQFgQOLWPNdFJ9c/RO2DtNg8/v+HlFAsxRZzjRG7Di2IwPuHMC6l9ZxYtsJP49MknxPBqglSZKki17u6lyAZgeoAVIHpdL7ht6s+9c6yvPLPTU0SZIkSZIkSQp8VZUoR9ez6ecoHBYHq5b1hk3vgf3C5reSylJkISwu7Mz/J74wkfCEcObfPR+nw+nHkUmS78kAtSRJknTRy12Viz5ST3Lf5BYdZ9zz43A6nGQ+m+mZgUmSJEmSJElSMDi8glJHZ2y2UPrM7sPq9wqxhneF3V97/FTH1h9j0aOLOLXrlMeP7UuWYgth8WcD1GGxYUx5dQontpxg/SuycbB0cZEBakmSJOmil7s6l3bD26HRtuzXYmynWAY/MJjt72+nIKvAQ6OTJEmSJEmSpAC3fxF7trej3Yh2TH1jKuEJ4axa1gdl3eugKB47ja3Sxtc3fM2GVzbwVt+3+GTSJ2Qvzkbx4Dl8xVxkPlPio1bP63rS9YquZP4xk5IjJX4amST5ngxQS5IkSRc1S4mF07tP035k88t71DX66dHojXqWPrnUI8eTJEmSJEmSpIDmdOLc+xNbMpPofUNvDNEGLnv2MtZ+a8BWboEjKz12qhV/XEHZ0TJunH8j454fx6mdp/hk0ie81fcttn2wDUeVw2Pn8jZL0bkZ1KD2tpn6xlSERrDgvgVBGXiXpOaQAWpJkiTpopa3Jg+UltWfris8IZwRT47gwPwDHP3lqEeOKUmSJEmSJEkBK38LZmsEZeUx9JzZE4BL7rmE+G4JrF3VF2XtG545zaZ8NryygUH3D6LrFV0Z9ftRPJLzCNM/nA4CfrjjB15Jf4Vfnv8Fc5HZI+f0Fme1E2up9Zwa1LWi20Uz/m/jyV6cza5Pd/lhdJLkey4FqIUQjwghdgsh9gghHq157FkhRL4QYnvNn6l1tn9KCHFICLFfCDHJS2P3qtLSUt54o3kfoi+//DJmc2B/GEqSJEmq3NW5aHQa0oakeeyYwx4ZRmRaJEueWCKzHiRJuqjJObUkSVLrp+z/iX1Z6aSPTcfYxgiAVqdl4j8nsnZxexzZG6DwUIvOUW2vZv5d8zG2MTL+b+PPPB4SGkL/W/tz3477mLN4Dsn9klnx9Ar+3e7fLHhwAUUHi1p0Xm+xlqjNI8/PoK416P5BtB3Wlp8f+xlzofxdKLV+TQaohRC9gbuBIUA/4AohROeap/+tKEr/mj8La7bvCdwA9AImA28IIbReGb0Xycm0JEnSxSF3VS6pg1LRhek8dkxduI6xfx5L/sZ8sr7O8thxJUmSgo2cU0uSJLV+jp3z2bE+ld439D7n8a5XdqXtyC5s3tQLx6rXWnSOdS+t49TOU0x9fSqGaMMFzwshyJiYwZxFc7h/1/30vqE32/67jde6vcYXV3/B0VVHAypxpDbD+/wa1LU0Wg1Xvnsl1jIrP//6Z18OTZL8wpUM6h7ABkVRzIqiOICVwDWNbD8d+EJRlCpFUY4Ah1CD20HlySefJDs7m/79+/PEE0/wwgsvMHjwYPr27cszzzwDgMlkYtq0afTr14/evXszd+5cXn31VY4fP87YsWMZO3asn78KSZIkqTF2i538TfkeK+9RV79b+5HYK5FlTy2j2lbt8eNLkiQFAzmnliRJauVKc1HKTnLiVCo9rulxzlNCCCa+OJG1K3uhbP8SzMXNOkXxoWJW/mklPa7pQferuze5fVLvJKa/P51Hjz7KqD+MIndVLh+O/pATP5xo1vm9wVJkAai3xEetpN5JjPjdCHZ+vJPsxdlun6PkSAmLHl3EPxP+SdY3MmlGCmwhLmyzG3heCBEPWICpwGagCPiVEOKWmv8/rihKCZAGrK+z/7Gax84hhLgHuAcgOTmZzMzMc56Pjo6moqICgBW/W0HBrgK3vrCmJPZJZOw/Gp7sPv300+zcuZNVq1axbNkyvv/+e5YtW4aiKMyaNYtFixZRWFhIYmIiX3zxBQBlZWVER0fz0ksvMX/+fOLj4898De6qrq52e1+r1XrB6yjVr7KyUr5WFyH5ffeuYHx9S3eU4rQ7KYsu88rYk+cks/up3XzxxBekzWhZCZFgfH3P1y53HjZ9LKfaBF6wqTW8vu5wOpwUrCigaH0RGQ9kEBof6u8htdjF9j1016JHF3Fy+0mPHrNN/zZMfnlyo9v8/e9/Z/fu3Wzfvp3Fixfz9ddfs3HjRhRF4aqrruKXX36hoKCA1NRUFixYAJydU//rX/9ixYoVJCQkeHTckiRJkuco+3/i0KFOdJrYpd5ga+olqXSaMZy9e1bTZdk7hF35pHvHVxR+vPdHtKFapvxnilv7GtsYGfeXcYx6ahSvdXuNst1lbu3vTZbimgB1AyU+ao3+w2iyvsrix/t+5P5d96OP0Dd57GPrj7HuX+vY+81ehEYgtIID8w/Q89qeHhm7JHlDkwFqRVH2CiH+ASwGTMB2oBp4E/gLoNT8/RJwh6snVhTlHeAdgEGDBiljxow55/m9e/cSGRkJgF6vR6v1bJUQvV5/5vj1MRqNaDQaIiMjWb16NStWrGD06NGAegGUn5/PqFGjePrpp3nuuee44oorGDVqFKDeJTQajY0evykVFRVu728wGBgwYECzz3kxyczM5Pz3nNT6ye+7dwXj6/vLml8AmHbftEazF5pLuUyh8udKjn92nJl/mUloVPODgMH4+p4jdz1s+gkUJz1GXAHtBvt7ROcI+tfXRZYSC1ve2cLG/2ykIl+9Ed5rTC8u+7/L/DyylrtYvofBbPHixSxevPjMfLWyspKDBw8yatQoHn/8cX73u9+dM6eWJEmSAp9143fs3taWXk/1anCbcc+P4+tRy+nc7S2Y+jhoXS+tt/3D7RxZfoRpb00jMrV5MRZduI7o9tFUFDUvgdAbmirxUSvEEMKV71zJh5d9SOYzmVz+4uX1buesdrL/+/2se2kdeWvzMMQYGP7EcIY8NIQF9y8gf0O+x78GSfIkVzKoURTlPeA9ACHEX4FjiqKcqn1eCPEu8GPNf/OBdnV2b1vzWLM1lZnhbYqi8NRTT3Hvvfde8NzWrVtZuHAhTz/9NOPHj+ePf/yjH0YoSZIkNUfe6jySeid5JTgN6g3LCf+cwH+H/Jc1L6xh3F/GeeU8Ac9uge8egGkvgSYEvroV7l4Bkcn+HtlFo/hQMetfWc/297djN9vpNKETV757Jav/upo9c/e0igC11Dh/z6dBzqklSZJanaoKdIXbyDl2D9OnN1x6I7pdNB3nzOD0sWVEzf+QuKvvdunwlacqWfz4YtqPas8ld1/SoqEa2xgp2hI4DRPPlPhoIoMaoMPoDgy8ZyDr/72e3jf2JvWS1DPP2SptbPtgGxte3kDJ4RJiOsYw+ZXJDLhjAHqjmm2dNiSNA/MPYC2z1lu/W5ICgSs1qBFCJNX83R61/vRnQoiUOpvMQC0FAvADcIMQIlQI0RHoAmz03JB9IzIy8kyJjUmTJvH+++9TWVkJQH5+PqdPn+b48eOEh4czZ84cnnjiCbZu3XrBvpIkSVJgclY7yVubR7uR7ZreuAXSBqfRa1Yv1r20jorjF+nvhuXPQWp/6HkVdJ8KA+bAV7dBtd3fI2vVFEXh6C9H+eLqL/hP1/+w9Z2t9Lq+F/ftuI+bl9xMlyld6HVDLwr2FHB6z2l/D1dqpeScWpIkqfVyHlzGsWMppE/s3eRKwRG/G8H2vcOpXvkqitPp0vF/fvRn7CY7V75zJUIjWjRWY4oRW7GtRcfwJEuxBaEVLq+wnPiPiUQkRzD/7vk4HU7K88tZ+uRS/t3u3yx6eBERyRFc9/V1PHTwIYY+PPRMcBogbahaavD45uNe+VokyRNcyqAGvqmpQW0HHlQUpVQI8R8hRH/UEh85wL0AiqLsEUJ8CWQBjprtg647VHx8PCNGjKB3795MmTKF2bNnc+mllwJq+Y9PPvmEQ4cO8cQTT6DRaNDpdLz55psA3HPPPUyePJnU1FRWrFjhzy9DkiRJasDpXaepKq+iw6gOXj/XuOfHsXfeXjKfzeTKd670+vkCSu562PU13L/27GOXPQnHt8PPf4Cp//Tb0Fqrans1WV9lse5f6zix5QRh8WGMfno0gx8YjLGN8Zxte87syaKHF7Fn7h6S/pzkpxFLrZmcU0uSJLVeplVfk7WrA71+03B5j1qhkaG0vf1utFmLOfrpV6TfPKvR7Q8sOMDuL3Yz5s9jSOje8l4ExhQjjgoHDquDEIOroTDvMReZCYsLQwjXAu+GGANT/jOFr2Z+xfsj3+fElhMoToXuM7pz6eOX0u7ShpNuUgepGdf5G/LpNL6TR8YvSZ7maomPCwrBKYpycyPbPw8834JxBYTPPvvsnP8/8sgj5/w/IyODSZMmXbDfQw89xEMPPeTVsUmSJEktc3TVUQDaj2zv9XPFZcQx6P5BbHptE8MeHUZiz0SvnzMg2Mw1pT1ehIj4s49rNHDNO/DuWNjxBfS7wX9jbEWspVa2vLOFDa9uoCK/gvhu8Vzx9hX0ndMXXXj9tR6NyUbSx6SzZ+4exvxpjMsXSZLkDjmnliRJaoWc1eiPr+TwsdlMmNbFpV0G3jWYNdeOok3Fq1TPmolWX3+vsaqKKhbcv4DEXomM/N1Ijww3MkWtX115spKY9BiPHLMlLEWWJutPn6/HNT3oObMnB386yKAHBjHskWHEdoptcr+w2DDiu8aTv1HWoZYCl0slPiRJkiSptcldlUt0+2ii20f75Hyjnx6N3qhn2VPLfHK+gLD8OUgdAD3qyRoPi4FZn8LPv1ezqaUW++yKz1j6u6UkdE9g9oLZPJj1IJfcc0mDwelavWb1ouhAEad2nGp0O0mSJEmSpFrVRzdQVmIgZcwQ9BH6pncANCEaUu5+grTEQ+x47ccGt1v+9HLKj5Vz5btXNhjEdpcxRV1FVnEiMEpHWYosLtWfrksIwbWfX8tvC3/LlFemuBScrpU2NI38DfkoiuLuUCXJJ2SAWpIkSbroKIpC7upc2o/yfvZ0rYjECEb8bgT7f9jP0V+O+uy8fnN0Hez+BqY0UsIjuSdMfRG+vBlMgdO0JhiVHC4hb00e454fxy1Lb6HL1C4u12rscU0PhFawe+7upjeWJEmSJEkCypfMZf/edHrf0Nut/TKm9SOnZDiOzNexlFgueP7YhmNs/M9GBj8wuNGyFe6qLXNWeaLSY8dsCUuxpVmN2jUhmmaVKEkbkkblyUrKj5W7va8k+YIMUEuSJEkXnZLDJVSeqPRJeY+6hj06jMjUSJb8dknrzl6wmeH7ekp71Kf3NdBrBnxzB1Q7fDO+VijrmywAet/o3kUiQHhCOJ3Gd2LP3D2t+30pSZIkSZLHaHOWcCS/OxmTMtzaTwhB4u1/oHf3Hax57udznqu2VzP/7vlEpkYy/q/jPTncMyU+AiWD2lxkdrvER0vUNkqUZT6kQCUD1JIkSdJFJ3d1LoBPM6gBdOE6xvxpDPkb8tn/w36fntunlv8FUgdeUNpj2wfbOLTo0IXbj/tjzX5/9sHgWqe9X+8l5ZIUYju6vtSzrl6zelF6pFR2d5ckSZIkqUmOk9lo7SVEDx9HSKj72byJwwdRQh8c6z6iOLv4zONrX1jL6V2nmfbGNEKjQj05ZMITw0Gj1qAOBM0p8dESyX2T0eq15G+QAWopMMkAtSRJknTRyV2ViyHWQGIP3zcr7H9bf+K7xrP898txVjt9fn6vO7oOds+DqS+c87Ct0sbCBxbWX4NbGwIzP4A936p/JLeU5ZaRvzGfnjN7NvsY3Wd0R6PTsOfLPR4cmSRJkiRJrVHR/E84cKAjvWb1afYxYm74A0MGb2XZU0vUYx4oYuWfV9JzZk+6XdXNU0M9Q6PVoI/VB0SJD4fVgd1sb1aJj+YKCQ2hTf82MoNaClgyQC1JkiRddHJX5dJ+ZHuXa/R6kiZEw9jnxlKQVcCuT3f5/Pxedaa0x0sQHnfOUwd+PIDD6uDk9pP1L60Mj4NZn8CCx+FUlo8G3DrsnbcXgB7X9mj2McJiw8i4PIOsL7NkmQ9JkiRJkhp3YBFHT/ag47iOzT5ExIAxhMQmUr3zR3LX5DL/nvmEGEKY/Opkz43zPPq4wAhQW4rV2tu+zKAGtczH8c3HW2eSjBT0ZIC6Ea+++io9evTgpptu8ul5HU7nBReH3333HVlZ8oJdki52NpONanu1v4cR1EynTRQdKPJ5eY+6el7bk5SBKaz44wocVa2o7vLyv0DaJdDjigueyvoq60xDl+zF2fXvn9IPJv0V5t4EllIvDrR1yfo6i+S+ycR3aaLedxN6zepFWW4Zx9Yf89DIJEnlrzl1feScWpIkqWVsxUXE6A4ReskUtDpt8w8kBOFX/IYRo3fwxVVfcHTlUSa+MPFMrWhv0MfrA6IGtbnIDODTGtSgNkq0m+wUZBX49LyS5AoZoG7EG2+8wZIlS/j000+b3Nbh8EyAwelU2H+ygtIqGaCWJOlC7w17j0WPLvL3MILamfrTPm6QWJfQCMb9dRxlR8vY8s4Wv43Do46uVUt7TPnnBU/ZKm0cXHiQ/nf0x9jGSPaiBgLUAP1ugM4T4dt7wSmzO5pSnl9O3po8esxsfvZ0re7Tu6MN1bJnrizzIXmWP+bUecVmSqwXfobIObUkSVLLnPzmU/JyU+gxa1CLjxUy4FqS25mJ1h+lw2UdGHjnQA+MsGEBk0Fd5KcM6iGyUaIUuGSAugH33Xcfhw8fZsqUKbz00ktcffXV9O3bl2HDhrFz504Ann32WW6++WZGjBjBzTffTEFBAddeey2DBw9m8ODBrFmzBoDKykpuv/12+vTpQ9++ffnmm28AuP/++xk0aBC9evXimWeeAcBsc/DS888wdsRQ+vTpy29+8xvWrl3LDz/8wBNPPEH//v3Jzm7kwl6SpFat+FAxOz7cQVV5lb+HErSOrjpKiCGE1EtS/TqOjMszSB+Tzi9/+QVbpc2vY2kxmxm+f7De0h5wtrxH71m9yZiUQfbi7MaXFk56HqzlsPIfXhx067Dv230ALao/XSs0KpQuU7qQ9VUWilOW+ZA8wx9zalOVgxKzjT89+ww9e/akb185p5YkSfIU564FHD3V0zPJHlodIZc9wLUPn+KaT6/xevk9fbwe02mT30tcnCnx4cMa1ABxXeIwxBhko0QpILnfbvUi8dZbb7Fo0SJWrFjBn/70JwYMGMB3333H8uXLueWWW9i+fTsAWVlZrF69mrCwMGbPns1jjz3GyJEjyc3NZdKkSezdu5e//OUvREdHs2uXWmu0pKQEgOeff564uDiqq6sZP348O3fuJCQynuWLFvBD5kbijKEYhY2YmBiuuuoqrrjiCmbOnOmvl0SSJD9zWB04rGpm2e4vdnPJPZf4eUTBKW91HmlD09DqW7Ak0QOEEIz/23jeu/Q91r+8ntFPj/breFpk2Z8bLO0BankPYxsj7Ua0o+J4BTs+2sHxzcdpO7Rt/cfT6uC6D+HdsWrZj+5TvTf2ILf3m70k9EjwWMPPXrN6se+7feSuzqXD6A4eOaZ0cfPHnHro2ClEJySzbNECNm3fRWKkgdLSUjmnliRJaiFriYkkww5yer+ARuuZfEfN4NtJWPsKRJQCUR45ZkP0cXoUp4K5wIyxjdGr52qMv0p8CCFIG5ImM6g9zGF1oA3VIoTv+xu1JsEToH422gvHLHNps9WrV5/J0Bg3bhxFRUWUl5cDcNVVVxEWpt71Wrp06TlLBsvLy6msrGTp0qV88cUXZx6PjY0F4Msvv+Sdd97B4XBw4sQJsrKyGDB6MmEGA8/99iEuHTeJu2bLybMkSSprqfXMv7f+d6sMUDeDrdLGiW0nGPnUyPo3KD4CYbEQFuOT8bQd1pZu07ux9oW1DLp/kM8nqR5xdC3s+RYeWFfv07XlPQbcOQCNVkOniZ1AwKFFhxoOUANEJsP1/4PProdOu0EfhK+Nl1WequToL0cZ9YdRHjtm1yu6EhIWwu65u2WAujXy43wafDOnPn7iBLv27OGW2b0xGEK57567mT3zaq688soWf6mSJEkXu7wvvyGyPILOt4313EHDYmHEI/DdA3DLD6Dx3kL/0PhQACpOVPg1QO2vEh+gNkpc9ddV2Ew29BF6n5+/tTm+5Tj/G/c/xv9tPIMfGOzv4QS1IApQuz759aWIiIgz/3Y6naxfvx6DwdDkfkeOHOHFF19k06ZNxMbGctttt2E2W7Apgp9WrGLjyqV8/s13fPW//7J21UpvfgmSJAWJ2gB12tA08jfkc3LHSdr0a+PnUQWXY+uPoVQrdBhVT+AtbyN8OhPiu8Ct830WEB333Dje7Psmq/++mstfuNwn5/QYm0m9mLjiX/WW9gA4sEAt79HzOrUERXh8OGlD0shelM2YZ8Y0fvy2gyC5FxzOlFnU9dj33T4Up3K2vMeJHaDVQ1Lz61HrjXq6TuvK3q/3MuWVKWhCZDW4ViVA59PguTn1tTfchMNmIyk6gp+WrGDh0hV8/8N8Xn/9dZYvX+7NL0GSJKnVs235gaMFPRkyNM2zBx7xCBz4GTa8CZc+6Nlj16GPVwOylScqYYDXTtMkc5GZEEMIujCdz8+dNiQNpVrhxNYT9V8TSS4rOVzCZ1M/o6q8ipwVOTJA3ULyqsMFo0aNOtPUJTMzk4SEBKKiLlx6cvnll/Of//znzP9rlyxOnDiR119//czjJSUllJeXExERQXR0NKdOneKnn37CVu3EVFlBtcXElMmT+Mc/XyJr9y4sNgeRkZFUVPi/26wkSf5jKVHvtA95aAhavZZt723z84iCz9FVRxEaQdth52Xu5qyGz2+Ea9+D+AyYdzc4q30ypqTeSfS7uR+bXttE+bFyn5zTY5b9BdoOhu7TGtwk60u1vEfdOoWdJ3cmf2P+meWNjeo2FfYv8MRoW529X+8lrkscSX2SwFwMn82Cj66E49tbdNxes3phOm0iZ2WOR8YpSbW8Pac+nJtP5rIlRIaFYDGbqLaUM2bCJH77p7+xY8cOADmnliRJaiZzoZkk3RZE9ymeL2Wg0cKMN2HVS3B6r2ePXYc+Tg1QV5zw7+8BS7HFL9nTIBsleoqpwMQnkz7B6XDSdlhbjm8+7u8hBT0ZoHbBs88+y5YtW+jbty9PPvkkH330Ub3bvfrqq2zevJm+ffvSs2dP3nrrLQCefvppSkpK6N27N/369WPFihX069ePAQMG0L17d2bPns2IESOosjsxV1Zyw3UzuPTSS7l22gR++8zznCyv4oYbbuCFF15gwIABsqGLJF2kajOo4zLi6HFtD3Z+vBO7xe7nUQWX3FW5tOnfhtCo0LMPHloGX94KM9+HLhPhqtfAWgaLn/bZuMb8aQzOaicr/xxEK2ZKc2HnXJjScCPD2vIePa7tcU6dws6TO6M4FQ4vPdz0ebpNUTNqfHTDIFiYi8wcWXGEHtf2UC8SFzwOvWbAFS+rKwFaEKTuMrULuggde+bu8dh4JQm8P6eeM+cmBg4eilEfQkVFBbOuv57rJo5kxuQJvPDiiwByTi1JktRM2V8uJSzMSvvrr/bOCeI6wfg/wrx7wOGdBuK1AerKE5VeOb6rLEWW5pf2q6oEU2Gzzx2RFEFMeoxslNgCNpONz6/4nPJj5dw4/0a6X9Od0pxSzIUuJN9IDQqeEh9+kJOTc+bf33333QXPP/vss+f8PyEhgblz516wndForHcC/uGHH57z/+zTlSgobNq4kYqKCiIjIymosHKizEq/QUPPqcUnSdLFx1qiBqgNsQYG3jWQ3Z/vZt+3++gzu4+fRxYcqu3VHFt/jIF3Dzz74P5F8P2DcMOn0H6Y+liIHmZ9DO9NgvVvwbD7vD62mPQYBt03iE1vbGL4b4YT3zXe6+dssfLjEN+5wdIecGF5j1qpg1MxxBrIXpRN71m9Gz9PbDpEJMGxzdB+qAcG3jrs/34/SnVNeY9dX8Op3XD1G6Crycb5dCbc9BWkur9+VReuo9tV3dg7by9TX5+KVuffhqJS8PPFnNpsc3DodCVtogwkRamlQTIzM9EZwjlwqoKUaPWxESNGyDm1JElSM1jWzSNX9KBH/xTvnWTgrbD/J1j5Dxj/fx4/vEavwRBr8H8GdVEzM6hP74W5cyA8Ae78udnnTxuSxrENx5q9/8XM6XDy9ayvOb75ONfPu552w9vhqHIAaj3qzpM6+3mEwUtmUAcIp1PBbK8mIvTcewbxEaHotBpOlllRFMVPo5MkKRDUZlAbYgykj0kntlMsW9/d6udRBY8TW0/gsDjO1lrL+h5++BXM/vJscLpWWKwa3FvzMuzzTXmJUX8YRYghhBX/t8In52sxc3GjwWmArK8uLO8BoNFqyLg8g0OLDrn2u637VNi/sCWjbXWyvs4iJj2GlC7Aoidhxttng9M9rqjJpL4OjjevFFCvWb2wFFk4svyIx8YsSd50urwKrUYQbww953GDTkuEPoQik03OpSVJkpqp4kQFCZrNVHec6PnyHnUJAVe+Clv/B7kbvHKKyJRITCdNXjm2qyzFFsLi3AxQ7/oaPpwGIx5VE0WaOccDSB2SStnRMipP+TeTPNgoisKP9/3IwQUHmfrGVLpP7w5AykD1po0s89EyMkAdIMw2B4qiEKE/N0Ct0QiSokIx2xxUWB1+Gp0kSYGgtga1IcaA0AgG3DmAnMwcig4W+XlkwSF3dS6AGizd+RUsfALmzIO2l9S/Q2wHuOEz+OFhOLbF6+MzJhsZ9tgw9ny5hxNbT3j9fC1mKVYD+Q2wVdo4uODC8h61Ok/uTOXJSk7tPNX0ubpNkQHqOqylVg4vPUyPmd0RPzwEg+6EtIHnbtTjCrjyFTVIne/+jazOkzsTGhUqy3xIQcFsc1ButZNoDEWruTBwEm/UY3M4qaySc2lJkqTm2D93E2mpJ2lz7WzvnywyWW3A/e29ajkLDzOmGP2eQW0uMrueQV1th5+ehOV/gZu/g4E3w5C7YMPbzT5/26FqPx5Zh9o9K/+0km3vbWPU06MYdO+gM48bog3EdYnjxJYguIYLYDJAHSAqq6oRQETohcto48L1hIZoOVkus6gl6WJmLbUSEhZCSM1Ki/639UdoBNvel80SXZG7Kpe4znEYj38LS/4PbvkeUvo2vlPaQJj+GnwxG0pyvD7G4b8ZTlhcGMt+v8zr52oxczGEuV/eo1bGpAwADi061PS5UgZAVQUUurDtRWD//P047U4GD96j1iAc/Zv6N+w+TQ1Sf3a920HqkNAQul/dnX3f7qPaJut/S4HtbPa0vt7no8J0hGg0FJu8U9NUkiSptStfOY9TJZ1I7NvBNyfscSW0v9QrPWEiUyL9WoNaURTXa1BXnIQPr4Diw3BP5tlrlwE3q8kblaebNYaUgSkIrZABajdseWcLK/+0kv6392fsn8de8HzqoFSZQd1CAR2gvpiCsaYqB2F6LVrNhd8SIQTJUaFY7dWUmutviHYxvVaSdLGyllgJiz17pz0yNZIu07qw48MdVNtlAKkxilMhd3Uuo6ccgMy/w60/QlIP13buNkUNAH4yUw3KepEh2sDIp0aS/XM2OZk5Xj1Xi1mKIbzhDOqsr7KISI64oLxHrciUSJL7JZO9yIUmZRoNdJ0ss6hr7P16L+16OIjJeQ2ueQe0uoY3bkGQutesXlhLrWQvlo3kWkoI0U4IsUIIkSWE2COEeKTOcw8JIfbVPP7POo8/JYQ4JITYL4SY1Nxzt/Y5oqUmezrBGFrvPBpAIwSxETrKLQ7s1c4Gj9XaXytJkqTmKD1aSoLYhK3teN+eeMrf1WbmBxZ79LC1GdT++sy3VdhwOpxNl/jIWQPvjIHO4+HGL85duRgepzbH3vxBs8agC9eR3CeZ4xtbd0DV6XCy9Kml7Pt+H85Gfv83Zf/8/Sy4fwGdp3TmirevqLfMTeqgVMrzymXZlBYI2AC1wWCgqKjoopgoNlR/uq7oMB1hOi2nKqw4z3tNFEWhqKgIg8Hg7aFKkuRH1lIrhphzf84H3jWQypOVHFx40E+jCg6F+wvp12U13ROXwO0LIMHN5hVD7oauk9SmJI4q7wyyxuAHBxOZFsmyp5YF9u9AS0mDGdS2ShsHFx6k58ye9Zb3qNV5cmdyV+dSVeHCa9p9mgxQA1XlVWQvPsCMa35GjHocErs1vVMzg9SdJnTCEGuQZT48wwE8rihKT2AY8KAQoqcQYiwwHeinKEov4EUAIURP4AagFzAZeEMI4Xa3yothPn2qJns6oYHs6Vpx4XoUlAazqOV8WpIkqX575u6kc+ccEqbP8e2JDdFqA+j5D4PJcyUNjW2MVFdVn+nv42uWYrVsY4MlPhQF1r4GX92qruS87Ldqssb5ht4Hm98HR/NWB6UOSSV/Yz6Ks/XOEU7uOMmav69h7tVzeb3762x6YxP2BpI+G3Js/TG+nvU1KZekcN1X1zXYPDx1UCqALPPRAg1HRP2sbdu2HDt2jIKCAn8Pxeuq7NUUVNpwGPWU1rzZrVbrBRNkq72awkobFSd1GM8LZhsMBtq2beuzMUuS5HvWEiuG2HM/F7pM7YIxxci2/24706RBupBt4fMMGrQD85U/Ehqb3ryDTPwLfH0bfPcAXPNu/RNFD9CF6bjsmcv48Z4fOTD/AN2uciEA6Q/mhmtQH1hwAIel4fIetTpP7syaf6zhyPIjTb9/00fB13eoJS0iEpo76qB3YMEBhgzcSFhCJAy93/Udu09T//7serUx6Pk1q+uh1WvpPqM7WV9l4bA6CDEE7LQx4CmKcgI4UfPvCiHEXiANuBv4u6IoVTXP1a7VnQ58UfP4ESHEIWAIsM6d87b2+bS92smp8iqiwkI4UHbhSoLz59NlFVUUHVMoijJQX48vOZ+WJEm6UNGShZj7xJHQp5fvT95xFPS+Fn58FK7/H/V+eLvJmGIEoPJk5TmrU33FXGQGqL/ER1UFfP8rKDkCdy1Te+I0JKmHmqiQ9R30vd7tcaQNSWPrO1spPlRMfNd4t/cPBrU3IYb/djg5K3JY+OBCVvzfCgbdP4ghvxqCsY2x0f0L9xfy2RWfEZkayewfZ6OPaPhmeJsBbUCojRK7TO3i0a/jYhGwVxo6nY6OHTv6exg+8a/F+3ltxVF2PHM5kQZ1cp2ZmcmAAQPO2U5RFG54Zz3ZBcX88tsxhOsD9tsnSZIXWEutZyZUtTQhGvrf3p81f19DeX45UWlRfhpdgFIUWP4ckUU/8+mC27jv1d7NP5ZGAzPeho+ughXPwfg/em6c5xlw+wDWvrCW5X9YTpdpXRrNQvYbS4m6vLAeTZX3qNVueDv0Rj2HFh1qOkCtM0CnMXDgZxhwUzMHHfyO/7iEUSO3EHrLOvdvknSfBoiaIPVcSGugQWgdvWf1Zvv72zn400F6zHCxLI7UKCFEOjAA2AC8AIwSQjwPWIHfKIqyCTV4vb7ObsdqHnNLa59P3/fxFtZkF7L6d+OIDrswQH3+fPqnXSe4/9OtvHfrIMb3SPblUCVJkoJScXYxCWIj1oQx/hvEuP+Dd8fCzrnQ74YWHy4yJRKAyhOVJPZIbPHx3GUpaiCDumC/ulqz3VC4Y7E6923KsPvhlxeaFaCubZR4bMOxVh+g7junLxP+PoG8NXmse2kdq/66irUvrKXP7D4M+/UwkvtcOCeoPFnJp5M/RWgEc36eQ0RSRKPnCo0MJaF7gqxD3QIywhkA1h8upk9a9JngdEOEEPx2cneufXMtH6zJ4cGxbi5RlwJWQUUVz/6whz9P70W8MdTfw5EClKXEQmLPCydRA+4YwOq/rmb7h9sZ/YfRfhhZgFIUtbHK4ZV8Me9m4gd2rrdemFt0YWoNuPcmQEx7uOQ2jwz1fJoQDWP/MpZvbviGXZ/tot/N/bxynhZpoEmizaSW9+h/e/8mA+tavZaO4zuSvSgbRVGa/v50mwr7frxoA9S28kr6R73JQccc+sWlN+8g3aeqf396Pdz0ZZNB6o7jOhKeEM6euXtkgNoDhBBG4BvgUUVRyoUQIUAcatmPwcCXQohObhzvHuAegOTkZDIzMz0/6ACVV+Fk0R4L0zN0bNuwpt5tKisrz3lNdE6F6FDBqwu3oT0lS3m01Pmvr3RxkN937wq017dofRGXdT3MnvArOeTHcRnb3U3fH3/LlhNaqgzNDypXVlaSVZwFwMZlGzmqOeqpIbrs9Gp1sdSuQ7s4bD8MQOLpNXQ5+BZHOt7MiejLYc36xg5xlqJnaFE+WT+8TUWUe6sulWoFjUHDxm83UtKuxK19GxJo798T69VyG9v2bsNQpP7eT34kmchrI8n/Op+dn+9k+4fbiR0US9vr2xI7KBYhBA6zgx2P7sB80kz/l/uzM28n5DV9Pm1bLTlrcwLqNXCXP7+HMkDtZxZbNdvzSrl9RLpL21/SIZYJPZJ5a2U2Nw1tT0x44/X2pODw/fZ8Fuw6weW9kpne3+0EKekiYS21Ehpz4Q2MuIw4Oo7ryLb3tjHqqVEITcuXvrUKJ3fCnu8ov2ohJx74kL73N57N67KIeLjpa3h/MkS1hS4TPHPc8/S6rhdr/rGGzD9m0ntWCzK/vaWBDOqDCw7isDjodb1ry0A7T+7M/u/3U3SgiIRuTZTu6DoJfvot2C3qzYKLTNnHv6e01EjUdW6U9qiPG0FqTYiGHtf2YOfHO7GZbI0ubZQaJ4TQoQanP1UUZV7Nw8eAeYpaJHqjEMIJJAD5QLs6u7eteewciqK8A7wDMGjQIGXMmDHe+wICzAOfbiEy1M6fbxpLdHj9SR6ZmZmc/5rc4tjPaysO0bnfENrG1rO8WnJZfa+v1PrJ77t3Bdrru+vYFmJNZfSafBMJ3ZP8OJIxEFPCpdkfwS0/NLvUXmZmJpeOvpRNbKJdbDuGjxnu2WG6YOOejexlL2OmjFGzcpf9GY5/Bbf/QLfUAbhd3M/wMJfkb4Qx97o9lqNDj+LId3jsPRdo79+1W9ZygAOMnTKW0MjzrqPnqOVWtry9hY3/2ciu3+4iqXcSw349jN2f78Z02MSN82+kyxTXy3WE7Qxj0ZJFXNL1EiJTIz381fiGP7+HAbhm+OKyLbcEW7WTYZ1cX1LxxKRuVFY5eHNlthdHJvnS4j2nAMguMPl5JFKgUpwK1lJrg3XSBtw1gNIjpRxZfsTHIwtglachsRu5mysAmiw34Zb4DJj1CXx7L5zY6bnj1iE0gvF/HU9pTilb3tnilXO0iKX+GtR7vtzjUnmPWhmTMgDI/tmF32nhcdCmDxz5xa2htgp5G4k88S1L115Fh9HpLT9e96lq451Pr4eqxruN95rVC7vZLpuxtoBQlwe8B+xVFOVfdZ76Dhhbs01XQA8UAj8ANwghQoUQHYEuwEafDjqA7T9ZwcJdJ7ltRHqDwemG3DCkPQKYu8mFVChJkqSLnL24EKs1lLC4xssb+MSIR6HaBhveatFh9JF6QsJCqDhR4ZlxuelMiY+4MHA6YfXLcHcmpA5odL8GDZgDh5ZCufvN+dKGpnFy+0kcVY7mnTvAWUutCI1A30Aj5fD4cEb9fhSP5DzC9A+mg4Af7viBw0sOc9V/r3IrOA1nGyXKMh/NIwPUfrb+cBEaAYPS6280VZ9ubSK5un8aH67J4WSZfzrPSp5TVFnF5qPFABwuaDxIIF28qiqqQAFDTP1LknvM6IEh1sDW/2718cgCmLkIwuM4uuooeqOeNv3aePb47YfCtJfg8xug3DuTkIxJGXS4rAO/PPcL1ZZqr5yjWWxmtYSK7tzsw9ryHj2u7eFy3ezYjrHEd4vn0KJDrp2721TYt8DdEQc3mwll3r0sXDiO9pMGoQnx0PSt2xRI7tVkwL/D6A4Y2xjZM3ePW4evKq/il+d/4ZWOr3DoZxe/v63XCOBmYJwQYnvNn6nA+0AnIcRu4AvgVkW1B/gSyAIWAQ8qihJAHwL+9eryg0Totdw50v362mkxYYzplsQXm/KwVzu9MDpJkqTWw1GiBqjPb9TuFxotzHhLrbl8em+zDyOEIDIlksoT/rn2NheZCY0KVedzVWWgj1BXaDaXIRr6XAeb33d717QhaVTbqjm141Tzzx/ArKVWDDGGJssIhoSG0P+2/ty34z7mLJ7DrG9n0f+2/m6fr03/NgiNkAHqZnLpCkcI8YgQYrcQYo8Q4tGax+KEEEuEEAdr/o6teVwIIV4VQhwSQuwUQjTdJv4i5mr96fM9NqErTkXh1eUymynYLdt3GqcCqdEGmUEtNchaot6MamhyGGIIoe/Nfdn37T7MhWZfDi1wmYshPJ681Xm0G97Oc0G9unpdDUPuhs9mgc3zP79CCMb+eSymUyYK1xR6/PjNZilWs5nPm+ydKe9xnXtd3jtP7kxOZg52i73pjbtNgQOL1IyTi8WSZyinK7u2daLnzJ6ePXbnCWrWTSM0Wg09Zvbg4IKD6s2yJtQGpl9Of5kVT6+gNKeUvDUXd7aqoiirFUURiqL0VRSlf82fhYqi2BRFmaMoSm9FUQYqirK8zj7PK4qSoShKN0VRfvLn+APJwVMVLNx1gluHpze71N1NQ9tTUFHF0qzWeUEuSZLkKc6KIqpsYWh1Wn8PRRXXCSY8A/PuAYet2YcxphipPOmfALW12Hq2QaK5/hWJbht6L2z5EOzuJTDWbZTYGlWVVjWY4FUfIQQZEzPofnUTzdsboAvXkdgrUQaom6nJq3UhRG/gbmAI0A+4QgjRGXgSWKYoShdgWc3/AaagLkPsgtq05U0vjLtVqK0/7U55j1rt48O5cUh75m7K40ihDGoGsyVZp0iNNjC5dwqHCypxOhV/D0kKQLUdiBv7BTvwroFU26rZ+Yl3Sk4EHXMRdhHFqV2naDeyXdPbN9eIRyGlrzpR9kLQtM2ANoCCraj5k3CPs5TU2yDxTHmPUe6VU8mYlIHD4iB3VW7TG8dnqBP54xfJaoFDy2D/T6zaeiWGWAPpY9M9e/zOE+DQEjUjvhG9Z/XGYXVwYP6BBrepKq9i1V9X8UrHV1jx9Araj2jP3ZvuJiI5wm/LaKXW59XlhwjTablrlMu9JC8wplsSqdEGPt3gwmeOJEnSRUwxlWCrDrB6/QNvhahUWPVisw/h7wzq8Pia19RS6pkAdUIX9Xpkz7ymt60jMi0SY4qR4xtbZ0C1NoPal1IHpXJiywmUJubW0oVcSSfrAWxQFMWsKIoDWAlcA0wHPqrZ5iPg6pp/Twf+V7M8cT0QI4RI8eywW4fm1J+u61fjOqPXavjXkoYvFqUL/bznJIWWwMi8s9iqWXWwgAk9k+mcZKTK4SS/1OLvYUkByFJSU6usgRrUAMl9kkkbmsbW/26VvxABLMUUnwAU6DCqg/fOIwRM+zdYy2DpMx4/vL5kO4/9+l005UUeP3azmYsvaJDYnPIetdIvS0cbqnWjzMcU2L/QrXMEJUsJ/PAQ1VNfZvf3x+h+dXfPZzAl9YBqBxQ1XgO83fB2RKZF1lvmo25gevkfltNueDvu3nQ3N86/kdRBqX69CJRal0OnK/hx53FuuTSduBY07NRqBDcOac/qQ4XkyEQPSbq42K2w7C/w8TWw6Pew5SPI26jO46QLKOYS7IrR38M4lxAw5Z+w8d1mZ1EbU4x+rUF9JoPacuGcutmG3gfr32wy6aAuIQRpQ9LI33hBH+ZWwR8B6pRLUjCdNlF+rNyn520NQlzYZjfwvBAiHrAAU4HNQLKiKLVV2E8CyTX/TgPqruM8VvPYORXbhRD3oGZYk5ycTGZmZjO/hOA176ANAViP7SHzZNY5z1VWVrr0moxvp2H+juMMiiimQ1SALLsJYMcrnfx+tYW+cQoJYZn+Hg5bTzmw2p0k209Rka8uM/1u2Vr6JLryoym5y9Wfq0BUuFot77D70G5yyGlwu4hREeS/mM/8N+cT1TPKR6NTBdrr2/PoPrJ2dkaEJJJtzSYnM8er5wtJu5eBW39LXmE1J1Iv98gxY0p20TPrBUJCqgmpPBkwr2/i6TUkVTrYU2c8p1ecxmFxYO9ib9Y4o/pEsXPeTkKvCm16W1MK3fa/xibtaLfP05BAe/8CdN/7b6qN/Vj/XTlVZVU4uji8MsZuET2pXPQm+W2vbHS7qEujOPD9AZb+uJQQYwgOs4P8efkc++oYjnIHccPi6H5rd6K6R3Gg8gAHMtUb6LZQGycOnPD66xuI30PJs/6z/BCGEC13j3K/9vT5Zg1ux8vLDvL5xlyemtrDA6OTJCngHdsM3z0AiV3VEm2FByBvg1oaofAAhEZBYjf15m1iN0is+Tssxt8j9xthK6daH+nvYVwotoP6fTq0BLpPc3t3Y4qRqrIq7BY7ujD3yq22lLnITGxGTda0pcQzGdQAGeNh0ZOQux46XOrybmlD09j//X4sJZZGk6GCkaXEQkL3BJ+es26jxOh20T49d7BrMgqmKMpeIcQ/gMWACdgOVJ+3jSKEcCtdT1GUd4B3AAYNGqSMGTPGnd1bhTf2raNP22qmTBh5wXOZmZm48poMGGpn1T9XsLwwkg+vHNxk8feL3dPf7QJy2VUs6NJ/KGkx/v0AXvDVDiINJ7lnxlhKzXb+tnEpESkZjGlG0x+paa7+XAWibYe3sYc9jJw4kpgOMQ1uV3VJFS+9+RJshTEPjPHZ+CAAX9+cF9lyPIK0QWmMnzzeN+cc0INuH0ym27BJ0Omylh3r4BLY+DLM/pRTLzyOoboycF7fTdlg6HrOeL56/SsikiO46qGr3M6gBgidHcriXy+mf8f+jb7HAXCOhgMvMqZve7UWoQcE3Pu35Chs3AWP7iLkvqWERoUy/dfTCQn1wg3MpDLY+j+6NPH1dzZ05r2v3yMqJ4qqiio2vrgRS7GFLtO6cNkzl5E2OK3e/cp6lXHop0Nef30D7nsoeVR2QSXzdxzn7lGdiDc2fSOrKUlRBib2SObLzXn8+vKuhIbIRA9JarXsVsj8K2z/HKb8A3rNULNwu005u43TCeXH4PQ+KNinZlVv/R8U7IfQSEjuDVe+DNFtvTNGZzX88BDhumHeOX4zaezlOHUBGKAG6Hs97JzbvAB1GzUrvPJEJbGdPBQgdpGluG4Gdf1l85pFo4Eh98KGt9wLUA9R52/HNx0n4/IMz4wlQPgjgzq5bzKaEA3HNx+nxwx5A9wdLl1BKorynqIolyiKMhooAQ4Ap2pLd9T8fbpm83ygbrHPtjWPSXW0pP50XdFhOh4a15mVBwp4/KsdVDlkg/eGlJptfLMln9FdEwH4dP1Rv46n2qmwbN9pxnVPQqfVkGDUE2UIIbtALoOWLuRKDWqA0MhQet/Qm91f7HapmVlrppiKyNtudrsecoskdIaZ78M3d0JhC5rYZv0A390PN34BHUfh0EajtwfQMjFLyTnLEW0mGwcWHGhWeY9anSd3BiD758ZLTQDqBLzbZNjfivvGVZ6C2I5UCwP7vttHt6u6eSc4DdDxMjXbxt54iam0oWlEd4jmp4d+Yvnvl9P20rbctfEuZv84u8HgNKh1Hk2nTDirA6O8lhScXl9+iNAQLXeP9sxNKYCbhrWnxGxn0e6THjumJEkBJm8TvD0KSnLg/rXQ+5oLmjwD6twipj10vRxGPAxXvwF3L4cn8+DOxWp93y9vAYeX5tcrnoftn2KsPOKd4zeT1lmBovftqkyX9ZwO2SuaVZ4lMkUNuvu6zIez2om11Hq2BrWnmiTW6n8jHFkJZa43PUwdlAqCVlnmwx8Bal2YjqTeSZzYfKLpjaVzuHQVKYRIqvm7PWr96c+AH4Bbaza5Ffi+5t8/ALcI1TCgrE4pEKnG2frTLb9bdufIjvx6Ylfmbc3npnc3UFh5cQelGvL5xjws9mqemtKdAUla5m7K82tAf8vREopNNib2VKvjCCHISDJyuEDWQpQuZCmxIDSC0Mims8YG3jUQu8nO7i92+2Bkgau6rIDKMj3tR/owQA3QcTSMfwY+u16ddLprx1xY+BuY8w20GwxAtS6OUCWAmsydl+1xcMFBHBYHva7r1exDJnRPILp9tBt1qKfCvlZch9pUABEJ5GTmYC2x0mOmFzMwwmKgTR84uqbRzYQQjHl2DL2u7+VSYLqWMcWI4lQwF5g9NGDpYpNTaOK77fnMGdaeBA9kT9cakZFAh/hwPl0vmyVKUqtjt8Di/4MvZsPY38P1/wOjmqiUtzaPgwtdTCSoDVyP+z+1Md9Pv/X8WPctVOd/va5BbwusWtg6TJ4NoHpSWKw679473+1djSk1GdQnfZscZi2xggJhcXUyqD1VgxrUbP9+N8Km/7q8iyHaQEL3BPI3tK4AdbW9GrvJ7vMANUDKoBSObz4u+0K5ydU0p2+EEFnAfOBBRVFKgb8DE4UQB4EJNf8HWAgcBg4B7wIPeHTErcT6I8VoBAxKb/mHkRCCh8d34Y2bBrL7eBnTX1vD3hMBlGkXAOzVTv63LofhGfH0SIlifHsdRSYbC3f5797JkqyT6LSCy2oyugEyEo0yg1qql7XUSmh0KELTdBmftKFpJPZKZNt/t/lgZAFKUdDYSrFYDLQd5qWlmI0ZeDP0uBLmznEv02bzB7D0WbjlB0jpd+ZhJSwegygPnEnOedkeWV9lEZEc0aJsdSEEGZMzOLz0MNV2F24edhoDJ3Y07yZAMKgJUGd9nYUuQuf9JZedx8OhZU1u1v+2/sycO9OlwHStyFT/ZClJrceqQ4U4Fbjl0nSPHlejEcwe0p6NOcUcPCXfn5LUauRthLdGQVkePLBOLelRx8o/reTLa7+kLM+NYLAQMP0NOLoWtn7subEWZcMPD8F1H0JSD3T2wAlQO6wO9DozIiJAA9RwtsyHm2ozqH3dxNlSXNP4vm6TRE/fABh8l1qepomVcXXVNkoMmGsND6gqU6/B/BGgTh2UiqXYQmlOqc/PHcxcLfExSlGUnoqi9FMUZVnNY0WKooxXFKWLoigTFEUprnlcURTlQUVRMhRF6aMoymZvfgHBav3hInqnRRNl8FxB/ql9Uvjq3uFUOxWufXMtS7JOeezYwW7R7pOcKLNyZ01t557xGjolRvDRWv+U+VAUhcVZpxiekUBknfdAp8QITldUUWG1+2VcUuCyllhdblohhGDgXQPJ35jPqZ0X6eeArRJF0VCt6AlPDPfPGMY/q0445z/qWjftdW/Aqn/BbT9CUvdznhKRSYQZLGcmWn5Xp+O4J8p71Oo8uTO2ChvH1rmwLFEXpmbNHFzconMGLFMBSlgC+77dR9crunq/gU/nCXBoqVcO7a+LQKn1KDPbAEiO8vxF5sxL2qLXavh0g8yilqSgZ7fAz39QEwTGPa0GfSMubJBmKjDhsDpY/ofl7h3fEAWzPoGlz0D+1paP12ZWy4aMeVJdNReREFABakuJhbCwKjSRHszw9bQuk+DETig/7tZu4QnhaEI0Pr95bi5SV5OdKfHhyRrUteIzoO1g2Pmly7ukDU3DdNpE2dHAef+1lKslMr2hbqNEyXUtu5KUmsVqr2Z7bsvrT9enT9tovv/VCLokGbnn4828tTK7Vd0Fa673Vh8hPT6csd2SADWAd/OwDmzPK2XXMd9/CB88XcnRIvOZ8h61MhLVpUayzId0PnfrZ/Wd0xetXsvW9zwweQ5G5mKqnJGExYb5r3msRgPXvAOn98Dqfze+7S8vwKZ34faF6qTyPNrYZCIizJhOB8hng7n4zGTaE+U9anUc1xFNiMb1Mh/dp8L+Vlrmw1RI8Skt5gIzPWf29P752vRTL5JKPH/jtnYZrcyglpqr1GwnQq9FH+L5S5d4YyhT+rThm63HsNhkLxdJClq5G+CtkWqg8v610OvqBje1FFnQhGjY+fFOjm9xM4CU2A2m/Qu+vBVMRc0fr6LAj49BUk814xUgIhG9LXBWQluKLRgMVYTEXBjkDxg6A/S4AnZ97dZuQiOISI7wfQZ10XkZ1J6uQV1r6H2w4W3XkmQ42yixNdWh9meAOql3Elq9Vgao3SQD1H6w1YP1p+uTHGVg7r2XMq1PCn//ad9F3zxxa24J2/NKuX1ERzR1yiNce0lbwvVa/rcux+djqs1ubyhALct8eJaz2knFiQqqq4L358BaYsUQ6/ov1/CEcHpc04OdH+/EYXW4fqLj2+Hd8WrNvmBmLqLKHu7Wa+YV+gi4ca5aBy7r+wufVxRY+id1Un37TxDT7sJtAF1iSmAFqOvUy/NEeY9ahmgD7Ya3cz1A3WUSZGd6r2GRP5kKyNtuJSQshM5TOnv/fBoNZIz3Sha1sU1NnUeZQS01U6nFTky43mvHnz2kPRVWB/N3ygtJSQo6igJLnoEvb4bxf4TrPqg3a7ouc5GZfrf2IzwhnCW/WeJ+Qlevq9U/39wBzmZeX2x+D07ugitfPtu0MTwBnb20ecfzAmuJFYPBii42gAPUAH1nwS7Xs4VrGdsYfT43qc2g9loN6lqdxoDTATmrXNo8uU8y2lCtDFB7SEhoCMl9k2WjRDfJALUfrD/sufrTDTHotPznxgE8NkE2T3x/9REiDSHMvOTcOrRRBh1XD0jjhx3HKTHZfDqmxXtO0q9dzAVLVdvHhaPVCBmg9rD8Dfn8K/VflO0I3iVLzelAPOCuAVhLrOz9dq8LJyiHn56ET2dC72vVumWVp5s52gBgKcZiDT87+fOnqBS44TM1S6buclCnExY9qQYEb1sIkW0aPERomzQiIixUngqQz4aaenlnyntc0/LyHrUyJmdwcttJ15rWGBMhqQcccW3yHUyUygIOrSyly5Qu6CO8F5g7R+cJLtWhdldIaAhhcWFUHJcZ1FLzlJptRHuxzM2QjnF0TjLKMh+SFIysZbDxHbh/HfSc3uTmjioHdpOdmI4xXPbsZeRk5nBg/gH3zzv+GTU4vfw59/c9thlW/A1mfawmM9SKSAyoJom1JT50CYlNb+xPHUaq2eynXbjmqSMyJdLnq7tqa1CfLfHhpQxqIWDovWoWtQu0ei0pA1NaVaNEfwaooaZR4pbjKE5Z0cBVMkDtB96oP10fIQSPTOjC67Mv3uaJx0st/LT7JDcOaU9EaMgFz99yaQeqHE6+2pLnszGdLLOy41gZl5+XPQ2gD9HQIS5clvjwsIgkdeJnK/HtjQhPspRY3M4G7ji2IzEdYxpvlqgosOc7eH0o2CrggQ1w6QPQ5zpY+5+WDdqfzMWYTQaX63Z7XWp/uOo/8MVNUHZMvaCZ/7AasL51PkQ0XvLJ0LYd4eEBkkHtdIKlFMJiObiwprzH9S0v71Gr82Q1Wzh7cbZrO3SbAvsXeOz8gcJeeJzCYxp6zOzhu5NmjFUzbRye/6w0pvg+S0lqPUrNdmLCvTdvFkJw09D27Mgr5Sc/NtCWJKkZLCVqxnQTc6kzmxedDRBecs8lxHeLZ8kTS1xr0FyXNgRmfqDW+d37o+v7mQrV8iBXvXphWbeIeHT2wLletxRVoNPZMSQGeIBao4E+M92quQw1cxNXEiI8yFJkQWgFodGh6vVAVSUYor1zsn43qE09S3Jc2jxtSBrHtxzH6XB6Zzw+5u8AdeqgVKrKqijObqUN3b1ABqh9zJv1pxsyrW8KX957KQ6nk5lvrmXpRdQ88aN1OSiKwi2Xdqj3+e5tohiSHscn63Nx+ujO1pK96utfX4AaoFOiMWAyqM02B4cDZCwtURugtpcGb/NJa6mVqFiLWg5i1b9cqhMrNIIBdw7gyPIj9dfXKz4Cn14HmX+Dme/B9NfPTu5HPqpmUbektp4/mYswVYQGRgZ1re7TYNj98NkNMO9udbJ487cQFtPkruFtEhBCwXIqAL4fVWVqto9WR9aXnivvUatNvzZEJEe4UYd6Guz/yeUae8FCmAsxmcLoMLr+319eEZEA8Z0hb4PHD+2PLCWp9VBLfHg3seP6Qe3o1zaaBz/byucbZSa1JAUNS4lbGahnSizEh6HVaZn4wkSKDhSx5e0t7p/bmAjX/w/mPwKFB5ve3lkNX98Bfa9T5y/nM8SgcdoCpnSZo7iIqio9YfERTW/sb32vV0vmOV0PrhpTjJhOm3wakDUXmQmLq+mRYymF0EjQaL1zMn0EDLgJNr7r0uZpQ9JwWByc3h3Eq2jrCIQANcCJLfLGt6tkgNrHvF1/uiF928bw/YMjyUgycvdF0jzRbHPw+YZcpvROoW1seIPb3TK8A7nFZlYeKPDJuJZknSI9PpzOScZ6n89IiiCn0Iyj2v93Lt9eeZgpr6yi2MclUDxNH6knxBAStBnUjsI8Jly2hBHhvwabCcry4N2x8N4kdcJhKmxw38H3DyYyLZJ5s+dhq/0+Omyw6iV4dxykj4B7V0GH4efuGN1WXSa5/g0vfmVeZC6mokzv/xrU5xv+ELQfCnYr3PQVhNb/OXA+rT4EsyUCR9FJLw/QBTUXgt4o7wHqjZXOkzqTvTgbpyufgwld1An48UZWCgQbp5MQZzlmc5jvb7J0mQiHlnj8sDKDWmqJUrOd6DDvlrqJCA3hs7uHMbprIk/N28XLSw+0+rlyXbZWkjEnXYTcDFDXzaAG6HpFV9LHppP5bCbWMqv75297CYx7GubOUbNhG7P8OUCBsU/X/7wQ2HVRjc7tfclRVojFYlCzfQNdcm91PujGTfbIlEhQ8OkKRWux1fv1p+safDds/6zp9yaQNrR1NUq0lKjZ6rqIJm5wKwoUZavJWd/eDy/3VXsytTBRK7FnItpQ2SjRHTJA7WO+qD/dkDbRBubecylTa5onvrzUhbu8QeybrfmUWx3cMTK90e0m9WpDUmSoT5olVljtrMsuZGLPZPWuaT0yEozYqp0cK7F4fTxN2X+ygiqHkwVBvtxVCEFEUgT2kiDLoC7LhwW/QfvuSJxODXsS3oOp/4Qr/g2/3gejfq1Owl4dCJ/MhB1fQNW5GYphcWHM+HgGRQeLWPToIshZo3Y4z90A92TCyMcgpIGL/pGPweb31bv7QUYxF1FeHBJ4AWohYNpLcONnoHMv8GixReAsDYAVMGb1QjD752wcFgc9r+vp8VNkTM7AUmRxPeOg21Q1i7q1sJRgV8LR6EPRebHubr28VIe6dhntxRTwkzxDURTKLDavZ1CDGqR+95ZBzLykLS8vPcjvv90dEAkD3rbmUCF9nv2ZFftbR9acdJFpZgZ1eIIaoBZCcPmLl2MptrDqr83saXHJbdB2EHz/YMMruvYtUEtQXPu+Wh6kAXZdNJh8kzjVFGd5CVX2MI8mIniNEGoW9c65Lu9iTFETRXy5wstcZPZ+/em6YjuoiUguvC6xnWIJiw9rNQFqa6mVsNiwC+MuTqfaoHTDO2q5nZe6wYdXwOGV6s/x7LnQcTR8OBUqmp8cpNVpadO/jQxQuyEIPmlaF1/Vn25ImF7LazcOYGqfNry76jBl5iAL2LnI6VT4YPUR+rWNZmD7xj/0dVoNNw5pT+aBAo4Weffuaeb+AuzVCpf3argZWkZNOYrDhf7PNMupeT2+2xb8v6QikiKwlQZJBnVpHvz4a3hzOOgMFE/5mcWLL0Mbn3Z2mxA9dJ0E1/4XHt+r1hjb8x38qyd8dZs6Ca5ZHthxbEfGPtmHdqf/jv2T29Qsj9lz1QlLY+I6QtfJauOZIOMsK8Bs8kP2qRdZHEaUygC4YLEUQ3gcRQfVrIK0wWlN7OC+jIkZIHC9zEe3qbB/ocfH4TemAqocUf65wZI6UK2TXu7ZG5ORKZFU26rPNAeSJFeZbdXYqxVifHSzRqfV8MLMvjw4NoPPN+Zy3ydbsdjcrE0bZA6drqTK4eSBT7ayI6/U38ORJPc0M4M6LP7sHDFlYAr9bu7Hhpc3UJpT6v4YhICpL6nl29a9duHzRdnww8Nw3YdqWZBG2PTRAZNB7awsxl7d8ErkgNNnJmR973IvDWMbNUDtyxVeliLL2feepQTCfJC4OPQ+tVliE0kCQgjShqS1mkaJVaVVankPhw3yNsLql+HT6+Gf6er18smd6rXunYvh11lqycvBd6oN2Cc8o76fPpiiXps3U+qgVE5sOSEbJbpIBqh9yB/1p+sjhODh8V0w26r5eH2OX8fiLSsPFHC40MQdIzs2mKlc1+yh7dEKwSfrm67r2xJLsk4RH6FvNGjeKUH9RZnt52ZoiqJwtMhMhF7LlqMl5NZkGwSroMigLjmq1rB7e5Raj+yhLXD5c1is6nuiwYZ/+gj1F+jsL+CRHdDxMlj3hno3+IeHYM2rjIr9LSEx8bz26s2UGS9TJ9KuGPU4bHjrgszsQOesKMRiCQucJokeUIURjTUAalCbiyEsDkuRBa1e2/SyuWYITwgnbXCa6wHqdkPUDAcXarMHBVMBliqjf96/2hC1WWK2Z7Ooa7OUZJkPyV2lFvV3d2y4d0t81CWE4IlJ3fnz9F4s23eKOe9toNQcJDe5m6G2lFu8Uc8dH24ipzAAGvJKkqtqGje76kwGdfy5gddxz49DaAXLnmrm7z+dAWZ9DGtehSN1MrFtZvjyFhjzJLQb3ORh7LpoMAdGgBprKQ5cK0cXEGLaQ2J3l0uVRaZEAr7PoD6TQGP2QQY1QPpICI+H/wyEn/+gvj+rHfVumjYkjdN7TlNVERh10FvCWmpVA9RvjVSTvypOQP/Z8KvN6nX29Neg/40Qm17/tfHoJ9QSKR9OheLDzRpD6qBUbJU2ig4EwDVcEJABah/yV/3p+nRvE8WYbol8uDYHq7sdi4PA+2uOkBwVytQ+KS5tnxxlYFKvNny5+ZjXsmRsDicr9p1mfI8ktJqGg4OxEXriIvR+b5R4qrwKi72aW4anA/Dd9uC+kxqRFBG4TRKLj8D3v4J3LlMnD7/aAhP/pDYsQ62fBS42eAiPg0G3w+0L4L7VEN8Fjm9DzPmGtP/7CKtFx7w581yr7QuQ0Bk6jYFN/23mF+cn5mL/1O/1oiptFBp7ib+HcaZenrnITHhCuEs3AZsjY3IG+RvyXcu41WjVFQWtpcyHqQCzxY/v384T4NBSjx7SHxeBUutQGxiO9kGJj/Pdcmk6r88eyK78Mq59cy3HSoL7Zn1Dik1qCZWP7hiCU1G49YONFFYGf3BCukg0I4NaF64jxHBumY2otlFc+vil7P5iN8c2HGveWGLawzVvwzd3qqX6FAV+fBSSe8Hgu1w6hE0fFTAlPkRVGQ5NEAWooabMx5cubXomg/qkDzOoi8/LoPZ2DWpQg6+3L1Qz+EMjYfHT8EIGfHOX2liyTjnHtCFpoMCJrcFd4hNqS3zooDgb7v0FpvwDel0NxiTXD3LpA2rZyw+vgIIDbo+htlGiLPPhGhmg9iF/1p+uz72jMyistPHN1mb+Ag5Q+09WsOpgIbdcmo7OjXpZN1/agTKLnfk7vPPhseFIERVVDib2bLi8R62MxAgOF/g3e+VITfbM8Ix4hnWK47tt+UFdOzQ8KRxbqS2wvga7Bb57UG14GNkGHtoK4/8IEeeusjjTgdjd5f7RbWHEw3DdB5DSj7jOcUx9fSq5q3JZ/bfVrh9n1G/UjGxb8GRUCWsxZrMh8GpQt4A9JJpQTTnV/l5qXlMvz1JoOWd5rKd1ntwZxalweKmLGQvdpsL+BV4bj0+ZCjFVhPnv/dt5AmSvaDC7pjlkBrXUXKU15eh8VeLjfFP7pPDxHUM4XVHFtW+uZd/Jcr+Mw5uKzTbiIvRkJBp577bBnCq3cseHmzBVee4zQJK8phkB6obmLyN+O4KI5AgWP764+dcMGeNg6L1q1vT6N+HkbrjiZZdXL9p1MQEToNbYy3GGRPl7GO7pOR2yl4O1rMlNtXotYfFhPpubOKoc2E1239agriUEpPRTM/nvXQkPrKupTf0l/Ls3fHQlrHuDtt3U37mtocyHtdRKdLwNwhNA04LQ56A7YNz/qa/RyV1u7ZrQPQFduE4GqF0kA9Q+5O/60+cb1imOfm2jefeXw1S3opo4H6w5gkGnYfaQ9m7tN7RjHF2TjfxvfY5XgphLsk5h0GkY2TmhyW0zEo1+z6CurT+dHh/BjAFpHC40sfNY07/oA1VEUgSKXaGqPIAygo6uhRM74OFtal3oBu6gW0tqAtSuZFA3oe/Nfekzuw+Zz2aSt87FelrJPaH9UNjyYYvP7xOKgsZe2uoyqO2GGMLDLZj8fPOqtsRHbQa1t6QNTsMQa3C9zEfGWMjfpl6oBjtTARVlBv+VqIlsA9HtIH+L5w4pM6ilZjoToPZhiY/zDe0Uz1f3XYpAcN1b61h/uHUt1S2utBFX8/oObB/LazcOZHd+GQ9+thX7RdAkUgpyzWiSeH55j1qhkaGM/fNY8tbksXfe3uaPaeSv1d+lmX9Ty37om54v2S129ny1B7MtHEyB8RmjdVag6IMsQB0eB+mjYO98lzaPTIn0WYD6gvrnvqpBXZ+oVDXwetOX8Jv9ap3q01mEzZvOrx75mLijr8KpLP+MzUOspVaiYq1N1n13Sf8bYcrf4eMZcMz1+bEmREObAR5olOisVmvZ260tO06AkwFqHwmU+tN1CSG477IMcorMLN7T/O6kgaSosop52/K5ZmBbYiPcu5ARQnDzpenszi9nm4cbxCiKwpKsU4zukkiYXtvk9p0SIygy2fxa7zCn0IReqyE1JozJvVPQh2j4NoibJRqT1ew906kAygI2FUJityYn1WcyqD0QoBZCMPWNqUS3i2be7HlYy1z8JTf6CVj7n+D4pWg3gwIOh65V1aCujoghIsKMyc/16WubJJoLG77A8wRNiIZOEzpxaNEh124a6iMgfQQc9GxpCr8wFVBWrPfvCoDO4z1a5kNv1KM36mUGteS2Uos6F4rxQ4mPurq3iWLeA8NJjjJwy3sbWbAz+Jc/1yqpyaCuNaFnMs9d3YfM/QX8ft6uwFp9Jknn82AGNcCAOwaQ2CuRpb9b2vxVa0LANe/C3SsgPqPRTStPVbLijyt4uf3LfH3915zY4AiIDGpFUQjB5LsMX09ys8yHr26e15at83kN6qboI6D7NLUm8+P72VF2L+X5JjVjuE75j2BjLbUSGWWBCDdKejSm1wy46j/w2fVqopmLUgelcnLbSZwOF2/42kyQtwk2vQc/Pgb/nQB/awdvDoftnzRz8MFBBqh9JJDqT9d1ea82pMeH89bK7FYx+fx8Yy42h5M7RqQ3a/8ZA9Iwhobw8TrPNtranV/OiTIrE3smu7R9RmJNo0Q/ZkrmFJloHx+OViOIDtMxoUcS83ccD9pMmoikCAD/B/fqMp12qQaWpcRCSFgIIaEhTW7rCkO0gWs+u4ayvDIWPrDQtZ/9lH7qn20fe2QMXmUuwo6a7dGaSnxUR8YREWHx/3u4JtvDUmQhLMG7NwA6T+5M5YlKN8p8TIH9C706Jl9QKgsoK9L7dwWAF+pQG1OMMkAtua02gzraTyU+6kqNCePr+y6lb9tofvX5Vj5cc8TfQ/KIYtO5AWpQG4g/PL4LX205xr+WuF93U5J8xoMZ1KDeIJ/4wkRKskvY9Mam5o9LH672cmnA6T2n+eGuH3i5w8v88twvtBvejvDEcCqKQgOiSaLdZCdUb0GEB0AA1V1dJ6urVMubvpHoy7nJBQ06LSUQaK+vRkN4v1Es+n4w9rbjYc0r/h5Rs1TbqrGb7UREmNyrOd2UblPg2ndh7hy1HJ4LUgelYjfbKdx33s+1oqhN3g8ugVUvwVe3wX8GwT8zYOHjcHwrJHSDCX+CX2epK64LXVxZGqRkgNpHAq3+dC2tRnD36E7sOFbGhiPF/h5Oi9gcTv637iiXdU2kc1Jks45hDA3h2oFpLNh5wqPNYZZknUQjYHwPdwPU/ruQzyk0kx4fceb/V/dPo8hkY/VB/0+YmiMwA9QFZxohNkZt8ODZQFW7S9tx2TOXseuzXez8ZKdrO41+Qp2kOPyX2e8SczFVTiMhhhB0ARDQ8BQlNk7NoPb3KgBzMYohFkuxxasZ1AA9ru1BfNd4vr7+a07vOd30Dl2nwKFlgf8ebYKz/BQmU7h/b7C0G6ouJTR57jM/MiVSlviQ3FZmsWPQaTDoml6B5gsx4Xo+uWsoE3sk8+z8LF5ZetDfQ2oRRVEoMdvqXXn42IQuzBrUjv8sP8Qn6z2bvCFJHuPhDGpQb5B3mtiJlX9e6VqzZhcpitpb49Mpn/Jm7zfZ9dku+t/en1/t+xU3fH8D8V3iKS/QB0QGtaXEQlhYFZqoAAugukJngO5XwO6vm9zUmGKk8mSlT5L1LizxESAZ1OdJG5IGwFHdTbD5fZcC/YGmdpVwuKESIjxQ4qOujHEw6xO1yeT+RU1uXtso8cSmHMhdD6tfhs9ugBe7qFnR615Ts+m7ToHr/wdP5alNHae/DsPuU1eIhsVAXIba8LEVkwFqHwm0+tN1XTuwLQlGPW+vDO43+4JdxzldUcUdIzu26Dg3X5qOrdrJ3E0u1ud1weKsUwxKj7sgO6UhbWPD0Gs1fgtQO50KOUUmOtapLzumWxIx4bqgLfMRkAHqygKXlhxZS6weKe9xvlG/H0X7Ue1Z+MBCirNduEHVdhDEd4Ydn3t8LB5lLqLKFtGqsqcBnHHxhIebMZ3ycwaqpZgqeziKU/Fqk0RQs/3n/DyHEEMIn07+lLK8JurgRyZDQhc46kYT0EBUWYDJFO7fEjUheug4Sm005CEyg1pqjlKzjZgw/9Wfro9Bp+XNOZcwY0AaLy87wN4Twds4saLKgb1aIb6eOaoQgudn9GZc9yT++P3uVlMSUGpFFEUNUBtiXNvcqWApbjpALYTg8hcvx1pq5ZfnfmnxMKtt1Wz/aDtv93+bjyd+zIltJxj7l7E8lvsYV7x5BfFd1TKgxjZGSk/qPHpzuLmsJVYMBish0U0n0wQkF8t8RKZEUm2rPtPzx5tqM6jPrJDzZw3qRrQZ0AZNiIaj2xwwYA6s/Ie/h+S2MyUydRWezaCu1WE4zP4SfvgV7Pm2/m3MxbB/EfG5/+GOu76kV84V8NPv1KzpfrPgnpXwRDbc8j1Mel59LLknaBuIGcZnQJHMoJZaKBDrT9dl0Gm5bXg6K/YXBG1nckVReG/1ETonGRndpWW/RDsnGRnROZ7PNuR6pHlkbpGZfScruNzF8h4AIVoNHeLDyfZTMPVkuZUqh5MOdTKo9SEaruibwuKsk1QGYVf32mZuARWgNhW4dEfXWmr1SrBVo9VwzSfXoAnRMG/2PKrtLtTZu+y3sPpfUB3A7wFLCRZreKtqkAggIiNQFA3WAj83zjGXYLao70dvNkmsFZMew02LbqKqvIpPJ3+KpaSJTKYeV8DWIChF0whhKcJkCvP/TRYP16E2pviuzqPUepSa7X6vP10frUbwzJU9iTLo+OvCvUFbKq+4Ul1xEttAE8oQrYbXZg+gT9sYHvp8G1uOBveKS6mVsZnUYI7Otd+X1jIrilNxaQVYct9kBtwxgI2vbaT4UPPe95ZiC6v+toqX01/m+9u+x1nt5Kr3ruLRnEcZ/fToC+ZREW0i1ORpZ7X6tflRbQZ1SFyQBqjTR6rXWqf3NbqZMUVdueyL+UltNv6Z95/Zvex/X9GF6Ujum0z+xnwY9ThkfR90pSVqA9ShmjLP1aA+X9tL4OZv1aDzji+g+DBs/xx+eBheHwov94UNbyL0YWQVXMWny56Fe1eqzRZ7zYDoNLVevati06HsGFTbvfP1BAAZoPaBQK0/XdecYR0I12t55xcX63wGmE05JezOL+eOER0R7vyQN+DmYenkl1pYtvdUi4+1OEvNNnG1/nStjEQjhwv9k2mWU6hOiDomRJzz+IwBaVjtTn7eHXwZNFq9lpDIkAALUJ92qauwtzKoAaLbR3Plu1eSvzGfzGczm96hw3CIagu7vvLKeDzCXITZFNqqGiSCms1jqYrAUezHn79qOzgsmMrUpfbeLvFRq02/Nsz6bhbFh4r54qovsFsamZgNvlut2bb/J5+MzeMcVYhqM1arwf83WTLGqyVTnJ7pPRCZEondZKeqwnMltKTWr9QSmAFqUMt9PDy+C6sOFrLygP+X5DdHcU1D7jhjw1nq4foQ3r91EKkxYdz50WYOnZYrIaQA0YzyHoDLK8DG/nksWp2WZU8tc2l7u8VO7upc1rywhrnXzOXf7f7N8t8vJ6l3Ejctuon7d93PgDsGEGKov69MZEokjvJqlIgEv2dRW4otGAxW9IleCu55m0YLfWbCrsazqCNT1NKgvljhZSmyqCUIw3XqnNpuBkO018/bHKlDUjm+6TgObRQM/xUs/4u/h+SW2ox4PaUuXW83W5s+cOt8WPZn+GAqHPwZknvBjLfhdzlqdvSYJyFjDMe2lLiWENaQkFCIbAOluR4bfqCRAWofCNT603XFhOu5YXB7fth+nPxSz9XZ8pX3Vx8hJlzHjAFpHjnehB5JpEYb+J8HmiUuyTpFt+TIc7KRXZGRFEFukdkvTQmPFKlB3PTzAtQD28fSLi6M77YHZ5kPXYwuwALUhS5nUHsz2NpzZk8G3DmA1X9bzZEVLjR8uuwJtZGDswW/YL3JXExlRaj/g3teUFUdibPMhVrM3lKzjNZSXFPXzQcZ1LU6ju3IjI9nkLsml29u/KbhTtihRrjqNbXrtTkIM/1MhTg0MYDw/02W2A4QHgcnd3jkcLVZSrLMh+SOQCzxUdfNwzrQIT6cvy7ciyMIG0mXmGoC1A1kUNeKN4by0e1DCNEIbn1/I6fLvb8cXpKa1IwGieD6DfbI1EiG/3Y4WV9nkbvmwqBQWV4Ze77cw6LHFvHfof/l79F/54NRH7D0t0s5teMUvWf35r4d93Hz4pvpPKlzk4lUxjbq78lqXZzfGyVai82EhtowJLqXZBVQ+lyvJtU0cqO99jX3RQa1uchcp/50iVpX2APJdd7Q89qeVJVXsfG1jTD0fsjbAPlb/T0sl9VmUIdUl3gvg7pWYjd4dBf8ei9c9yEMvRdS+4P27I2o1EGpOKwOCrJaeDM7LkPtEdNKyQC1DwRy/em67hzVEQU12BtM8orNLM46yewh7QnTe6aBTohWw+yh7Vl9qLBFdaBLTDY25RS7nT0N0CnBiMOpcLRmIuVLOYUmQkM0pESdm7UrhGBG/zTWHCrkVBBemOhj9f5vMFdLUVwu8WEpsRAaE+rV4Ux+eTLxXeL59uZvz0zeG9TxMvViIOs7r46p2cxFVJTq/F8ewQvsRPs3o8asNnMxF9bU0PNyDerz9bq+F5Nfmcz+7/ez4MEFDS+p7zgKelwFi5706fg8wlyIDTWbJiDew50neqzMR22WkizzIbkjUEt81NKHaHhycncOnKrky83H/D0ctxXVBqhd6JPSPj6cD24bQonZxq0fbMLiCM6yJlIr4uUMaoDhvxmOMcXI4scXc2zDMda/vJ6vrv+Kf7f7Ny+3f5mvZ33Nlre2oA3VMuyxYcz6bhaPn3ych7Mf5qp3ryK5r+vXgbXBUofGz/M9wFZShM2mw+BmklVAadMHdOFqcLUBvrx5bimyBHz96VqdJnQiY1IGq55bhbkCtczj0mf9PSyX1QaoNVVF3qlBfT6NttGbDbWNEo9vPt6y88S37kaJMkDtZYFef7qutJgwruqXyucbcykzB09dmw/X5qARglsuTffocWcNbo9OK/i4BVnUy/adxqnA5b3cD1BnJKm/LA/7oVFiTpGZDvHhaDQXfshOH5CGU4H5O1r44eoHutgAyqC2loE2FHSNT5AVp0JVWZXXMyn1Rj3Xfn4tptMm5t89v/FamkKok5RfXvTY0n+PshRTXqRrlRnU1SGx6kTLXyzFEB53NgPJhxnUtYY+NJQRT45g6ztb+eUvjTQumvAM5G2EfQt9NzhPMBVgc0YB+D+DGtQ61Ac9E6CWGdSSuxRFodRiJzqAA9QAk3u3YXB6LP9asj/o+nSUuBGgBujTNpo351zCwVMV/HeXLNcj+Zm1VM1CdVHtDXZ3SpTpI/SMe24c+RvyeW/Ye/z82M/kb8in3Yh2TH5lMndtvIsny57k9l9uZ+I/JtJ9eneMyUY3vxBV7e/JquooNZHFjxwlhVirQgmN8m6SjFcJoTZLbKTMR2hkKLoIHZUnfRCgLrbUqT9dHJD1p+u6/MXLqSqvUufbA25W6x97sHm2N1lLrQjhRNjKINz/sbi4jDhCo0NbHqCWGdRSSwRD/em67hndCbOtmk82tLy0hS9UWO3M3ZTHtL4ptIn2bKZZYmQoU/uk8M2WY5iaebGxJOskbaIM9Elzv7ZUp0T1bnV2ge8DqjmFJtIbuFuekWikX9tovt0WfGU+9DH6wAlQmwpdqodVVVGF4lS8VoO6rpSBKYz/23j2fbuPLW9vaXzjzhNAq4f9C7w+LncppkIqSlpnBrXTEE+Io9R/zbjMxRAWh7nQjCZE47eLlvF/HU+/W/uR+UwmW95p4L2qj4Dpr8OCXwdXqQ9TIZYqI7oIHVoPrQpqkQ4j4NQeNdOnhWQGteQuq92JzeEM6BIfoK4w+/3UHhRW2ngrM7guHItNNvQhGsLd+Ly5rGsij03sypZT1azL9nPjXuni1swSH+6uAOt3az+mvjGV6766jseOPcajRx9l5hczGfrwUNIGp3ns93VtBrWlyuj3DGpnRTFVtjCP9Hfyqz7XwZ7vwGFrcJPIlEjfZVDXLfERHtgxoqTeSQy4cwCbXt9E0eFyGP9/ahZ1ICYoncdaasUYXaV+Pmj8P58WGkHqJamc2HyiZQeSGdRSS2wIgvrTdfVIiWJMt0Q+WHMEa0sKuPvIt9vyqaxycMeIjl45/i2XdqCiytGsmstWezW/HChkYs/kZv1ijzLoSIoMbVGJkeZwOhWOFpsvqD9d19UD0thzvJwDp4IryKCL1WEptrSsOYGnmE67XH8afLfU/9LHLiVjUgaLHllE3rq8hjcUAkY/ASv/qZYrCSDOikLM5rBWmUFNRAJhhkqqyvyUtVYzma5douivixYhBFe+eyWdp3Rmwf0L2Pd9Ax3a00dAz+lqd+1gYSrAYo0IjOxpAJ0B2g+DwytbfChDrAFtqFZmUEsuK7WoAYVALvFRa0D7WK7sl8q7qw5zoix4+rkUm2zER+jd/jy/c2RH4g2C5xdm4XQG1jxAuog0o8SH0AgMbiY2abQaBt8/mJ4zexKVFuXuKF0WkRQBAkymML9nUCumEuzVQVzeo1ZMe7VGcCPlyowpRt/VoD5T4iPwM6ihplFoqJZlTy6DnleD0EDWt/4eVpOspVbi29gR3q4/7YaUQSmc3HESRzOTH61lVqoj02UGtdR8ecVmUqLDAr7+dF33js6gsNLGvK2BnyG790QF8RF6+rWL8crxB7aPpWdKFB+tzeF0hXs1l1cfLMRir25W/elanRIjfF7i43iZBZvD2WAGNcAVfVPRakTQZVHrY9QMrNrlfX7lYv3p2g7EvsigBvXu7jWfXkNU2yi+vOZLyo+VN7xxt6lqo8SDi30yNpeZi9UAdaAE+DxIE51MeLjFfysBaibTliKLX8p71KXVabnuq+tIuSSFb274pt7mRQCM/yMc2wT7Ai/bv16mAiorwwJrBUDnCR6pQy2EwNjGKAPUkstKa0rOxYQFxzz6t5O6oQAv/Lzf30NxWYnZRmwTDRLrY9BpmdlVz+788qCbD0qtSDMyqMPiwhD1lDEMBFqdFl20joqyUL9nUGMuwU4rCFBDk2U+fJFBrSgKluLzMqgDuAZ1LWMbIyN+N4K98/ZydHUuTHgWlj8H1YFdEtZaaiUmye7SimVfSR2UitPu5PRu9xveFx0s4j9d/sPi5/dDxclGVwQEMxmg9rISs43YiOCYVNca1imOfm2jeXfVYaoDPCOi1Gwj1sWaec0hhOC+MRkcOFXJ0L8uY9bb6/jfOteC1UuyThEZGtKi+uMZiUayC0w+Xc6fUxO8TW8k+JQYGcqoLgl8vy0/qLJmdDHqz2JAlPmodC+D2pfB1vD4cG744QZslTa+uPoL7JYGJiAaDYz+TcBlUQtrCWazIbACfB6ii29DRITZf+/hOk0Sfd0gsT76CD2zF8wmql0Un1/5ef2dsfURcPUb8GOQlPowFVJZbgisGyxdJsKhZc3/Obedfb9GpkTKEh+Sy84EqJsRQPWHdnHh3D4inXlb89mdX+bv4bikyGRzuf70+YamaOnbNpoXF+/HYguA1WnSxacZGdSBMH9pjD5OT1mRHsx+DlDbyqjWRPp3DJ7S82p1HmOtP/Emok2E1+cmtkobTrszqGpQ1xr++HAi0yJZ/PhilPTLIKYDbP3I38NqlLXUSnRcFQRQBnVzGyVWnqrk08mfYi4wU7C3FKLToCTH8wMMADJA7WXFZnuzshL8SQjBvZdlcKTQxJKsk/4eTqPUrA/v3gC4ql8qix8bzcPjulBksvHH7/c0Gayudios3XuKMd2T0Ic0/8csI9FImcV+psO6LxwpUgMJHRsp8QEwY0Aax8usbMwJgoBPDV1sAAWoTYUudRS2lKjLhH2VQV0rqVcS13x6DSe2nmD+XY00Tew5HarK4XCmT8fXIJsZFCd2e+tskqhLTiUiws8Z1DVNEv2dQV0rIjGCOT/PISQ0hE8mfVJ/1n+H4dBrBvz0W98P0F2mAsqK9YH1/o3rBCF6OL3Xvf0UBTa8A//sBCd3AeoyWplBLbmqLIhKfNR6cGxnYsN1PLcgy3/9AtxQ0oIAtUYInp7WkxNlVt5bfdjDI5MkFzQjQO1Og0R/0MfpKTmp9XuJD429AmeI98qZ+FR4HKSPhL3z6306MiUSW4UNmxevuS1F6jXduTWogyNArQvXMe75cRzfdJzdX+xWs6hXvnBOAkKgsZZaiYy2unS97Ssx6TGExYW5FaC2Vdr4bNpnVJ6sJKlPknqdE9d661C7FDkTQjwmhNgjhNgthPhcCGEQQnwohDgihNhe86d/zbZCCPGqEOKQEGKnEGKgV7+CAFfazGVz/japVxs6xIfz5srDAT25LjXbfZJV0zU5kscmdmXpry9zKVi9LbeEIpOtReU94GyjxMM+bJR4tNCEQachObLxgOjEnsmE67V8F0TLOmtLfARGgDowa1DX1e2qboz9y1h2fbaLtS+srX8jjRZGPQ6/vODbwTXEUky1JgoQgZWB6iGG1LZERJipPOWnAF/NcsRAyaCuFdsxlpt+uglrmZVPJn9y5sbOOcb/EfK3wN4ffT9Ad5gKKC0IsCafQtSU+Vji+j4VJ+HTmbDzC0jpDwVqyYPIVJlBLbmu5EwGdfAEqKMMOh6d0JX1h4tZttf9Zby+1pIMaoAhHeOY1CuZNzOz3S6HJ0ktZil1v8RHAM1f6qOP1VOUrwGTfxuQap0VKPpWEqCGRst8GFPU5pSVJ703vz7ToDPIalDX6ndzP9r0b8Oyp5bhiOutJn+sf8Pfw2qQtdSKMdLs0vW2rwghSB3keqPEans1X878kpPbTzLzy5l0mtCJ8vxylLhOrbYOdZMBaiFEGvAwMEhRlN6AFrih5uknFEXpX/Nne81jU4AuNX/uAd70+KiDSInJ+xm+3qDVCO4e1YkdeaVsPBK4GbK+yKA+3/nB6ofqCVb/e+kBdFrBmG4t+0DMSFR/WfqyUWJOkYn0+Ag0TdRmC9eHMLl3GxbsOuHzhpq788s4Ve7+RZA+riZAfSoQAtSBWYP6fKN+P4pes3qx9MmlHFhwoP6Nes+E01noq/w7kQbAXIwNdTIdUBmoHhLWtq1ag9pfAWpzCUpYTEDUoD5fm/5tuOG7Gyg+WMxX13114c1VfThc/SYseNzvF32NMhVScioksALU4F4d6r3z4a1RkDYI7vhZbbJYcgRQLwKtJVYc1uY1iJEuLmdrUAdXssfsoe3plBjBX3/ai73a6e/hNMhe7aTC6mhxMs2TU3pQ5XDy7yUHPTQySXJRa8ygjtdTkKOgmAr8VkJPcSroMEFYjF/O7xVdJ8Px7fVer0SmqKVMvLnCy1KsJk+cef8FSQ3qWkIjuPylyynLLWP9K+th3NOw7o2ALZ9nLbUSEWYKqAxqUBslnt59usl5sKIozL97Ptk/Z3PFW1fQdVpXotpGYTfZcYR3uLgzqIEQIEwIEQKEA43lpE8H/qeo1gMxQoiUFo4zKDmqnZRbHV6tkexNMy9pS3yEnrdWBuabX1EUSsx2v76+XZMj+fXErix5bDQ/P3o2WL3mUBEjOye0uDlmWkwYoSEask/7Lhh1pNDUaIPEumYMSKPC6mDFPt9lCJVb7dz78Rbu/2SL29n92ggtGp0mMDKoK10MUJdaERpBaGSoDwZ1ISEE09+fTpv+bZg3ex4Fe+tZbqgNgZgOhAZEgLoIW03HcX8F9b1JG27E6dRSVeinuoSWYmzOSJwOZ0Be4HUc15HJr07myLIj7Phox4UbtB8Gva+Fn57w/eBcoagXpGWF+sBbAZA+CvK3QlUjv4+qKuD7B2Hx/8ENn8LYp0Crg7iOZ2rlnbkI9GKWktR6lFps6EM0GHTBVZVQp9Xw1JQeHC4w8fnGBhq4BoASs7qcPc7Ysrl0x4QI5gzrwNxNuRw4JVdISD7UnCaJgZ5BHaenyqxRVylW+efnqaqiCoPBiogIngzfJunCoOMoYkr3XPBUbQa1N1d4XVDiw+zeezcQdBzXka5XdGX1X1djcrZRy+etesnfw6qXtdRKWGhFwAWoUwel4nQ4ObXzVKPbLX96OTs+2sGYP41h4F1qUYqotmoSlsnRptVmUIc0tYGiKPlCiBeBXMACLFYUZbEQYjbwvBDij8Ay4ElFUaqANCCvziGO1Tx2Th67EOIe1AxrkpOTyczM9MCXE1jKq9TgWWH+UTIz3SyEXlkZEK/JZakK8/YX8PH85bSLDKyLgyqHgs3hpOREHpmZjf+An89br+9AHQwYoHDSFEak3uSRcySFwcb9uWQavR8EdioKRwvNdDPaXBq7U1GIDhW8u2QHYUW+6Vj/7s4qTpQ5uKO7wsqVK93a12QyERIdQvaObEIym/z486ohhbnsyjqCJafxDsiHdh9CG6Fl5S/ufa2e1uF3HSi6v4gPLv+AAW8MQBd57s2X3jY9Slm+3z+3Ek+vJqxMgzZCyy+rf/HrWDyt9nOrvzWcguy9fnmtLy09wdo1ah3i3IJcbJmB10Fa6aIQ1TuKBY8soCC2AF30ue9Vje4yBmU/yuGv/kZh4qVnHg+E37tah5nh1Qp2u468wjy/j+d8/cI7cWz+GxQlDLnguaiyffTY+29KY3pzqNdfqc42Q3YmADElZaTnbGd7ZiZFBeqNrJULVhLdK9qj4wuE76HkWWVmOzFhOoRofFVXIJrQI4mhHeN4eelBrh6Q1uKkBW8orqm3GueBcnmPjO/CvK3H+OvCvXx4+4WfEZLkFW4EqO0WOw6LIygC1ABOfRxacyEYfF9mw1piVQPUkfE+P7dXxXQg9NSFSR6+yKC+sMRHiVobO8hMfGEib/R+g5V/WsnUv/0O3hgKQ++DmHb+HtoZjioHDouD0JDygGqSCJB6ydlGiWlD0urdZtMbm1j919UMvHsgo/9v9JnHawPUpZXxxBS3zr4PTUZohBCxqFnRHYFS4CshxBzgKeAkoAfeAX4H/NnVEyuK8k7NfgwaNEgZM2aMm0MPfIdOV8CKXxjcrydj+tf/5mtIZmYmgfCa9B9i46e/LWebJY6br+zv7+GcI7/UAkuXc0mf7owZ3N6tfQPl9XVF3+Nb2Z1f5pPx5hWbcfy8gtEDujNmiGuv6XWmLD5al0P/IcO9Xg980e4TrDm+lYfHdebOy7u5vX9mZiZx7eKI1Eb6//u/rpKhY6c1Oakuea8ES6LF/+MFeqb15KNxH3HqtVPMXjAbTd0GoJU/UFJqZpC/x7nxIEfWx2FMMAbEa+ZJtZ9bBT9EE6t1+P7rUxRYZaZrt0v5hWwGjBxAtzHu/xz6Qq/Pe/H2gLcxf29m+vvTL9ygywf0/vIWmHoPRKgXXwHxe6H4MNXb1JUVfYf2pc+YPv4dz/l01xFbehTqvk7VdrUG/YEPYPq/COtxJRcsmyvpCB+8zZgxYzgZc5LdT+6ma0pXeozp4dHhBcT3UPIotddI4AV2XSFqGghe+dpq3liRzZNTuvt7SBc4E6D2wGrE2Ag9D43rwvML97LqYAGjugRO3U+plbJbwekAnWsrumozWANxBVhd+nj159GuiUFrKlQbFfuYpdhCWJgVe0wrC1BHphCae/SCh8PiwtCEaLybQV1T4iNYa1DXSuiewCX3XsLmtzYz5FdDSBh0J2T+Da4OnHrUtT2cQkVZwGVQR7WLIjwxvMFGiXu/3cvCXy2k65VdmfbGtHNu0EemqTdSigsiSK88rX4G6lrXimFXUmInAEcURSlQFMUOzAOGK4pyoqaMRxXwAVB7qzwfqHv7pG3NYxedYpOaGemJSZ+/xITruWFIO37YfpzjpfU0nfKjElNtZ/fgfX1dkZFoJK/Y7JM6z0cK1dIX6QmulfgAuHpAGvZqhQW7XCv231ynK6w8NW8XfdKieWh8F/d2VhT47wQ01TYikiL8X+LDbgW7BQwxTW5qKbEETKmK9iPbM+2NaWQvzmbJ785rlhaVgt4WGCU+TKawVll/upZdxIDFDyU+7GYQGswlaj3VQL7AS+qdxKWPX8r2D7Zz9JcLL0RoPwz6XAcLf+P7wTXGVIRDq16sBFyJD1DrUB9ccrYmZlE2vD8Jjm2G+1ZBjyvr3y+6LZgKwW71yTJaqfUotdiCrv50XX3aRnPNgDTeX3OEvGKzv4dzAU8GqAFuGd6BdnFhPL9gL9XOwG2y7mu1c1hTlay971HWUjXA5+IKizMZrEGSQW1zRqm/O/3AUmLBYKgiJK6V3WiKSiW06sLXVGgExjZG79agLrIQGhWKVqdVrwWr7aA3eu183jTmmTHownUs+e0SGPEwHFwMp/f6e1hnWEutCOEkxFkO4Qn+Hs45ahsl1hegzl2Ty7zZ80gbksbML2aemwxGTaa/gPJ8E8S0P9PfpTVxJUCdCwwTQoQLNXw/HthbW1e65rGrgd012/8A3CJUw4AyRVG8G7kKULV13VraeMTf7hzZEQV4f3Vg/QDUNs4J9te3KRmJETgVOFrk/QubnCI1cNvRjQB1r9QouiQZ+Xar9+5DKYrCk9/swmyr5t+z+qHTulluRggwFRBaVRAYAeraBokuTKitpdaAapY28K6BDHloCOv/tZ7tH20/+0RkaoDUoC6msjwA6/d6ULUuFq3NDw1JzGqmx5kMpABrkni+0f83mugO0fx4349U2+q5wTfuaTi5E7K+9/3gGmIqwC7UsheB9HN/RlIP9YKq6BBs+RDemwh9b4A530Bkm4b302jVIHVpLhGJEQitoOK4DFBLTQvmDOpav5nUDQG88LNvSqG5ozbZIzbCM69xaIiW303uzr6TFXyz5ZhHjtkaLNt7ms835pK5v54+HlLzNaNBIgT2DXY4G6C22ozqNYMfqCU+qtDHB1b2aYtFpTV4vWJMMXq1P4alyHL25kjtezcIy1cBRCRFMOr3ozgw/wBH1hXDiEdhmcvFFLzOWmolLMxKdUik2ispwKQOSqVgTwF289lSnwV7C/j8ys+JahfF7B9no6tn7qPVazEmGyk/Vg7xGa2yDnWTUR5FUTYAXwNbgV01+7wDfCqE2FXzWALwXM0uC4HDwCHgXeABzw87OJzN8A3uiXXb2HCu6pfK5xtzKbM0Xi/Xl87eAAju17cpGYnqndXDBd5vKJVTaCZcryXJjYZ8QgiuHpDG5qMl5HopiP7FpjyW7zvN7yZ3p3NSZPMOEtMBg/XUmQC1uw0WPcpUABGu3c21llgDJoO61uUvXU7HcR358Z4fOba+5gI0KiVAAtRFVJToAjO45yFKWDw6yusPunqTpRjC4zAXBkkGUoSeqa9PpXBvIWtfXHvhBrowmP4GLHzCbxlKFzAVUOVU68sF5CoAIaDzePh4Bmx6D27/CYbe49oFVmw6lBxRs5SSvZulJLUeZZbgD1CnxoRx16iO/LDjONvzSv09nHPUrvb0ZLLHtD4pDGwfw4uL98uM4Rq1KxTXZAfI75rWohkNEiHw5y/aCC0hhhBMpjC/BagtRWYMhioMya0tQN3wis/IlEiv16A+p/50EJb3qGvYo8OIbh/N4scXowy6E07ugtz1/h4WoAaojUYTiiGwsqdrpQ5KRXEqnNx+EoCK4xV8OvlTtHotc36e02gSUFTbKCryKyAuA4ovwgA1gKIozyiK0l1RlN6KotysKEqVoijjFEXpU/PYHEVRKmu2VRRFeVBRlIya5zd790sIXCXm4C/xUevagW0x2arZnV/m76GcUWq+OEp81GYzZ/siQF1kokN8hNvNiKb3V4v9f7/d81nUR4tM/OXHLEZ0jue24enNP1BsB8Isp4hIjsBhcWCr9GNzN1OBy/WwLCWWgAu2anVaZn45k6i2UcydMZfy/PJGMxJ8ylJMebEuMIN7HiKMiUREmDEV+HglQM1k2lxkRmhEwN04qU/XaV3pcW0PfvnLLxRn15N13n4o9L0+cEp9mAqosqs34QJ2FcAlt8PAW+CuZZDoRg3yuI5QrK7EMqbIALXkmhKzrVXM8+4f05kEo57nF2T59wb5eYpNVUQZQtxfmdYIIQR/mNaT0xVVvPNL62zi5K7DNb+v1x6SAWqPaqUZ1ELUlJsoDwOzf+bWtpJiqqs1GBJ836DRq4xt0NvKoPrCm2fGFKPXa1Cfee/VJH0EsxBDCOP/Np6T206y84sDMPb3sPTZs2Xg/MhaaiUiwowSHpglalIHnW2UaC2z8umUT7EUW7hp4U3Edmz8My2qbVRNBnWnizODWmq+UrMNfYiGMJ3W30NpsZSaQERBRZWfR3JW7Q2AYM+saUpEaAip0QayfRCMyik0kd6MSVvb2HCGdIzj2+35Hr3wqnYqPP7lDrQawQsz+6HRtGAZVEx7DNbTRCSpAX+/lvmoLfHhAmtp4GVQgzq5v+H7G7BV2pg7Yy52XSKhVcV+n5Qo5iJKT2sCLqjvSZrYZMLDLb5/D5vPZlAbYg1oPBjQ8KbJr0xGo9Ow8MGF9X8+jf0D5G4g3BQAy9FNhZit6mdUIP7cA9D2ErjstxDiZtAwtuOZWnmRKZGyBrXUJKu9GqvdSXRY8M/zjKEhPDaxK5tySvh5z0l/D+eMYrOdeKPrq+ZcdUmHWKb1SeGdXw5zqtzq8eMHmyOFlWgE5BSZOVYSeLXIg1YrzaAGMLYxUlas91sGtaO0CKvVUG+ZgaAWoseuiwTT6QueMrYxYi4wU+2lvk/1lvgIcr1v6E3q4FSW/X4Z9s7XgKWUmNJd/h5WTQa1GREVmCsAIlMjMaYYyVuTx9wZcynIKuD6edeTMvCCNuMX7ts2Ug1Qx2VAceu7CRwcV5dBqthkIy5c73Y2aiBKrCn5EFgBahuRoZ7N+ghUGUlGr5f4cFQ7yS02u9Ugsa4ZA9I4XGBilwez7N/+JZvNR0v48/RepMa0cDIZk36mxAf4OUBdedqlALWjyoHD4gjYTMqk3knM+GQGxzcdZ/6vMlEEUFXu30GZiqksC23VGdS6+BQ1g9rX72HL2RrUgZ59VFdUWhTjnhvH/7P333GS3HedP/6szqk6TJ7p2bzalSVZwQqWrOCVZIwxYJOxv4AN3CEO24Axdz7CHdwdcD/CYcMdxmAwYJLBxjYOGNuyrZUsS7K1ynElbY4z02m6u6o6f35/VPfs7O7sTIfq7umqz/Px0EO7PdVVtTXVXe/P6/P6vN6HvnyI5z7x3MUbeIMwezVBYxP0c9aW0LQQPtV3UWOUkWdsB2SPAtJBLWmPVqycXYwIP3rDFi6bivC7//4ilVpj2KcDmHGE/YrK+69vupx6Q/CHX9l82duDpFVf33W5KZQ89MomWG1mF4xsWw3HVzZPG3jDXjz+zZdJeyGRmQi5Rc/QBOpGIU25GrSFjnEhZf845C9ukdZq4qwt9Ke+Pi/iQ89AcLQd1GA2l3zjH76RwqkCD//Rt2HXXaiF4bt6Ww5qV3yd/ihDZu6GOZ77xHMcve8ob/mrt7DrO3a19b7ofJRSrkQlsFU6qCWdkbVBY5cWqt+D3+Niqbh5BOqcXiVuUVOXzc7OiTCHlvqbm3wqZ1BrCHaMdydQv/mqWXxuF595whqR57nTy3zw3pf47lfP8n3XJnvfYWLbJnJQp9oSqEs503W0aZ2UwOVvvZw7f+tOnvmHZzAa8TULvoGip9H1wKYV9a3APztPODwMB3UWgmOmQL3JGyReyI3vvpHZ62f58nu/TGl5DTdfYgdBYxP0c9aWKOYD9pxgSWw/L+JDW9JobBKRTrI5aTXDjgdHP+IDwON28WtvfhVH0zpfePr0sE8HgLRW6VsU4dbxEO983TY++dhJnj895MnrIXIqZ1CtC954xQyTql/mUFtJFxEfozLBHpmNkD4FaMOZ0GgUc1Tr3Y0JNzsV3zjkLx6vqrNmxFo/Vng16g2zcd95Duq45ccZBttu38bl3385D/7ug5Q9swRKC8M+JUq5EmrUwBXbxAL1jWbMx92/ezfX/MQ1bb8vmjRjd/IF1TQPVYaoafQBKVD3kZxesbTpyDBRFIVJ1b/pHNR2ub4bsWsqQrFcY7GP17/VwKVbB3Us5OXuV03x+adOU6v3JjqUqnV+6Z+fJBHy8dvfd5U1s/ebKuJjsa0M6lK2KVBv8riK6++5HgCtEluz4BsY1RLUq1QqPnsKfE0CyXnTQd0nh8clWdUkcRSWx67G5XbxPX/2PWiLGl//9a9fvMHYToLGJlh2r6XIZ/32nGBJbIfcMWg0zEGggOKCdFFLLs25XiP2MSPcsWcSt0sZSF+Rdsj2UaAGeM+dlxELevnfX3xhU2VvD5LDzfp652SY1+0a56FDacdeC8vpUOTT0/rITLBHZiKkT7kRQ3JQY2SpYk+B2nRQXzxJ2HJQF89a//1cypVArMo/N7Ijn0G9mjf83huol+s8+bncpqinS7kSsbESSps9n4bBTe+5ibd//u3c+v5bO3pfdL4pUJ8qNs0f9or5kAJ1H8no/S36Bs3UphOoq7ZonNMOuybNB2Y/BzTHmrls23so3L7vuiSpYoX7X+qtmPrDrxzkpYUiv/dDV5Ow6jMUmcZdNwjHzEHB8DOoN+4qPAoOaoDQRAiX10VBV6EwRBeqkaHujQHKphf1e8E3NdvMoB6wwGGYDupRGuCtZu6GOW589408+qePcurbF0ykjO3cNA7qXMprz/vXF4ZADApnzg0CZcyHZB1yzYgPO2RQt3C7FKZVP2fWWskxYIQQZLSKdXXWGsRCXn7hrst48JUU+3usDdvlZFan3tg8AvCRZg+ZHRNhbt01wVKhzMuDfn7blS4c1KMywR6ZiaDrzSaJQ5jQUCp56q7IwI87CEyB+tIO6n7UJq0Gnecc1BlbZFC3GL9snBvffSMH/imFrzB8gbqcKxOJGhDevAJ1MBFkz/fs6diItyJQt3KobRbzIQXqPpKzUcQHsOkc1KZD3T7Xdz12Tpoz2P1slHgkpRH2uZnsoVnOvr2TTKl+/tPfP8avf+YZTuWMjvfxyOE0f/ngEX7stVu5c6+FDxVFoRSYwmOcxh/1DzmDeqmtB6aRbRYzm9xNqbgU1DmVQiEy3IgPPU3NFQM2/zXrBcUboFb3UkkN2FWjZxDB+Eg6qFvc9dt3oc6qfOFnv3B+vMTYJoj4aDRAT7O86Lbv/Zswc6j7uYx2s6IoyhZFUe5TFOV5RVGeUxTlFy/4+S8riiIURZlo/l1RFOX/KoryiqIoTyuK8prhnPnwWG5GfPRTQB0GM7EAZ3LDF6i1Sp1KvcF4n6/vj9+8je3jIf73v73Q8wq7jfjog0e47ffu4+8ePtrX43TCkZRGNOBhLOzjdbvHAfjmKzLmwxK6aJI4ShEf9boH4fJDKTfw47uqyzQ80YEfdxCU/eNrGmrC0+Z4ux+1yUqDzrHVER/2cVAD3PHf76BYHidQWYJGfxpNtouZQa1BZONIzVFDTTZr6FMFGN8JGSlQS9qg0RC2iviApkC9iTKozcYu9rm+6zETDRDyuTnUR8fF0bTG9olwT3Eafo+bf333rfzIDVv4xIET7PuD+zoSqgulKr/8iafYNhbi17/7VV2fx6UoBaYhd5zwdHjw8Qir0ZZsk0HdIpqMspwJQ2GIuZp6hqowH9p2jvgAKFVV6rkBZ7wZGWpKlHq5PpIOagB/1M+b/vhNnH3yLN/6f98694PYFvzlDNQqwzs5Iwt+FS1dJTC2+T/zXZHYDtkjTnVQ14BfFkJcAdwMvFtRlCvAFK+BNwLHV23/XcBlzf/uAT482NMdPjmjGfFhIwc1wGw8yNn88AXqrGZe337X0j6Pi1/5rlfx8mKRfz5woi/HaDQE//uLL/BbX3gegKdOWtewu1eOpDR2TEZQFIX5RIjt4yEpUFuFzR3UADV3wuxdM2DcjQLCFxv4cQfBpSI+3F43oYlQfxzUGXMsvDJBond2744CofEQid0zlCrB4a6oxTR5hQLapnZQd4s36CU4HlzloJYRH5I2yJeqNIS9XB+TkQAZrUK1z+6HdqjVG+RLNVs51NdDURR2TUb6GvFxNKWxvcsGiauZiwf5ne9/Nfv/y50dC9X/8/PPc2bZ4AM/ei0hn/UdtkuBKcgdIzwVHp6DulE3l3W1E/ExIhnUYM7mZheDQ3dQV5oNXUbhmvVCRUQRhcE7qI2SObAbFQfSWrzqB1/FZW++jPv++30sn2iKGB6fOWBZ7o940hbNiSsja9jXQT22AzJHiEybA28nOaiFEGeEEI83/1wAXgBaHYA/CLwfWL2O+63A3wqTR4C4oiizgzznYZPVq3jdCiGfe9inYimz0QCnc8bQc4jTTYF6EHGE33nlNDdtH+OD9760IoxbRaXW4H2feJKPPHCYd9yyjdsvm+Dg2c3z3XIkpbFzVX+X1+2e4FuHM313kzuCDgTqRr1hPl9HTKCuCHXgAnWj3sCraAibNPG7kLJ/4pI9cyKzkQFFfNgrg7qFmlTJLcche3So51HK6QS8xbYMYaNIdD5qCtTju2znoLZeAZIAZlEN2CqCYlI1ox9SxTKzseE+3Fu5hE5xUIMZ83HgaLYv+67WG5zIGnz31daNfZNNofpdd+7mT+97hU8cOMEnDpzgR27Ywrvu3E0yfv499OXnzvIvj53kPXfu5jVb+zOjXApMQfYY4alrSL80nK7YLZck7o2/G0bJQa0mVU4+6kfkX8KClpbdYWQoVcIobgV/tPuomlGg5oqjGAO+h40sht4UqEfUQQ3mhN+bP/RmPnTFh/jSL36JH/30jwJgBGcIZg6bxd4w0FM0guPUy3X7TrAkdsDLX8bt659LaRRQFGU7cB3wLUVR3gqcEkI8dcEKpiSwesbkZPO182YBFUW5B9NhzfT0NPv37+/fiQ+YF14pE3TD/fff3/U+isXiprsmWqpKudbg3+7dT8Q3tCcmTy3VADh68Fn2L7zQ1T46ub7fNVvnt49VuPP3v8pPX+Xj6sneh6FGTfAnT5R4Lt3gBy/zcmd0icUzVR5eqPK1r9+H2zW86wtQqQvTnFFYXLlO8XKNQrnG33z+PnbHR3PyZbN8rm4rpHjkseeoeY9tuG11uQoCTmVObYpzX49ischjLz4GQCbn5ui395M6MrhVzNV8lelAmaVihdOb/Fp1g17108id4oH77oMLVg5X/VVOv3Ta8nvk5LdOAvD4C4/jOeHhltwZHn/yRcqBIY1H+0RRKZJJRSk+/CXOHq0N7Tyq+UUqdR+PPPjQ0M6hn1QDVU6/eJqHD3q5/swLPGTx/TrM73gpUPeJrD6YZXODpCVQLxU2gUBtw87uG7FrMsJnnzyNUakTtNhNdDJrUG8ISxzUF9KOUL1UKPOrn36GK+ei/MLdl1l+Di3MiI/nCU+9juMPHt/4Df1Aay9/GszlSZ6gB49/839VR+ejLKfCay6ZGxh6BsMIEogHeoqqGQXqvgSeagYhxGD+rY0GlJYpFsx7cVQcSJcivj3O63/z9XztV77Gwc8fZO/37sUIzkLmyPBOSlui7jXdNLZ1UCe2r7hq+uVS2uwoihIBPgW8FzP249cw4z26QgjxEeAjADfccIPYt29f7ye5SfjEqceYqhTZt+/1Xe9j//79bLZrYjxzho+/+Dg7rnoNV84Nbwl96rGT8NhTvOH2m9nWZf3XyfXdB9xw/TK//Mkn+cBjRX70hil+/XteRTTQXS2/VCjzU3/zbV7MCv7gh67mh2/YAkA6epIvHX2K7a++caXJ+LB48Wwe7v0Gd914FfuumQPgaq3Cnz55L6XoVvbt61/N2zdOP8GDzxW5bdifq3oV7i9z291vBtfGi8LTL6V5iIe4+uaruXrf1QM4we5pfa4OjB8AZYKrdkzDDfsGdvzMKxlSgTKR3Vewc9i/5z6wf/9+XP4w+266GsLj5/0sd2WOI18/Yvlz4+tf/TqHXYe5+813o7gUeFDnlru+G3yja/hYC9c3XWTujXLHuJ/Lh3jvvOj6V+qusU33/LeKwjUFXvzMi9zyxh+Ax36efTe/BgLWZcYPs3aSER99YiXXzU4RH6sE6mFzzqFun+u7Ea0i+3DK+gH90dS5DuP9IrlO9Md//uRTFMs1/uhHr8Xn6d/X0uqIDz2l0xjG8sriYtvLjUq50ki4p8HMoNa0EBjLw8vx1TNoWtD2+dMAhCYI+DXK+QF9H5dy4Iugp83f7ShHfLS45X23MHnlJP/+nn+nolWaAvUQc9y0FFUlDtg4Q70Z8QGgzqqOivgAUBTFiylO/4MQ4tPALmAH8JSiKEeBeeBxRVFmgFPAllVvn2++5hhyetV2+dNgNkkEht4oMTvAiI8Wr56P8fmfv4137dvFJx87wZs++ADfeLnzuKojKY0f/PBDHFrU+Mt33LAiTgPsnTZ7Uby0CWI+jixdXF+PhX1cMRvlm6+MqHPy3t9ALbw87LOA0jIEYm2J03CuSd0o1S+RmQjFfGDgER9G1iAYLOGJ2y+CYoVocs2Yj8hshOLZouURTEbGIDgWNMXpig5CgNd+tV40GSWbjVE988rQzqFWqhH0Fqh67Hv/Ruej6Es6tUoDxnYOd/xiMVKg7hN2jvjYFAL1gBq7bCZ2TZnF7eEl67OTj6bNfW7vo0DdYi2h+v6Xlnj/d+7lsuagol8YwWnIHic8FQZxLg9soGhLbXcULmVLI+OkVJMqQrhMB2jx7HBOQk9TXPaNzDXrBVd0inBYH1yzTyMLocTKZ2aUIz5auL1uvufPv4fl48vc/z/vxwjODFmgXqIiTPeDbSM+wpNQr0Bp2XEOasVc6vBR4AUhxAcAhBDPCCGmhBDbhRDbMWM8XiOEOAt8DniHYnIzsCyEGG7XoQGT06u2XCk314w4OzPkRokZvYLXrRAZ8Cotv8fN+990OZ9+160EfW5+4qPf5tc+8wzFcnvLwZ88keMHP/wQxXKNj99zM3defv6qtN1TERQFDi4MX6A+fAkDyK27x3nsWBajUh/GafWGOoe/vAnE9S4aJMJorQCLzETIZ/3m2GGAlLIlAoEy3oQ983sBiM6t2chPnVVpVBuWjxHPa9DZyp+24WpPNamSzcYQQ1yRWMqViER0Gr7xjTceUaLz5nihcLrQFKjtk0MtBeo+cS6Cwj4C6kTE/LdsBoE615wAsOPA5VJsHw+jKPSlUeLRlIbq9zA+QBfNaqH6/779On761h19P2bNo4JooI6bA4KhNEpsNkJrh1FzUAOUGRteo0Q9TSHnta/7dBXuxDShkDG4e9jIQnAMPWU6kOxyjbfeupXr/uN1PPyBh8mk45AdbsRHuWZO0tl2kkVRzJiPzJFzLqXGcBvFDZBbgZ8A7lIU5cnmf29eZ/svAoeBV4C/AN41gHPcVCwbVWJB+9TRLSYifjwuhTMbNI7uN5lihUTIN7RIrGu3xPm3X7ide+7Yyce/fZzv/OADPPTK+k7R+w4u8vaPPELI5+Zf/tMtXLslftE2QZ+bbWMhXtoEAvWRlMZ01E/4gkmAW3dPUKk3OHAsM6Qz64HoLP7yJjjvDgXqUXRQq7Mq2UXP4B3UGdNB7ZtsL5JwJInOru2gnulPE2c9rZ+rnY1MR/fuKNFyULuLw2s6XsqVCId1GkH7TrC0BOr8qWajxLR0UEs2IKNVcLsUooHNnx3bLn6Pm1jQy1Jx+AL1Ssa3jSJUNiLgdTOfCHKoDw7qI2mdbROhoQxSkvEgb7lmDtcgGtkoCsS3ElNzABQXhuDe6yCDupQtjYyTUp0zhTW9GofCkHKojQz5tGdkrlkveCfnTAf1oARq3Sym9bROIB7A1cconkFz12/dhagLTj3lgdxxaAzJ0aYtoZdNl52t7+FmDrU6q9KoNVZEA7sjhHhQCKEIIa4WQlzb/O+LF2yzXQiRav5ZCCHeLYTYJYR4tRDiwHDOfHjk9IqtViK2cLsUpqMBzi4P30E9yHiPtQh43fzam1/Fv/ynW/B5XPx/f/ktfuOzz6Kt4ab+5IET/MePHWDnZJhPv+t17FwnX3rPtMrBTRDxcXipuGZ83k07xvC6ldGM+VDn8FU2wXk7wEEdngmTOe1CDNhBbWR0AoEyvik7C9TJNfvmRGbN7xWrV3gZGePc5EjT9GFHovNRisUwrrpmRpkMAdNBraFE7Hv/rgjUJ/Mwtks6qCUbk9WrJEJe2zXqmlL9m8JBndWreN0KYYubBW52dk1GONwnB3U/GiRuShLbCPvNwnooDuriIoQn2tp0lBzUnoAHT9RDUVOH1yhRT5NbcNtb3Gvin00SDg/SQZ2B0BhGyhipwV07hKfDeIIejDTmgGENR81A0FLomjl4sYtDfU0S2yF7pG+DQIk9qNQaaJW6bVfKzcQCnF4esoNaG75A3eL6bWN88Rdu56dv3cHfPXKM7/rjb/DtI6ZLVwjBh+57hf/yL09z884x/umem5lS13/O751ROZrWKVWHG6FxJKWxY+JiIT3k83DdlgQPHRqsM9YSorMjGfGhp3RcHhf+qL+PJ2UtrYgPUVgc6HEr2TwAwUl7iqiAGfGxxopPddY03BTPWixQr4740DMQjFu6/82CP+rHHfRg1Mchd2wo59ByUCux6aEcfxCcJ1CP74K0FKglG5DTK7aK92gxuUkE6tb1tdsEwEbsnIhweEmjYeGS6Eqtwcms3tcGiZuK+DaCmIXecCI+UtDmjK6RNUZKbPVP+FnOhocmUAs9S3bBZW9xr0kgOU84rA9uFYCeMSM+0rot8qdXoygK6pxKJVVp5rgNKeZDW6JYCIICgdjofO47ptkosTUIdFqjREl75AxzpVzMhrU0wGxs+A7qrFbZVCsRgz43v/G9V/BPP3MzAD/6kYf5X59/nt/83HP8wZcP8pZr5vjrn7wJNbDxpMWeaZV6Q/Slb0u7ZLUKWb3KzkvU16/bPc4zp5ZZbsYWjgzq3MhGfATHgiM1dlRnVXQ9CMXBTmTUcilKpQAeG60Evwh17pJNEqFPER8XZlDbFN+Ej4I+DtmjQzl+S6B2J2aHcvxB4Ff9+FSfdFBL2iejVRizYVE9qfo3TcSHHZd9bsSuqTBGtW5pY50TWZ2GwDkO6vhWvJXTKG5lSAL1YlsZ1KIhKC+XR8ZBDeCf9JNZCKzZdKTv1CpQMygZXvvm967CHZ0iGCyhLQ5I3GsW00baGKn8xnaJJqOUU+WmeDqkHDdtiXzOTyAWMLu825XEDsgelQ5qybq0RLt40J613mwswJnlEkIML4M9o1cG2nukXV67c5wvvfd23nHzNv7qm0f424eP8TO37+CPfvRafG3GS+2dMSfAhplDfaTZgHzn5Nr19a27JxACHj68CdzInTCiDurzHKwjQmQmgq4HUco5aDQGdtx6Pk25OlrXqmOic2saanxhHz7VZ2ltUivXqGpVR2RQg2lYymZjQxWoIxEd7+TcUI4/KKLzUQonC6bxrVYGIzfsU7IEKVD3Cbt2Hp+M+FnMl4daUIMZ8WFHh/pG7Grm7R1atO6heaxZQG93ioM6sQ0ld5zwZHhTN0ksF8qIhhgpsdU34WPppGc4TRKNDMIXBxRHOKjx+KjWfdTSA3LVGJmVJomjNsBrB3VOpZJuOaiHIFDXKlDRKGQcEFHTjPiQDmrJeuQMezfDno0FKdcaZIfknq3VG+T0KolNWkuHfB7+51uv4hM/ewv/7+3X8evffUVHvUq2j4fxuhUODlOgbrq3L7VC8dotccI+9+jFfISn8NQKUB+y87sLgXrUJtgjMxEaDTd1V9j89w4IoWWpNkbrWnXMJQRqMJ3rVgrURsaMc3JCBjWYAvXSmfDQBGojaxAOa/im54dy/EERnY+aDmpFaY5f7OGilgJ1n9gMjUf6waTqx6jW0SrDzXSza+OcjWgJ1FbmUB9JmQ0MnBTxQe4Y4akw+uKAmzcIAcX2BOpSznTJj5SDesLP4jEPYhgRH3qauicG2LzB3CrKNZXG8oByCVc1SbRbxAeAmlQpp8qIxJAc1HoKQuOUshX7T7DEt0LhLF6fwB/zSwe1ZE1yKw5q+9XSAHPNZ/vp3HByqFsTAOORzX19b9oxxvde07kLzudxsWMizEtDbJR4JKXhdilsGVv7mel1u7hpxxgPvjJiArXbQ9Ubg8LZ4Z5HNxEfIzbB3lppVCVqGlwGRSlHVVy6CaktCMRA1KGUv+hHkZmIpZPnFzXo1Du7d0cN36SPs8eDiKE5qA0iER3P2MxQjj8oVgRqaOZQD2kFqMVIgboPCCFsnUENDD2HOruJXR/9ZCLiQw14OGRhpt7RlEY04HGO4B/fCrnjhKdCg3dQVzRzltO/cdFXyjYF6hESW/2TfvL5iBnxMehVFnqGmssUqG0v8DWpEkMUByRQGxnqnpi5RHHEBnjtoM6pNMoNKr754Tg+misrjIwxUqsmusLtBXUWlk9Y7lKS2IecbmZQ29VBPRMzP+fDyqHOaOb1tXMtvWda5aVBxWCtwZGUxtaxEF73pYfbt+6e4PCSNvQ88k4p+8eHE+e2GgdEfATiAdw+N6WqOlCBWiktU3fZXKBWFNNFvcZ9HJmNWFqb6GnTEHUu4sPeGdT+CT+ZlEpjaTg9XerLaao1L3hHZwzdDdH5KMWzRRq1hq1yqKVA3Qe0Sp1qXdhS8NsMArWdJwA2QlEUdk1GOGShg/poWmP7RHikmob0RCAKHj9jc43BNZhroS1CeKKtTUfRQe2b8FGreWkoftNxO0j0NFVhRgbYXuBrUnPHUUoDus5GFqNiXle7OqgB8vqY2SRx0BMsWgrCEyPXGLVrxnZA9giRWWtdShL7sNx0+MZsWEsDzDUboZ5ZHo6DuiVQ23G1Z4u90yonMgZauTaU4x9OaRuuTnzdLrMm/OaIuajL/rGhNcReoQOBWghhrgAbsYgPRVGIzEQwSmFzpdWgjlvL0/BEB3a8oRG9dKPE4tl+RnzYPIN60k8uF0PJHx98PQ0o2hJGWR34cQdNdD6KaAjzXh3fBWkpUEsuQbblSrBh0bcZBGo7TwC0w67JiKVdyY+kNOc0SGwR38b4VHHwDmot1Va8B5j5WTBaYqt/wvx+qLonoDDggYueplwz3R5OcVA3/OP4WKY+iMglPYuhm4LKqA3w2kGdawrUS4A3CMWFwZ5A87uhlC05Q6BObIfMEemgllySnF7F7VJQ/Z5hn0pfGI/48bgUzgzJOZt1gEC9p9ko8WUL+7a0S6MhONqGQH35jMpY2Mc3RySHul6t8/ynnkcrR0fKQV3Vq9TL9ZFzUENTLC0EzDphQHgaRRq+2MCONzSiyTX75qizKpVihUqxYslhLor4sHkGtW/CR6Xio6EEYFArPVfhKqUo1+w/wRKdN/+N+ZN56aCWrE9Wt++yuclIS6Ae3lK0rAOWJa7HzskwZ/MlihY4Qsq1OqdzhnMaJLZIbCMez1PVqlQ0a4qPtiguQniqrU1H0UHdEqhL9cTgGyUaGUoVUzh1hMAHEJkgFNLRUwPIUjcyaEXz92tHB3U0aRZ5hVOFZqORAS9L1JYQIdNB7YgJlsQOyB5dcVAPu/GyZPORMyrEg17bru5yuxSmo4GhCdRpBwjUe6dNgXoYOdQLhRJGtb6hQO1yKdyya5yHXkmPzPfgJ3/4k6SP+UfKQd0SCEdxgj0yEyGf9Q9MoK5X63hdGgTjAzneUFFn17yPW9nfVq3wakV8rNx/us0d1K3xoDI9lNg8dyVNWdh/gmVl9efJvHRQS9an1ZHbjg7fRMiHx6WwVByeg3qlcY4Nr287WNko8URGpyFghw0Fp3WJbyUaMqMR9KUBNkrUltqP+BjBDGpP1IPb76ZoRIfgoM5gGEHcfjfeoDO+G1zRKcJhvf9RNbUK1EpoObNkGEUH0kasDEZOtwTqATca0Zao+8ZoVBsjtWqia8Z2QMaM+KgZNcr54fa1kGw+snrVtvEeLWZjgaE1SXSC2WPLWIiA18XBhcEL1EeaKx13tmEAuW33BGfzJQ6nBryqrwvcXjeR6QjLufBwHdSNhtncLtCeCLWSATyC9UtkJkJuyTOwDOpStkQgUMYVjg/keEPlUhEfM2ZNaNUKLyNt4Pa78QQ9ZuRFh/npo4Yv4UNxK2jlCcgdG/jxPY0sNZd9r2+L8xzUoXHz3hp0xGYfkAJ1H7BzxIfLpTAR8Q814mPFoW7D69sOu6fMYteKmI+jTeelEyM+Ql7TiTDQmA9tCSIdOKgV8DdjdUYBRVGIJqMU8pHBO2v0DJoWcIb7tIlnbIZQyOj/PdzMytNH2IG0Ed6gF0/UQ/5UvimeDlqgTlFpuj1GaVKqaxLbIXsUddZ0f8iYD8mFLOtV4jafbJyNBzmbH1KTRL2C6vfg89h3KOh2KVw2pfLSEATqlti8Y3Lj+vrWEcuhVpMqy6nQ4FfKraa8DL4IuNuLABp1B3V20TOwpthG1iAYLOFS7RtBsUI0ueZES6s2scpBbWQMQuMhc0VQpWg2i7ZxAz/FraDOqiwXEkNxUPvIUfPa//4NjgXxBDymQK0oML4T0q8M+7R6xr5VyRCxc8QHmDnUm0Kgtrmz5lJsHQvjdimWNEo8mm4W0I6L+NhOALPQG7hA3UEGdSAeQHGN1vJmNamSXQoNQaBOU1z2OcN92sQ7PUc4rA9AoDaz8i7K0LMZ/nE/xdNF00GdHXzER6XmoCafrYiPGfPZIxslSi4kZ9i/GfZszIz4GEa0Q0arOMLosWda5eAQIj6OpDSCXjfT6sYi1NbxEPOJ4OgI1HMq2TOBwa+UW42R7SiCYqQd1LMRtGKIem5AAnXGIBAo44m3t+JzpInOXrJJIljroHZK/nQLNamSXlIHLlALIfC78zT84wM97jBQFIXofNQUqMHMobZBzEdbArWiKL+kKMpziqI8qyjKxxVFCSiKskNRlG8pivKKoij/rCiKr7mtv/n3V5o/397Xf8EmJKtXURSI2dT5Man6WRyiQH0u4sP+hfVa+Dwuto6FLBGoj6Q0YkGv865lfCveillYD1SgLi62LVCXc+WRyp9uEU1GSZ3xDn7pp5Ehn/U6ykEdnJsnHB6Ag7qZlaendHwRHx6bNi3zjfuaDurhRHwYFQc1+QxEwRsgmjBricJpKVBLzifnBAd1LECl1iAzyF4YTTJaxdb50y32zkRYLJRXVrcOiiMpje0TYVxtmgxu3TXBw4fS1BubP4daTapkTvpNB/WwcrM7jEgYdQe1rgcRxUFGfJTwjrU3Xhlposk1DTXBsSBun5viWWsEaj2tn6vtbJ4/3SKajLJwMjRwgbpWqhEKaog2x9ujTnQ+avbPATOH2gaNEjcUqBVFSQK/ANwghLgKcANvA34P+KAQYjeQBf5D8y3/Acg2X/9gcztHkdUqxIJe3CPmfGyXyU0S8WH3gct67JoMWxPxkdac1yARIL4Vl3YaEP3P712NlurIQT2KTko1qbJ41I0YgoM6n/I4Ix6hiXdqzhSoFwYQ8REyHdR2bJDYwj/hN4XSxHAiPjTdYU0+EzuI+M0Bt4z4kFzIskMyqIGhNEp0ikC9p9UoccAxH0dSWlv50y1et3ucfKnGc6eX+3hW1qDOqWgpF8LlhlJuOCfRoUC94qAewQngyEwETQvhKqUHcjwz4qOMd9wBAl9oAsoFqJ7/HawoCpGZiKUO6pXJESMLIfsL1GpS5cxhL2QHm0FdypWIRDQUdXqgxx0WjnVQAx4gqCiKBwgBZ4C7gH9p/vxjwPc1//zW5t9p/vxuxa4tuC9BVq/YNt4DTAd1WqsMbZY/p1eJBjx43M5NqNk1GeFwSuv5d3A0pbNjBN0EPeMNogTjjM1UBhzxsdhRBvUoOqjVpEo2FRx8NqGeJbfoHsnBR7cooXGCQQNtsc8Dbz0DwTH0lD6Sy2PbxTfho3i2SMMfB8HgGo0IAdoSWtG8tqM4MdUVie34KqfwBD0y4kNyHtV6g0K5Rjxo31oaYDZmftaHIVBnHSJQ750ZvEBdrTc4ntE7is973UoO9WBEyF6IJs3GXI3g9PByqI1cxw5qn+rD7XP375z6hDqrYhgBXLUC1Gt9P17LQe2fnun7sYaOywWRmTVXfUZmI5ZmUJ+L+HCGg1pNqiyd9CO0RagNzthYypUIh3Vc8dmBHXOYqPMq+VN5REPYxkG94TpdIcQpRVH+D3AcMICvAI8BOSFE61vyJJBs/jkJnGi+t6YoyjIwDpwXrKUoyj3APQDT09Ps37+/53/MZuHIKQNXjZ7+TcVicdNek9zZKvWG4N/u3U/UP/i5hxePlAi4Gra9vu1QyVSp1Bp86kv3MRXqTqiv1IXZPb5YG+lr0Qmrf+/XueIkZvMceebIwP79t+bO8O0nX6LqW9hw2/TJNKFtoZH63RSLRRZzi+h6kEapwDe/9mUa7v43eVQaNe4oF0ifruHVUiN1zTphre+t11YDLB16qa//5i3HH8NbLbJwdAGP6rHt9UUFURfc+9mv8jrvBC999V8oRPf0/bDumsHrGnWeftwsKg88ewDPUXvGqKxme8EFT+zHk9jJ4ScPW3JfjfqzXWKSN8wot0TY5g7qeMtBbQz82BndGQL1TDSAGvBwcIAC9fGMTr0hOhKoJ1U/l8+oPHQoxc/t29XHs+sddc4U/avuCdyF0zB9xeBPoouIj1GM9wAIT4cRwkUVFZ+ehj47Q0vpPG53A/ek/XOSAYjOmTEfYzvOezkyEyF7KNvz7oUQZsSHwzKoo8koQrhoBGdw507AxO6BHLeUMUhEdNLjzhCoo8kojWoDbUkjMrYT0odN48sI+4M3HAEpipLAdEXvAHLAJ4E39XpgIcRHgI8A3HDDDWLfvn297nLT8PtPfYPtkwH27bux633s37+fzXpN9GfO8PcvPM5lV1/Pq2ajAz/+Xx3+NrOeKvv23dr1Pjbz9W2HyNEMf/3sw0zuvIp9l7fnyL2QlxcKiHsf4M4brmTftcmN32ADzvu9p17Nlu11jhcig7kX6lV4wODWN3yvOWO/AY9XH2fLZVtG6j7dv38/13znNbzwv16g4Z/ijmt3m7O5/aawgDgwRl1vcNnVl/H6fa/v/zGHwFrfW8v/HiXmrvb3Prn36xDYhqfiYf6y+ZG6Jzsh9aA5j/7q7a9GbVzN9dsTcPW+/h84cwSemSFZmeeI+yh3f/fdOGLhWewUHLmfyR2TuBtuS+6rUX+2S0xyTYHarr1cWkyE/XjdysAd1HqlRqnasPVqzxaKorB3WuUli7Jk2+FIM4Jvx2RnEXqv2zXBP3zrGKVqnYB38zp91aQpUJfqYwQKZ4dzEl1EfIzqCjCP34yvK9dUfHqq7wJ1bTlF2eMn5LP/RDlwTqC+gMhshOMPHu9595VihUa1sSqDurN7d1SJzpsaUcUzRzB7dGACdSWdpl534x+PD+R4w6Z1nfMn80SunwO3F7Sltldsb0basV6+ATgihFgSQlSBTwO3AvFm5AfAPNBqgXoK2ALQ/HkM2PzrlSwkp9u78/ikajoih5VDndMrJGyeS7gRuybNZlq9NEo8kjIL6O3jDsygBkhsY2yyMLiIDy1lzpi3IU6DmQE3ilm0rYFLWYwPrlGikUH4zWLPMfEITapKHEXrc+Mch0R8+CfNZ1vhVMFslJg9MpgDaykIT2BkDALxgDPEaTDdSpkjqLOqjPiQnEeu1WvExrU0gMulMB0NcCY3WAd1qynjuAMc1ACXTau8tFhADKihX6u+7iSDGuDW3eOUaw0eP967a7OftBzUWik6xIgP5ziooRnzUQqbwlOfaRQylKv2rfUuIjoHhYsFanVWxUgb1Cv1nnZvZC5o0GlkIWR/B3VrPKg3JgdXTwO1zGmKxdBIxmR2w2qBGjCNYSOeQ92OUnIcuFlRlFAzS/pu4HngPuCHmtu8E/hs88+fa/6d5s+/LgZVEWwSsnqVMRsvS5waskBt94zvdkiEfYyFfRzqoVHi0bTDBer4VmLR5QEK1O3PZtbKNWpGbSQfrupssyCpxAY3cNHT1D0xwEEN5prUvXFclWx/B95Glro/TjlftnWTRN+4+VwpnG4K1INqlKgtQXiSUrbkrAmWxHbIHiUya10jIok9yOmmg9oJzbBnY4GBO6hbAnXCIQL13ukIOb06sHHL4ZTGWNjX8QTLTTvGcLsUHtrkOdTBsSCKVyGfj6wp7A0EBzmowYybKBaD5oR2n2kUslTqDhobruOgBigu9FafGGlToHZaBnUrqz6vj0NucI0SG7kFNC3kmHr6IoF6bPRzqDcUqIUQ38Jsdvg48EzzPR8B/ivwPkVRXsHMmP5o8y0fBcabr78P+JU+nPempVStY1TrtnZ9TESaAnVxSA5qrUrc4Q5qMJ0Zr/TQHO1ISicR8hJz6rWMb0MNZtCWNLOxQL/RFiE80dampZw5WB3Fh6vb5yY8FaZQVAc3cNEz1BRToHZSk0QAERgn6C9Szvfx+9jIUqmYg5VRHuBthC/hQ3Ep5E/lIbFjcAK1noLw5MiumuiayAyUC0Rn3JTzZapNUVIiWRGoHVCfzMaCQxOonZBBDbCn2ShxUDnUR1LFjvKnW6gBL9fMx/jmof6LkL2gKAr+ST+5dGikHNSjXL9EZiIUcv6BCNSUctRwmkB96qKXW4abXifQ9bQOrBqfOCSD2hvyEogHyGZikD06uAMXFygWQ/hj/e+BtBkIT4VxeVzm6k9wjIMaIcRvCiEuF0JcJYT4CSFEWQhxWAhxkxBitxDih4UQ5ea2pebfdzd/PqAR3uYg21yWaGeHb9jvIexzD8VB3ersbufr2y6v3TnGgWNZDp7truA+mtLY3kUBbRsS2wh5lhB1sbL8qq9oKQi356BuCdSj6KAGc1nXcia0piOhL+hpKsJ0OoyiqN8TkUlCIb2/KwH0DHrJvBft7KBW3Io5CByKg3rCdFA7aYLF5YLENsYnzGeYjPmQtGhlUMeD9q/1ZmMBzi6XaAxiorxJa6ziFIF673RToO6yXu6UIymtK4Ea4LbdEzx9cpl8aXNP2PnGfaTOeEfCQd2oNSjlSiMd8RGeCbOc8iIGEPGhlJepudS+H2fTEE2uOdHSclD3Wpu0HNQr95/uDAc1mOPB1NnIQAVqRV/CKEfw+J2Roa64FNSkuspBvdP+DmpJZ5xzJdjb9TGp+lkcgkDdctU4PYMa4D/etpOIz8P/+crBrt5/NK2xw6nxHgDRebyNNIrSGEzMR3ERwpNtbVrKNgXqEXVTRpNR0gv+wQnURoZyrSlQO0ngA9zxacJhA22hj/ewkUHXTCfCKA/w2kFNqqYLQZ2BigblAQgaWtNBnTGcN8GS2EEsYi5nlzEfkhbLegVFATVg/wHmbCxApd4g0xSNB0G62ByrOMTsMR7xMxHx8dIAHNRaucZCvty1QP263RPUG4JvHc5YfGbW4p/ws3TcMxIOaiN7QcTCCKLOquRzfhq5hb4fy1XNIzwOEqjV2bUjPmaaER891iYtE9S5iA9nZFCDGT9x5qgfssdgQIm/rnKKcj02kGNtFqLz0QsyqEfbHywFaos5tyzR3kXfpOpnqTDYJYngnMY57ZAI+/jZ1+/k3ucXeOxYZw1VjEqdM8slZzuoPT4a/glisQE1StSWINKmQG0DB/XSce/gmiTqGUpls/AbVVG/W7zjs/11UAsBegYt3xSobeygBrP5U+F0ARTFzEjODKCxSzOD2nERHwCJ7UT85pJl6aCWtMgZVWJBLy6X/RuGzsTMZ9eZ3OBq6qxewe1SiAbtPwHQYs+0ysEes2TbodsGiS2u2xon4HXxzVc2d8yHb9zHwiGBMLJQH4LbuxOBuuVgHeH6JTITQdeD1LP9F6jdjQINn4MEPnXGrMPqtfNejkxHQOm9Nrk44sNZDur0sTqgmJ/ZAeCpZako8YEca7MQTUYvyKA+PLAJgX4gBWqLcULEB7QE6sE7qLMrDmp7X992+albdzAR8fH7X3qxoyZpxzPmw9LRAjXQULcQjw+oUWJThGqHFbfHiLop1aTK4gkPYmARHxl0wxx4jOo16xbfzBzhcB8F6ooGbi9a1uxiPsoOpHZYcVDD4GI+tCVEeIJSruQ8gXpsBwFxFpAOask5cnrVMXXeXHMi+szyAKLGmmQ0s9m4oth/AqDFnmmVlxcKfY9SaQnUOya7q6/9Hjc3bh/joU2eQ+2f9FPR6hCagMLZwR5ciKZAHW9r85ZAOMorwCIzETQtRKOw2Nfj1Eo1/F6j7WtrC9xeCI1D8Xzx3+VxEZ4MUzzbe5NEn+rD7XVDowFGzjECdTQZpXi2iEhsG1jMh1dkqbmdcX1bqPNmxIcQAgJR8IUG/71sIVKgtpjsSmdse0dQTEaGJVC3HNT2vr7tEvZ7eM+du/nWkQwPvNx+MbtSQDs54gNQxrcTj+cHKFA7I4M6moxSKETMWJNGo/8H1NNoRT8+1YfL46zHmn82aUZ89OseNjIQHENPjf4Arx3UORUjY1Ar1WBsB2QH4aBOUSWGqAvHRdSQ2IFHP2E2eJEOakmTloPaCcy2HNQDbJSY0Sq2jyK8kL0zKnqlzqlcfycCWvX19h7q61t3T/DSQpHFIaxUbRf/uLmqquabGtxquRaVIrj94GmvCVrLQT3KE+yRWVOgVox0X49jZA0CgRKusLMEPqKza97HkdmIJREfK7VzOQ/ekCmKOwA1qSIaglpgfmACtU9Zpu4bH8ixNgvR+Sg1o7YSEWq6qEc3h9pZI/kB0HL42r2xy6TqJ1+qUarWB3rcVsRHwiGNXdrh7a/dynwiyB98+cW2nSFH02YBvW2El7tZgWd6J4nEgBzUxUUIT7S16UoG9YgK1GpSpdFw03CrpjDfb/Q02rLfce5pAHdshnDEoNivpcvNZi5G2sAT9OC1+eRgNBkFMGM+EjsG5qA2yg5t8jm2AyV7hMhM74NAiX3I6RXHGBHGwz68bmWgAnVWqzqmQWKLPQNqlHgkpZGMBwl43V3v49ZdZq348KH+ipG94Jsw758yY4PrN9Kig3gPsJODOoi72t9sciNjEAiUcanOyEheIZqE/KmLXlZn1d4F6rRxQf60c8T/Vk1dUqYHJlAHvHlEsL0Vy3YhOm9e5/NzqKVALWmS1StE/B58NnfxTarmrHWqOFgXdUaTTRIvxO9x80tv2MOzp/L8+7PtLec4mtIYD/uIBpx9HZWx7UzMaANyUKcg0r6D2hPw4BnRBlGtgqTiGl+z4LMcI0M+63We+xQgNEbAX8ZY7NOg28hAKIGe0kd6cNcu6pwpYhROF5oRH312UDcaoKfRS87MUCe+FfKnUOeCUqCWrJDTq8Qd4qB2uRRmYoGBRnyktbIDBWpzEvBgnxslHk5pXTdIbHHFXJR4yLupc6j9E+Y40KjFB++g7lCgtoODOjgWpFIP4WqUoNa/hqqlbIlAoIQn3p6hxjZE59ZulDgbsSSD2on502AalgCKlYnBCNRCEPIX2x5v24UVgfpUK4d6p3RQS86R1Sq2j/eAcwL1oGM+cnoFn8dFsAdngh35vuuS7JmO8IdfOUitvnGkwpGU5vj8aQDi20iMFdAW+ixQC2E6iUPtFXyj3iyt9aA0aonBDFz0NMsp90hfs65xuanUgtSyfcolNLIQHMNIGyPdYKhdBi5Ql3LgC1NaNr+3Heeg9vghPMX01pqM+JCsYDqonSOgzkaDg3VQ685zUKsBL8l4kJf6KFALITiyVOxZoHa7FG7ZOc43X0l31F9mkLQc1EUtOiQHdbztzfW0jsvrwhcZ3XteURQiMyqVegT0/k1cGFmDYLCMZ8xZDtRLCtQzEbQFDdFDdr2RXhXx0aypnUJrPLicT0DuWN+PJ8oFhABvLN73Y20mpINasi5ZhzR2mVJNIWjQAnVWr5AIeR3V2KUd3C6F//zGvRxOafzLYyc33P5oWuspH882xLcSU3P9d1CXcmbmmLc9AbWcK49svAeAP+bHG/KiGQMYuNRrUC6SX1Sc6aAGKo0ootinKBU9AyEzg3qU3Uft0nJ75E/lITZvTixV++hsbDZPbTVGdeQky9gOJmeL0kEtAaDeEORLNcdkUAPMxgfnoK43BFm9wpgDxioXsmc60teIj4xWIV+q9SxQA7xu9wSncgbHmvEUmw233zQFLOfCI+GgDo2HRn7sGJmJmHFgfYzOMyM+SvjGHSZQq5d2UDdqjZU+LN1gZFZFfOid3bujTmgihNvnJp1SB+KgrqZOo2nhkR5Dd0NkJoLiUs4J1GO7BhNR2CekQG0xTnF9rDioBxzx4ZQJgG74jiumuW5rnD/66svrZoPrlRoL+TI7HOCG3JDoHH6vRimV6+9xiktt509D08Ewwk5KRVFQkyr55Uj/By5GFgIx9EzZmeIeUHXH++eoaQ4E9bTuCAd1IB7AE/CYDmqXG+JbINtH10dLoM40lyA7cZIlsY3EWA49pVOvDLavhWTzkTeavVwcFOU2EwuwsFxuu49ILywbVYRwZi+XPTMqh5e0tlYadsNKA/LJ3gXqW3eZTb6+eWjzxnyocyrZxQDkN7dAbZcJ9lYONVr/7olStkQwWMY/Pd23Y2xKLuGgVmebERVnu5tAb9Qb5pjuvAxq5zioFUVBnVNZPBEwr2+91tfjVRdOUSyGHCdQu71uwtPhVQJ1cwVooz/Pun4zmgGnm5iMXrFk5nyzMxb2oSiwmB98xIeTBi2doCgK7//Oy3n7XzzC3z18jJ+5Y+ea27XcGDLiA3C5KYlx3KU+F9dNEapdSrkSkWZe4qgSTUbJLA1g4GJkEKFxswB0orgHNLwJvI1l6pU6bp/F8Ud6BmLzGGl7DPA2ojW5UjjVdNmN7YTsEZi6vD8H1MzJq9Ixc3n/KE9MdU1iB7HIy0CQ4kKR2JbYsM9IMkRyDhSo52JBKvUGaa2yYgDpFxnNzK91WsQHwN5plUq9wdG0zu4p62usw02BeqcF9fWOiTCzsQAfvPdlPnFg45WRLYJeF//tu6/gqmT/v0ejySipUzkoDDriI9eVg3rUicxEKCz7+yxQF/F6qzDpwAzqNe7jyKz5PVE4U2D66s5F+1KuBALHZlCDuTIxf8qA10xB/iQktvftWLXUaTQt5EjDUnQ+SuFkc+zij0AgZt7TsfnhnlgXSAe1xeS0qiMc1F63i7GQTzqoNxm37Brn9ssm+ND+V8iXqmtuc7RZQMuID5OKZ4awN0Wt1MdZXW0RIh0I1NnSyD9c1aRK6pS3/00S9TQikKBerjtT3ANEaIJwWO9pCeIlMTI0AgmMrDMyqMF0hRVOrxKo+7lMTkutRHy4PC68DuhhcRFjOwh7zQx1GfMhyemmgOqEWrrFTMx83p8dQA61kwXqPdOmG7JfOdRHUhpet0Iy3nstoigKv/SGPVw5FyUe9Lb93yuLRX7uHx675BjAStQ5lbOHXaYRYZBZ2Z06qG0ywR6ZjbCc9tEo9KnnCFDNpilX/Lg8DvMwRufWvI9XHNRd1iat1XFOzaAGcyIrfypvCtP9XJEI1LNnKRadF/EBpkC94qCGkc6hdti3T3+p1hsUyjXHCKiTqn8oTRKdNGjphvd/5+V87588yF8+cJj3vXHvRT8/km4K1NJBDUAtmCQeX0Zb0vrn3GuKUO1SytlDoD58nxtROENfU//0DHWP+XtzqoNaiUwSCi2gLWorTf4sw8iaTXkEtnAgtUM0GeX0gaaTJrED0i/372DN74bWpNSoZ2R2RWIHgfoZ4FrZKFFyzkHtoAzquZj57Dq9bPDq+f46X50sUO+eiqAocPBsgTe/etby/R9eKrJtPIzHbY3/60du3MKP3Lilo/c8dizDj/z5I/zKp57mQ//fa/r6TFGTKtmTFYTbg1LKDc4ZamRhfHf7m6cNewjUMxEKeohq6gz9WmfRKGQoe4OM/tXqEG8QfCHQ0+dFMkZmzjmou8FIN+PbVkd8zF7b06mOGuq8yktfeAmR2IaSPQq8vm/HEvkFNC3ErEMF6iNfW9XYfWwnpF+Bnf273v1COqgtJKu3ij5nFNWDFqiFEOT0KgkHLfvshlfPx/juV8/ylw8eWfP3czSlMRHxE/HL+SkAYtuIx/P9bZRYXITwVFubioYwBeoRf7hGk1Gy6RAs93npp56mppjdi0dd1O8W99gM4bBBcaEP7lM9Q6lsXlc7DPDaITIXoXC6gBDiXI5bv1iVQe3UCRYS2/EYJwAhHdQSRzqoW4PpM7n+N0o8N1ZxzvVtEfC62T4e7quDetgxj9dvG+M/v3EvX3zmLH//reN9PZY6pyLqgkZwZrA51B04qIUQZg8NG0ywtzKo65mzfTuG0LJU6w41MEWTF+VQe0Ne/FF/17WJ3ozVXLn/mo3HnUQ0GaWqV6kF5/vfKFFbdGQGNZgCdTlfptzSfsZHt1GiFKgtJKe3cvOcUfRNRgYrUBfKNWoN4RiHei+87417KNcafOi+Vy762dGULhskrsI1sd10UC/0UaDW2m+SWClWEA0x8nEValKlXPYjGnUo99EVqaepNEzX8Khfs27xTswSCun9mWQxMui6Weg5JeKjVUyXl8sDiPhoZlBnS469fwmNgdtNMFSSDmrJuVraQQ7qsZAPn9vFmfzgIj6cWkvvmY5wsA8Cdb0hOJrWLcmf7pWfvWMnr98zyW994XmeO73ct+OoSbP2qnkmBptD3UEGdaVYoVFt2GKCXZ1V0bQQjXz/Ij4wctQY/j08FNTZNRslRmYj3Ud8pC9ogN1hPI0daH1P6I2pvgvUipEyM6gdKlADq3rojG7EhxSoLSTrsGVzk6qfpWLZdJkNgJzmvMY53bJrMsIPXz/PP37rOCcy5+fSHklrMn96Fd753SQSy/11UGtLEGnPQW1kzWJm1B+u0WQUUKh5JvvrrDEylGvmEjynOlB9s0nCYaM/97CeQSuYi0nt4EBqh1ZMSuF0AeJbzRz1ep/yPFdlUDt1BQCAktjB3K6ydFBLVgTqqIMEapdLYSYW4ExuMAJ12Ocm4LW4oe6IsHda5WhKo1StW7rf0zmDSq0xdAc1mPfTB37kGhIhLz//j09QLPenx4pZ50GpMbZpHdQtgdAO9YvpoA6h6P1rkkgpR8012k3auyY6t2bfHHVWpXi2twzqcxEfGUdmUAMUtLG+C9TuatrMoI45r55uCdQrOdTjuyAjBWrHk11ZluiMonpS9VOpNcj3s7ncKlrX16muj075xTdcBgr80VfP5adq5RpLhbLMn15FYPve/kd8NJfxt0OpOUAddbGqNWNeFmP9bZSoZzBKZuE36tesW3yTs4QjfRCom+73Ys6MA3KKg7p17+ZP5cHjA3UGlk/052DaEoQc7qAGGNvB7FZDCtQSlo0q0YAHt8tZeewzscDAmiQmHGKkWYs9MyoNAYeWrP2uOdJsQL4ZBGqA8YifP37bdRxNa/y3zzzTFzNRazJXK8egsDkF6lbEgh0c1K2ID1cl07djuGsFGp5o3/a/qVkj4gNMB3W3q7v0tI7iUs4Jpg52UGezMcj1t0mit56lXI/i9jlvAnZl7NISqMd2Qu64OZYbMaRAbSHZpuvDKQLqpGq66gYV87EiUDsk47tXZmNB3nnLNj7zxMmVvL2j6c1VQG8GvJNJfL4qpcU+OhI6yKAuZZsC9Yg7qCMzERSX0v+Bi57BMEzh1KkOaiU8RSSiWx9TU1oGfwQ9Y37H22GA1w7nOaihvzEfqzKoA2Oj/ZnvicR2JmaKMuJD4thm2HOxAKeX+59BndEqjDtYoN47bX6/W51DvSJQT26e+vrmneO89w17+NcnT/PJAyct3394OoziUigUImsKe33DyEIw3t6mNnJQewIe6t4xvKI/sS1CCFyNAsLX30atm5bo3JrjlVbERzeTPEbaXB2nuBRTKCzl27537UKrps6ccUPVMK9Bn/CRo+4d79v+NzMtp/qKQO0NQmiifwabPiIFagtxmsN30AK10zK+reDn9u0m5PPwf758EDDzpwG22aBQswrF5aKgxRHZPjaT0VJtZ1C3HNSj7qZ0e92Ep8P9H7joabSCD8Wl4Ff71dd8kxNM4PNW0JcsLvp0cymintJx+9z4Is747l0RqFs5bokd/WmUWKtAuYAIxCktO9xBndhBIpGTDmoJOaPqmJWIq5mJBVnIl2g0+hubl9Wd7aDePhHG61Y42OWS/UtxJKUR8XuYjGyuOuTdd+7mdbvG+Y3PPWu5KO9yu4jMRMilg4NzUFcNEHXwtjeOsZODGsA3NoYiauZ1sJiqViXgMxwnoK4QnV1zxWdkJkJVr1IpVDrepZE2zk2ONE0fuJzl7vX4PYQmQxROFyGxvX8u6ooGNHCFnbkCwBPwEJoInROoAcZ3jmQOtRSoLSSrVQh4XQQdsqxgqikGLRb6vyQRnDcBYAVjYR/33LGTrzy/wBPHsysOaplBfT7FygRuzXp3CWAWkfUyBNpzJNglgxrM2dxcOtTfgYuRoZD3nXMoOBGXi3I9TD1nceMcw+w2bqQNguNBFMUZ19cb9BJIBPrvoNbTEBqnlK+AcG5EDQBjO4iG0hQXijTqjWGfjWSI5PSqI40Ic/EA1bogpfXX9JEuVhhz4PVt4XW72DUZsVysPZzS2DER3nTPSbdL4Y/edi0Rv4d3/8PjGBVrl3urSZX0Wf/gHNStBoltXmc7OagBIjMqpUrENL5YjJE1CATKKGFnRVCscImIj/j2OACnD3R+jxsZY1X+dNZx+dMtosmoafqIb+tfDnVxkVJFJRC3x2RUN0Tno+cL1GO7+tvovU9IgdpCsnrVUeLpZMQcTA8u4qOKokDMQY1zrOCnb9vBeNjH73/pIEdSGlOqn7DfM+zT2lSUmMJb7ZOI2sqfbrOYtksGNaweuPQz4iNNIeN1tvsUqIooFJes3WmzmNZTum0Gd+2yUkxDU6Dug4O6+d3QivVx9D2c2EHIvYCoC/SUvvH2EtuybFSJO7DOm4maz/x+51Bn9Ypjmrlfij3TKgfPWh3xUdy08XlTaoA/+tHreGWpyG9+7llL963OqSwd9wzOQd1hhu+Kg9omEXCRmQiaHjTrB4spZUsEAiXcqjNFVLNJ4sX38Z7v2UNwPMi3/vhbHe9ST6+qnx2YP91CTaqmcJrYDtk+Oai1JXQjbAuDV7dE51eNXcBslCgd1M4mq1UcJVBHgx58bhdLxUFFfFSIBryOa5zTKxG/h/fctZuHD6f5ynNnZYPENah6Zwmy0J+dd9AgEZoZ1Aq2iKtQkyqLx939a5LYzHPLp1y2GXx0S82dwFVKW9sIST/noHZKg8QW6py6ykG9oz8OBG0JwhPnurw7+R6OzuERBTye6rnrLnEkWb3iyIiPuabr63SufwJ1qVpHr9QdHfEBsHdG5VTOoFCqWrK/cq3OyayxaQVqgNsum+Dd+3bziQMn+cwT1q0YVJMqC4cbprO51nkEQsd0KPIZaQN/zI/LYw/JIzIbobAc6I+DOmMQDJbxxJyZ4Ys/CqJxUUayN+jlxnfdyMHPHyT9UrqjXRpp41xt16ypnYiaVM3G44ntfXVQF7WQowVqdV5dw0EtBWpHY+a6OaeoVhSFSdU/UAd1woGDFiv4/167lWQ8SL5UY4eM97iIemQLYV+qL13OKXYoUOdKBOL2iKuIJqOkTvkQ/Vr6aeTAr2Jkq7ZwnPdCwz9GwKdRzlv4fWxkIJhAT+m2yW9sl/ME6lZmXsPi6AktZTZIbMX6OPkedrmpB+eIx/Myh9rBNBrCsQ7q2VjLQd2/RokZzRQQndwkEUwHNcDLi9Z81xxP6wgBOzdRg8S1eO8bLuOm7WP8+mee5fCSNf/2aDKKkakgwpNQPGvJPtelC4HaTivAIjMRivkAtYz119qM+CjhGWt/zGIrFKXpor54zHLju27E7XXzyB8/0tEuL474cKaDOpqMoi/p1CNb+idQa4sUloOOrqWjySh6SqdWqpkvSAe1xIm5eRMDFKid2tndCvweN7/0HXsApIN6LRLbiEWXV+I1LEVbgshU25uXsiXbzP6qSZViMWwWZXVrnErn0czwNTKGs+MRAEIThMM62qJm3T5bTRLTuvMc1EmVwpmCmYfsC5uDioLFEy16SkZ8rCaxnbGxHIUz0kHtVAqlGkJAzIG13ljYh8/j4kwfIz5aArXjHdQtgdqiHOrDKfO5u5kd1AAet4s/fvu1+D0u3v2PT1Cq9p5H3WoqXPdP9TfOrUUXER92mmCPzETQ9RCVBetXJpoRH2V8E+2PWWxHdG7NWi8yE+HVP/ZqnvzrJ1diYzaiXqlTKVZWCdQZ52ZQz5uNC7XqZN8EalFcJJ/122YM3Q2t65w/1XRRJ7bD8kmo14Z3Ul0gBWoLyejOazwyGRmkg7oiHdQ98P3XJfm1N1/O91+XHPapbDrcUztIJPLWinsttEUIT7S9eSlXso1QFU1GEcJF3ROHYh8iVIyMKVBnDQJjzi1IAJToJKGQYe09bGQRwcT5DhCHoM6pZh7yUnMgkuhDzEcr4kM6qAFwT+8ikViWDmoHkzNMAdWJDmpFUZiNBTg9AIHa6RnU84kgQa+bg2et+a450hSoR8EAMhsL8oc/cg0vnMnz2//2fM/7U5OmQF1Wxq2fxF0LpzuoZyNoWpBq2vrJACNrEAyW8E9PW77vkeESDmqAW953CzWjxmN//lhbu7oo/9zBDurW98RyIQa549avSAQaubMUC86O+FgRqFsxHx4/qNPmKtARQgrUFlFvLkt0moA6qfpJDSiDOqs5qwml1bhdCvfcsYuZmHO/uC9FYGYWRREYp/rg/tBSEG7fjWBkDds8XFsFSUWZ6I+zRk8jgglKWfuI+t3iGZ81HdQLVgrUGarCFGqd6KCGVS6EsZ19EqgnZQZ1E9fkLiZmitJB7WByurnSxokZ1GA2SuxnxEdWlwI1gMulcNl0hJcsclAfWdKYiPiJBkbjvr3r8mnuuWMnf//Icf7t6d5qs5aDulRLDNBBHW97czs6qDUtRCNvfZNEI6Ph91fwTbRvqrEd6wjUU1dNseuNu/j2//s2tfLGjlQjbX6Xr0yQODiDOpo0hdPlM1Xz89uHOKBGboFiUQrUwBo51H3oo9NHpEBtEXmjihA4LoJiSvWT1irU6tbPhF2IjPiQ9IvwdIRsNkr19CvW77y42HkGtU2clK2CxKjF++Os0TPUvQlEQzhe3PNNzhIKWR/xUaqY19VODqR2aA26z2+UeMTag2jnIj7cfjdeB7pGzyOxg8npgnRQO5ic4WyBei4e7GuTxHSxKVDLWpo90yoHrRKoUxo7R8A9vZr/8p17uW5rnF/51NMcS3dfN7TqvKIe3bQOajsK1IpmvUBdy2Wp1rwobmd+/wJNgfrS8Sk3v+9mimeLPPfPz224qxXzgcygXjF9FE4V+tYoURQW0ZzeJLFlrlktUI9gDvWGArWiKHsVRXly1X95RVHeqyjK/1AU5dSq19+86j2/qijKK4qiHFQU5Tv7+0/YHGQc6kqYVP0IcW7ZYL+o1BpolTpjDmpCKRkc4akwuVyMxpLFAhQ0M6g7EKhtlEHtj/rxRXzmwKUfjRL1NDXMh7FdRP1u8c3MEw5bHfGRwTDMwtpOA7x2aA26C6dWC9R9clBnZYY6AGM7iMeythWoFUXZoijKfYqiPK8oynOKovxi8/U/UBTlRUVRnlYU5TOKosRXvcdR9XSuWUs71YwwEwuwkC/RaPShYTOmg9qlQMzpk2GYOdRLhbIl45fDKW3TN0i8EK/bxf9923UoCrznH5+gXOsuj9of8+MJeljOhTZdBnW9WqecL9tqgj00HsIoh3GVM5bvu1HIUK46vBZR59a9j3e9cReTV0zy8AceRoj1v6dbER8r95+DM6gD8QCeoMdclRjf1heBWjGWKBbDthlDd4Nf9eOP+c+NXaDpoLaZQC2EOCiEuFYIcS1wPaADn2n++IOtnwkhvgigKMoVwNuAK4E3AX+qKIq7L2e/iThXVDur6JtU/QAs9jmH2umDFkl/CU2EyOWisHzc+p03Rah2sZODGszlRvlcuD8CtZGhIkyB2ukOandsiohasthBnUXTzO94p0V8hKfCKC5llYN6Zx8c1GYGdSlrr89818S3EQlkKJ5dHvaZ9Isa8MtCiCuAm4F3N2vme4GrhBBXAy8BvwrOrKeXWw5qhwqoc7EAtYboW3ReRquQCPlwuZS+7H+U2DNj1g69xnzkS1VSxfKmb5C4FlvGQvzBD1/D9du6d3UqikI0GSW7FITC5hKoL3Kw2gDFpSCC43gaOcv3LYoZqvXRu48tZZ2IDzDv95vfdzMLTy1w5Ovr14StiA+ZQd38npiP9tVB7SqnHO+ghua42+4O6gu4GzgkhFgvafutwD8JIcpCiCPAK8BN3Z7gqJDVzKLaaRnJLYG6340Ss7ozr69kMLi9brTKBB7d+q7YpgjVXgZ1vVKnqldt9XBVkyqZhUB/Bi56mnLVLKYd70ANT/QhgzpLcdn8zrWTA6kdXB4XkZnIqk7YOyB7BDZwzHSEljKbJGYMx0+wAOALUUNFKZzd0Jk0igghzgghHm/+uQC8ACSFEF8RQrQCLR8B5pt/dlw93aqlnerwnYmZ3wNn+tQoMaNVSDhspeel2DttjUB9ZMl85o6iQA3wnVfO8D/eciV+T/dzX+qcSuq0pz9GhAvpRKC+MAPYJrhi0/hceWvrEUAYOapiNO9jy4gm1434ALj6x64mPBXmkQ88su52F02Q6BkIOVOgBnNl4jmB2uKmfVUDpV6hVPLbagzdDdFkdI0M6tESqD0dbv824OOr/v4eRVHeARzAdIVkgSRmgd3iZPO181AU5R7gHoDp6Wn279/f4alsLh4+aRbVLz3zONlDvUd7F4vFkbgmS7qZPf2NA0+hnO3fgOLFjLn07NjLz7M/c7Dn/Y3K9ZVYy3q/93w1DvrT1t4Xos4deoZvPPoswvXChptXMuZKgRNLJ0by/lzr+upundNHBbnjL/Ckxf+mq46/zEvpKBDg2UPPcqTRh4iWTcS631uiwe2eCmdePmbJvaM0qtxeK/PUo2Yu++MvPo7nZKclw2hx0fVV4diz567nrQ2Fb9/7Waq+eM/HctVL3Fqv8Y2HDpA6kcI36RvJz7zVXFEfIxrJ8NXPfxVvtPOaYlSe7YqibAeuA751wY9+Gvjn5p/bqqftRM6ooPo9eNzObJEz22xifWbZ4Jotccv3n9EqjosivBTTUT/RgIeDZ3sUqFOmQD1qER9WoiZVFh9bMo0IQoDSR4e+kWtboG5FLNjJQQ0QmBxDNICKBv6IZftVynnqLtWy/Y0koXHzulZL4F1b6PQEPNz47hvZ/5v7WXphiclXrb1KVk/rZn+R1ur6Du5dO6ImVU48dAISN8Djf2vtzouLVF1xQHG8QK3Oqyw8s3DuhcQ2mL6q/9/NFtL2aFNRFB/wFppLD4EPA78FiOb//xCzsG4LIcRHgI8A3HDDDWLfvn3tvnVT8tIDh+DZF3nTXbejWtDFef/+/YzCNSlV6/yXB77EeHIH+/bt7t9xnj0D336cfbfcyBVz0Z73NyrXV2It6/3ePxv9JrHAN6y9L4pL8Gic1991d1ubpw6meJiHufqmq3n1vldbdx4DYq3rW/9KnYMfPUjMrVv/mTv0/yPNZcAJbn/j7Su5wXZlo+8t46sqUVfFmuucPwOPjTGXSHLEfZS7v/tulBEpbLrlwut79vKzZA9nz7328l5uvXwGtt7c+8GyR+HpafbdeSdPVp9ifve8fCYB2cf3MDaW45pd1zB1ZXsrT1YzCs92RVEiwKeA9woh8qte/3XMGJB/6HB/tjF8HDxSxu+qW/pvGJVJC4BCxXREfuPAswRSvZsxLuTEks5s2OXY63shM8EGj750kv37013v476XKyjAkWcPcNJB0Smrf++5Ro7U0RI14eKRr36Bmrd/IudtxSUefuw56p6jG26bejAFwPNHnufE/hN9O6d+sN7nqkABTQ/y4te/QCk4Y9kxRTlDseIZ2c9zJ6x3fV/rjfHUVz9DKTh7yfdXrq6geBU+8/7PsOeX96y5zeFnD+OOuLn//vtRGnXuKBe4/5EnQLH/BOxa1zdXz7F8cpmHXjzN9QsHedjC+0zNH2Rbs2fOI08+gstj/2t8KbK1LMWzRb7+1a+fuw4zPwP339/Rfob5bO/EDvVdwONCiAWA1v8BFEX5C+ALzb+eAraset988zVbk9WreN0KEb+9HWYXEvC6UQOewUV8yCaJkj7RULcQCaStnWHUFjvLn86ay3rtlEerJlVy2RAsn7Z+9lZPUyyY18rxER9AVYmasRFWYGQgNIb+ik5oPGR7cXot1DmV4w+uyqVv5VBbIVA34z0AmUG9mrHtJBKPUTxT7Eqg3uwoiuLFFKf/QQjx6VWv/yTwPcDd4ly+SVv1tJ0MH3979FFmlBL79t1u2T5HYdKihRCC//zAlwhPzbNv36ss33/lwXvZs22GfRZOgI/S9b2Qe7PP8PmnTvP617++62fcp848wZaxHN9x150Wn93mZvXv3f+En5P/fBJXNMltV++E6Sv7c9B6Fe6vcPvdb26rlnz80OM8x3Pc/p23E98W78859Yn1PleNrzXQzoa46cqduLZak/okGoKvKn9IMDE7sp/nTlj3e+vwLm5+1RbYftu6+yj/ZJmn/+5pfuyvfozwGisoFv54gcZswzyOloJH4+y7867eT34EWOv6Bp8OcuKfTnDNa96E/9F3s+91N4HPovidF3UWvz2BN+zlrjc44xpfisdefoxjf3uM6/dcT2xrrOv9DPPZ3sn0wttZFe+hKMrqaaXvB55t/vlzwNsURfErirIDuAz4dq8nutnJahXiIZ8jB/GTqn8AArUZfSAzqCX9wj8xQa3qsU7gg64aJAK2Wp4UTUapVn0IxWNmB1qJkaGw7MPtd+MJOmtycC3qnjHctSz1ar33nRlZCI5hpA3bLY9tFzWpYqQNaqVmPPDYDsgctmbnze+GRq1BOV+WGdRNPLOXkUgsUzjT27L7zYhiFogfBV4QQnxg1etvAt4PvEUIoa96i+Pq6ZxeIR50bp2nKAqzsUBfMqgbDUFWrzIuIz5W2Dujki/VWMh3P4Y5kiqObP60VbRWr9W8k+bqq35h5CAYb9voYNcM6shMBE0LUj5z0rJ9lgtlAv4SBLoXtGxDdK6t+/jmX7qZWqnGgQ8fWPPnRsa4IH96zMqzHDnUpLmyonBag/gWyB3f4B0doC1ilCK2Gj93S3Te/D4+L4d6xGhLoFYUJQx8B/DpVS//vqIozyiK8jRwJ/BLAEKI54BPAM8DXwLeLYSwYLS8ucnqFRIhZ7p7JyP9F6hzepWA10XAa+sG9pIhEp4Kk81GqS9ZJECBGfHRgUBtZJsNNWzkBm4VJFXPpLWNEhsNMHIUMm6CiaAjJwcvpBEYIxw20Jf0jTfeCD0DwQR6Sic0Ya/BXbuoc81iuiWWju20XKBuTUrZ6TPfC/7tl5NI5CieKQ77VPrBrcBPAHcpivJk8783A38CqMC9zdf+DJxZT+eMKnGH1tItZmIBzuQMy/ebL1WpN4RskriKPc1GiQe7bJQohODIkuZ4gbr1rCyJMSj0sVFiBw0SYVUGsM1W36qzKpoWonLGugXqpWyJYLCEEnFuRvIK6uyGjRIBJl81yWVvvoxHP/ToOSPDKvS0fm5ypMN7146sCKen8majxJyFjRKLS+h6WArUXHCdR5S2BGohhCaEGBdCLK967SeEEK8WQlwthHiLEOLMqp/9jhBilxBirxDi3/tx4puNrF51rLt3UvWzVOyzg1qrOPb6SgZDS6Aun3jZup1KB/WKs6bUGLPWWVPKgT+Cka1K92kTJTxJOKyjLWq978wwu40bacN27qN2ad27hVOrBOqsRY04mxEfrUkpGfFh4pvfy9iYPR3UQogHhRBKs26+tvnfF4UQu4UQW1a99p9WvcdR9fSyLgXquViwLw7qjGauRJQO6nO0BOqXuxSolwpltErd0Q0S4ZwRQS/H++yg7kzka9UvdjMwRGYi6HqQavqsZfs0MgZ+fxm3Om7ZPkeWaBLy7U203Py+m9EWNZ75x2cu+pmRNgiMNWs7IwNBZzuoz6upE9vNXixWoS1SKISk2QMHOaglG+NkAXVKDQwkgzru0OsrGQzh6TDLy1FqZw5Zt1NtESJdZFDbSKAOT4dR3Ap6KWats0Y3iz0jY0hxr4krNkUoZFgjUDevr57SnRvx0XJQn26KFwkrIz5SpoM6Kx3U5xEax+1pUF5Y2Hhbia0QQpgOagdHfIDpoF7Il6g3xMYbd0BLoJYO6nOMhX1Mqn4Onu1OoD6cMp+1jndQzzaflcXIpnJQ2zWizIz4CNFYtu45aWQNgsES7pgUqM2Ij/bc6Tvu2sH01dM8/IGHOdc+wnyeGRlDOqhXEZmJoLgUUziNb7NWoC4uUsgFbDV+7pZAPIAn6JECtaTpoLbZEqJ2mVT9FMs19MrFy1usIufgCBXJYDAd1DFE+qh1O+3CQe0JePAE7JOn7HK7iMxEyBcibTsS2sLIQGjcXJYoHdQAeCZmCYd1igsWxCMYWURwzFyi6PSIj5ZAHZ6Aes0U73ul+d1gZJqxPvIeNlEUCqUJXMsWZhNKRoJCuUa9IRzvoJ6NB6k1BCmLVya2BOoxafY4jz3TEV7q0kF9RArUAHgCHoLjQXKZ4KZyUOsp3ZYrwFoCNcUly/ZZypYIBMp4x9ofs9iW6FzbkYSKonDz+25m6bklDt97zsBQ1arUK3WZQb0Kl8dFeDp8LuLDUgf1EstpnxSoMe/J6HyUwsnRXYkoBWoLEEI0BVRnFn2Tqh+gry7qrIOvr2QwhKfC5HIxXAULhZHiEoSn2t7cyNrTDRxNRsmlgtYK1HoaQmOm60O6TwHwTc9Z56A2MtRcKo1qw5YOpHYIJAJ4Ap5zOW6KYjZKtCLmQ1uSER+XwBAzeMonhn0akgGzrFcBiAUdLlBHze8Cq2M+Ws3GxyKyll7NnmmVlxaKNLpwrB9Jafg8LuZiznxGrkadU8mcDWwqB7WetucKMG/IS5UoStmCyfImRsZ0UPsm2h+z2JboXEfjlavedhWRmQgP/+HDK6/pabMXzIr5QDqoAXM82JeIj+Ii2UUv/rjfun2OMNH5qHRQO51CuUatIRwroA5CoM7JXEJJnzEF6iiekoXujw4d1OVc2Zazv9H5KKkzfmubJOqmg9rIrMp4czjeiVkiqkUZ1HqWctV0hTnVQa0oCuqcSvH0Kkf62E7IWCFQy4iPS1HxJwkK67I1JaNBrilQOz3ObbZZA1jdKDEtHdRrsndaxajWOZnt/HofXtLYMR7G5bJXxnE3RJNRFk94NpWD2q4RHwAiOIGnnrVsf0bWIBAo45uSDmoi02aNVm9vZbjH7+Gmn7+JQ185xOKzi4B57wGrIj4yUqDGHA+aAvU2yB4DYU2UldAWyZz12HIM3Q1SoJaQ01pFtTMF1MlIfwXqRkNIB7Wk7/ijfgp6Al9jERoNa3aqLXWUQW1XN7CaVFk85rZ24KKnafjjVAoVW16zblDCk0TUEvqi3vvOjAylsnld7bhEtl3UpHp+J+yxHRYJ1M2ID+mgvggR2Uo0nKZSrAz7VCQDJGeYv2+n1tItWm5cyx3UWoWg103Q57Z0v6POnhkzyulgFzEfR1JFx8d7tFCTKktHBZSWodYnw1IHAvVFGcA2Q4lO4cM6AarUFKhlxAfg9pqRbsX2M76v/9nr8QQ9PPxB00W9Et82Lh3Uq1mpqQMx8PjMiYBeqZWhoqNrfilQN4nORymcLiAs7mUxKKRAbQGZ1rI5hzYeWXFQW5yX16JQqtEQctAi6S+KouAfi1Oth6xx+grRVQa1HR+ualIlfcaHsDjio6bEACnurRCeIBS0LoNa18zr6lQHNZjLllcyqKHpoO6xUWKjAXoKQhMYGQNvyIvHb5/c+Z6Z2EkisUzhzOjm50k6Z8VB7fCIj3jIi9/j4syytQ7qjFZ17DhlPS6bigB0nENdqzc4ntHZMSkFajCflcWzBiI8CYU+rYDpQOQr58s0avaNKPOMzxDwFi1zoFayORoNN4pHRiQAoM52FPMRGg9x7U9eyzN//wzFheJKxMfKBInMoAbM8WApW6KqV62L+dCWEIExQLHlGLobovNRGrWGNStqh4AUqC2glevm1GWJY2EfLqV/DurW9ZUOakm/CU+FKRhjkLMgh7pcAMUNvvYHL6VsyZZiazQZNRu6lPNQtcgVZmSoCNP5JBvMNQnEcLtrlFK53velZygWzO9cuw7w2kFNqhROFc51Zx/b2XsGdSkH3jB4fLb9zPeCN7mHRCJH8YwFEy2SkSFnyIgPMCfL5+JByx3UGa3s2Gbu66EGvCTjQQ6e7UygPpUzqNYFO6WDGjCflaIhqAenrY1zW00HAvVFEQs2IzSdoFZzm451C2jkM5Srzq31LiI6B/lTHb3l5vfeTL1S59E/fXTl/pMZ1OcTTUYBrG2UWFyk7h0HkAJ1k+h88zqPaMyHFKgtILcioDqz8HO7FMYj/v4L1LKwlvSZ8HSY5XwMcsd631mzCVon2NlBDQp174R1Axc9Q7liDjxkxEcTRaHSUGkUeuzsLgQYWQpZ09Vr1wFeO6hzKlW9SjnffL4ldvTuoNZSK98NpWxJ3r8XENi2i0hEp3gqPexTkQyQ5Wat5/QmiQAz0YD1ArVeZSws3ZFrsXdG7dhBfThlOtN2Sgc1YD4rAarKhLUNsVfTgci30qTOphPskZkImhakkrampm5oGSp159Z6FxFNdjxeGd8zzp7v3cOBPz2wIgyeL1BLB7U5HuRco8Tc0d53qi1Rc5vfC3YcQ3dD6zpLgdrBZJoZ1E5eOjfZR4FaNs6RDIrwVJh0SjUbN/SKloJI+92wRUOYArUN3ZStGfMyY5YK1Ea5KVBLB/UKNVccRU+fc/x2Q7kAbh96pg6KsyNUWvdu4VRTvFBnoZSHcg/u3lXRP0bWcPT1XQs1OUY+H6F6+tCwT0UyQHJ6lbDPjc8jhyaz8QBn++CgHnOokWYj9kybAvVP/82jfOi+V3joUAqtvH6DtMNLpkC9YyIyiFPc9LSelUY9Lh3UAyAyG0HTQpROnLBkf0opRw15L68Qne3YQQ1wyy/fgp7SefwvH8en+nC3Mv+lgxpY5ey12EFdIQ5IgbrFqDuoZeihBeT0Ci4FogHnFn5TUX/fMqhlxIdkUISnwiw9H0LkjtFzT3ZtsaP86UqxgmgIWz5cWzO5ejVB2CpnjZ5Gw7xWUuA7R92bIOAtUM6XCcS6vC5GFkJj6Kd1gokgLrdzBaOWK6xwusDkFZPgcp0rqmeu6m6nq1ZXGBmDxE45aFlNIBHgzHKcRqpHp7pkpMjqVWlEaDIbC3A2X6LeELhdPVcjAGQ16aC+FD/22q1ktQqPHc/y9RcXAXN16OUzKq/ZmuD6bQleszXBlrEgimL+Po6kisSCXseunr2Q1rNSM6KMSQd13zEd1CECZzsXUdektEzdJQXqFaJJOPtMx2/bdsc2Zl8zy5nHzxDbZvbJoVaBWgn8qsUnOXqcZ/q4eRs88y+971RbpFw392vHMXQ3hCfDuLwuKVA7maxeIRb04rKoiBxFJiN+XuxTQ6Ns00Eti0BJvwlPhTmTiiBSRy0QqDtrkGhkm3llNlzu7wv78Mf8FDWVSaucNUYGvWEWItJBfQ4RHCccNtAWtR4E6gwEExgpw9ENEmHVMrlTq4q8sWbMR08CtfndICM+LkZRFIrlSdwFC3oBSEaGZaMi4z2azMaC1BuCVLHMdLT3AXe5VqdYrjEmo/LWZMtYiN/7oasB03T0xIkcTxzL8tjxLJ9+/CR/94i5qm4i4uM1WxO8ZluCJ47n2DERXhGsnU54KozL4yK/HIHCSesP0Kibq7sCsbY2t72DeibCaT1INGVNTe2q5al7opbsyxZE5yDf+bVVFIWb33czn/nxz5y791oTK/K7Al/Ehz/qbzqoL7fMQW1UpUC9GsWlEE1GpUDtZLJalYSD4z0AJlU/qWKZRkNYLtRLh7pkUISnwuRyMUT2kd53VuxMoC7lzOW8dn24RpNRlrNha7IJWxnJhvkIs+s16wZFnSIcPom2qDF+2Xh3O9FNgVpP67Z1H7XLagf1CmM7e8uh1lIy4mMDSsoMasUiZ5hkJMjpVeLSiACYDmqA0znDEoE624widPpYpR3iIR937p3izr1mRFu9ITh4tsDjx7Pmf8eyfOX5BQB++Pr5YZ7qpkJxKURmI2RTpa6EvQ0pLYM/Ai53W5vrad3WEWXqrIqmhWhkF3reV6PewCOK4G9P/HcEancRHwBX/siVfO1XvkZktulINzIyf3oValKlcLIAsXkoLpgOc08Pz6biIrqxAxDdG3NsSHQ+ei6ecMSQArUFZPWK4+MnJlU/tYYgZ1Qtz+KWDnXJoAhPhVleVnHpi1CvgbuHr0htCSYua3vzUrYpUNu1mE6qZBb91gjUpWXwhtAXa/giPtze9gYsTsAVnyIUehltUet+J62Ij5RObKuzByzeoJdAInB+kTe2o6ulnyvoKZjYS71ap6pVbfuZ74WKf54A9w/7NCQDJGdU2TMtl5iD6aAGOLNc4joL9pfRzKi8cSlQd4zbpXDFXJQr5qL8+M3bAEgXyzx9apkr56TjdDXqnErqVB0KfYj46DDD10gbBOIB20aUBceD6EYIUeyxKTbNBu2BEiKw1YIzswnROTNLvdEwo906wO11846vv0PmT1+CaDJqOqjdXnMiYPkEjO/qfofaEsXilfjUKi7Zw2KF6HyU0wf6FLfUZ+Rv0QKyelUK1KqZa9ePRony+koGRXgqTKPhpuYZg3yPSxS1xZWc2XawvYN6PsrSSa81zXP0NAQTZjyCjPc4D9/kHOGwjrbQg0Ctm24PI23YdnlsJ6hz6vkO6sSOHh3UZgZ1a1JK3sMXU1FfxcsHtw37NCQDJKdXiQVlrQcw16wDzljUKLElUMta2hrGI37u3DvFlGrPeq1boskoi8c8UDhrrnSzEiPXsUBt5/rF5XZR8yRQSume91XKlggGy7jCUkRdwRsEX8Qcb3TB+GXjxLfFzb/oGQhJB3ULNameM30ktvUe81FcpJAP2nb83C3qvEr+ZB5h9XfxAJACtQVktYrj85EnI/0TqHN6RS77lAyE8FQYgJIyDdljve1MS0F4qu3N7ZxBDWZBsnDUjbDCQa1nIDSOkZHxCBfinZojFDIsc1A7PeIDzEH3+Q7qnZA50v0OmxEfRsben/le8Ezv5OEHrqBWqg37VCQDQAjBsiFr6RaxoJeA18WZnGHJ/jLNZuPjESlQS/pHZC5C5ngJ3H6zjrCSDl2ojogoC07gqfV+nY2sQSBQwhXtMhbOrkST1qwGkA7q84jORymcKdCoN841He8FbZF8xi8F6guIJqPUSrWVscYoIQVqC8jqFcfnuq04qIvWuD1Wk9Wkg1oyGFoCtVadgFyPDbqKizKDehXRZJR8LgyFBXPJXC8YpkAtHdQX445No8ZKPQrUGepus7BxepNEWMNBHdtifr5rXU7INpsktial5CTLxVx/z/X8wqFfOLdEVmJr9Eqdal1IM0ITRVGYiwU5k7emps5KB7VkAESTUcrLZRqRGWvi3FbTRcSHnR3UAIo6iZflnvdjZAwCgTLumBSozyM6a8193Gw8LjFRkyqiLsxxSq8Cdb0K5QLLabdtx8/dEp03I6hGsVGiFKh7xKjUKdcaji/6+hnxYTqonX19JYPB7TMfcAUtAbleHdRLEGnfQV3KlkABf9Tf23E3KWpSpV730HCHul4yt4KehtAYRsaQ7tMLCY0TjvTooNYzlOvmZI3tHUhtEJmLUDhTQDSay+TcHoglu19l0RSoVyI+5D18EeGpMImdCRTZe8IR5AyziV9cRnysMBMLWOagTmsVFAVZS0v6SqupcM07aU2c22qkg/oi3IlpAp7em6CZER8lvIn2YwkdQXSu60aJ5yEd1OcRTa4SThPbextva0umYSlXkQL1BUiB2sG0ls05fVlixO8h4HX1MYPa2ddXMjjCU2FyuVhvER+1ClSKEIi3/ZZSrkQgFrCtINMqSKruid4LvlbER9YgMCYLkvMITxAKaL1lUBsZSmXTeSQd1Oa9u+L2aDG2s7sc6qbbg2DiXKyPXAUgcTgth29M1norzMaCnLUogzqrVYgHvbhtWl9INgdq0hSoy4xtCge13QVq79QMAb+BqNd72o8Z8VHGN9H+qk9HEE1C3oq+OTKDejWt74nCqQLEt/fmoC4uQniKUrYkBeoLkAK1g2kV1U53JSiKwpQasFygLlXrGNW64yNUJIMjPBUmvRjpLeJDT0FovKPOz6VsydZL/VsFSame6N1Zo6fNJn7SQX0x/iguV4NyuodcQiOLYZjX1e5LZNuh5Qo7L+ZjbCdku8ihbjb4xOVayYWz8+deImmH5RUHtRSoW8zGAiwUytQbvTc4ymgyilDSf1rPSqMSH6qDul6pUylWbF+/RGbHqFS86Kd6mwwoZUsEAmX8U9MWnZlNUK2K+JAO6tWsOKhP5XuP+NCWIDJpmrykQH0ekZkIiks5v4fOiCAF6h7J6WZRPSYLPyZVP4sWC9St6ytzCSWDIjwVZvFksLclR80Z3U6w+8M1PBnG5XVRLMV6L/iMDHVvjHq5Lt2nF6IoVEQUUUx1vw89g1Y0n2nSQX1uciV/apULIbGjOwd1M94DWIn4sPPnXiJph3O1nqylW8zGA9QbwhLjR0arMCavraTPtISnQlEdqoNaT+uA/SPKIjMRNC2Ecby3njlGxiAYLOGJy4iP87A04kM6qFuEp8K4PC5TOA2NmX2Jum2qWlxEhCcpLdt7DN0NLo+LyGxEOqidiIz4OMdkxG+5gzqry8YuksESmgqxcMxlOh2rXS6v1VIQ7qzQM7L2dgMrLgV1VqWwHLHEQV1pmKKhdJ9eTM0dx1XJUK92uezTyFBcNr9z7T7Aa4c1HdQTe+D4w1CvdbYzbWnlu8HIGvgiPtxe2QhQ4mxyRms1oqylW8zGzGfb6eXec6izekUaaSR9xx/144v4yGVDQ3VQG2nzM2N7B3VToC6f6U1ELeeajRa9st47j2jSmvtYOqjPQ3EpZvPxUwVQlN5c1Noide84CGn2WIvofFQK1E4kp8uIjxaTqp+lYn8EajlokQyK8FQYPVVGRJOwfKK7nWiLHTVIBPs7qMF0omZTwd4z3fQspUqziZ+NRf1uafgShMMG+pLe+ZvrNSgXyafNrFLpUIfI9BrL5HbdZTqh7/vtznampc5zUMvrK5Gcc1DHZMTHCrMx87vBihzqtCYFaslgUOdUMgt+a7J7VyMd1BcRmY2g60GqS71d60Y+Q7lqbzG/K6KzsHwKRI8xS0ZWZlBfgJpUzwmniW3d930qLlFV4oAUqNcimpQCtSPJaFJAbTGp+snpVcq13po1rKY1aJEOasmgiExHAKiH5ruP+Vi1jL9d7J5BDeaDMnXGa0GTxDRGyRx4SIFvDUKThMP6+U392qW0DIEoRqaCP+aX7l7MZXLh6fD5DmqXC37gL+DpT8BLX2l/Z6u+G4yMYfvPvETSDstGlaDXTUB+36ww1xSoT+d6c1ALIchKgVoyINSkSuqkFwrDi/hwjIN62nRQ17Jne9qPKGaoNmQtfRH+qOnwLfco8OkZ6aC+gGgyei42r0cHdVnEAClQr4U6r0qB2onk9CpqwIPXLS/lpOoHIF2sWLZPGfEhGTThKdOZW/HO9DCju9i5QO0QB/XiUY8lER+6bl4rKfBdjBKdJBQyuhOoDbOQNtKG7Qd3nRBNRi9uNBKegB/8KHz23bB8sr0drYr4KGVLcgWARIK5GlEaPc4nGvQQ9Lp7dlDnSzVqDSEFaslAUOdUFo8IKOWhZuGqWumgvghfxEe5GkEUFnvbkbFMTUSsOSk7oSjNHOoeJluqBogGeGU9vRo1qZ6rqXsRqIuLlGpm9r0cD15MdD5KpVChnLc24aDfSFW1R7J6RYqnTSYjpkBtZQ61bJIoGTQtgbokpntwUKc6EqjrlTpVvWr7h2t0Pkr6rB/RS7EnBBhZtIL5fSMd1BfjTsx076DWMxAcQ0/pskHiKtQ59XwHdYttt8At74ZP/hTUqxvvaNV3g5GVDmqJBMxaT8Z7nI+iKMzGA5zpUaDOatLoIRkcalKlcFpDRKaty6EWAko5CMTb2twpDmqAmjeBy0j3tpNKjppLteaE7EavAnVrYkVRrDsnG6AmVSrFpnDak4N6CaNkTq7Y3eTVDdF5U7wfNRf1hgK1oih7FUV5ctV/eUVR3qsoypiiKPcqivJy8/+J5vaKoij/V1GUVxRFeVpRlNf0/58xPDJahYR0JQDnHNRWCtRZrULIJ5d9SgZHS6Beru0yl+43uois6TCDupQzB6B2f7iqSZVSKQC1ClS6EE/BXGrn8aNnzd+LdKBejG9yllDIoLhQ7PzNRgZCY+hp3fbuo05Qk+q55YgX8rpfMAcgX/0fG+9IZlBLJBeR06vSiLAGs7FAz00SW83cxyJyrCLpP+qcSr1SpxGcti6HulwATwA87d3DelrHE/DgdcB3igiM46pme9qHq5qn4ZEC9ZqoFgjUMn/6IlaE01P5pkB9pLus7+ICmm6O2+0+hu6G867zCLGhQC2EOCiEuFYIcS1wPaADnwF+BfiaEOIy4GvNvwN8F3BZ8797gA/34bw3DTm9SsIBD8B2WBGoLWyUmNWr0vUhGSgtgXqh+Crwq/Dspzrfyapl/O1gZM0BqN3F1mgyCijUvJPdD1x0U0A1sgaKS8Ef9Vt6jnbAMzFLRO024iMrHdRroM6pGGmDWrl28Q9dLvj+P4PnPwcv/tv6O5IZ1BLJReSMCvGgrPUuZDYW7DniI9OM3RuTtbRkAJh1HlTdE9blUHcQ7wGmg9oxE+yRSXwsd/32erWOV9EQ/piFJ2UjenVQy/zpNWl9T+RP5iGxw5yAevIfO9tJvQZGjmKhGfkoBeqLsK2D+gLuBg4JIY4BbwU+1nz9Y8D3Nf/8VuBvhckjQFxRlFkrTnYzktUrsuhrMtGXiA+ZSygZLIF4AJfHRXFRg7t/A+77nfaW7q+muARh6aC+EDVpOjTKYqz7RonNCAojYxCIB1BcctnchSjhSdRYCX1R7/zNrQkAJw3w2qB1764Z8wGmQ+aH/go+/4vrL1VsTl7VSjVqpZrtJ6UkknaQDuq1mY0FWMiXqNUbXe9jxUEtV3tKBkDrWWnUE9Y5qI0sBOPtb+6gHhruxAw+9yXqkjYoZUsEQSE7wQABAABJREFUg+W241McR3Sut4mWDidXnMJKTX2qAG4P/NBfw73/HZYOtr8TPQXBBKVlc4wuDUsXo86Z19nuAvXbgI83/zwthGg9ec4C080/J4ETq95zsvmaLclqFeJSoAbA53GRCHmtjfiQGd+SAaO4FEKTIdN9uuN2c2b3ib9rfweNhvnQ7MBBXco2BWqbuylbD0q9Eus+m9DIQGhcxiOsR3iCcLj7Jol1b4xKsSId1Kto3buXFKgBttwIt/0SfPInL90cqhnx0Vo1YffPvESyEUIIckaVmBSoL2I2FqQheluZ2MqglgK1ZBCs1HmlqHUZ1B2KfE6KKPNOzhAKaFSNDo00TYysQSBQwhWRIuqa9JxBLR3Ua7EinLaiJ6avME1h//LTZmPJdiguQmSaUq6EP+rH5Zat9S7E4/cQmgyNnEDtaXdDRVF8wFuAX73wZ0IIoShKR8ExiqLcgxkBwvT0NPv37+/k7ZuCWkOgVerkFk+yf3+PHXQvoFgsjuQ1CblqPH/kJPv3pyzZ3+mUztaoy/JrMarXV9Ibbf/ew3D8hePs378fNf5mrvrKb/Ot5SQN98azs55qnte6/HzzwYfbPq/Fh8zvj6dfeppD5UNtv2+z0c719UQ9nDmrUHzyQY5nZzo+xvTZBxkrVDl16BQ1T81Rn+N27193TedmX5Ezr5zp+PrseeVZcswDMU6mT8rr20Q7bYr9j3zlEQ5XD196J+IKrqz4KP/1T/HKZfec9yNXvcSt9SrfeOgA2jHT3X7kzBG0/V3msUsuQj7bR49StUGl1pARH2swGzMnsE7nSszGuhPcMloFn8dFyCd7uUj6jzrbFJ7yEZL5o9bstIuIj6mr2l/FOMr4Z2YJlkosn14msat9Y0wLI2MQCJRxqTIneU2saJIoM6gvwhv0EhwLmg7qFq95JxzeD1/+dfieD2y8E20RIpOUsiXbr0Duheh8lMLJ7ldZDIO2BWrMbOnHhRALzb8vKIoyK4Q404zwaCm0p4Atq94333ztPIQQHwE+AnDDDTeIffv2dXruQ2cxX4KvfI3XXLmXfTdvs3Tf+/fvZxSvyfZXHsGo1Nm371ZL9ld+4Cvs3T7Hvn1XWbK/FqN6fSW90e7v/eTOk5Rypea2+0C/nzuCL8Hrfn7jgywdhBdnO7q/Hn3hUV7gBV7/na8nMhNp+32bjXau7wvbXqBenWbnZJCd3XwGH34eYlcQIkRga8BRn+O2v7eEoP4A+Kq1zq/P4l8TilwFnOCaW67hyn1XdnGmo8l619e42uAAB9ia2MrN+25ef0c3Xwd/fgfzkzm48vvOvZ49Bk9Ps+/OOzn+4HEOcIDrb7ueXft2WfVPcDzy2T565AzT4Sv7uVzMbHPQ3UsOdUarMB72oSgyDkvSf9w+N6HJENlUY3gO6pROcMIZDurIbBzjhQD6iZNdCdSlbIlAoIw71vl7HUE02XsGtRSo1yQ6Hz1foFYU+N4/hj+/A57/LFzx1vV30IzTLOWkQL0e0fkoy8e6z6kfBp144d/OuXgPgM8B72z++Z3AZ1e9/g7F5GZgeVUUiK1o5brJCIpzTEb8ljVJbDQEy4ZsQikZPOGp8PnxCHf+Onzzj6HUxhIZrbP8aXBOBjWYjTHSC/7uCz49DaFxjKwhIz4uhaJQdcWoZxc679xsZDBK5nWVER/nCCQCuP3u9SM+WgTj8MN/A//2y5BetSJCS0FoHEBGfEgkTXK6uTRdZlBfTMs1fWa5zSXPa5DRZFSeZLBEk1HSZ3qo8y7EyLadkSwaAiPjnAxqdVZF14OUT5/s6v1G1iAYLOEdm7T4zGxCaBwqWvuxExfSbDwuuRg1qV48RgnE4Af/Cr7wPtPUsR7aIkSkQL0R0fnoyEV8tCVQK4oSBr4D+PSql38X+A5FUV4G3tD8O8AXgcPAK8BfAO+y7Gw3GVnNLKqlgHqOSdXPUqGMEB0lvqxJvlSlIZAZ35KBE5oKnS9QT18Bu+6CRz688ZuLix3lT4PpYPAEPHgCnSxqGU3UpMrSCU9vAnUwYS5LlOLeJXGPzRAO6Tz/yec7e6OexdDM6+qUAV47KIpCNHmB22M9kq+Bfb8Cn3wnVJvuR20JwuYgsJU7L5skSpxOS6COyYiPi4gGPIR8bs704qDWK4xH5LWVDA51TmXxmBsKZ8GC8WAnDurScgnREI7JoI7MRNC0EJXF7mpqM+KjhHdCCtRroiigznQ/ZpFNEi+JmlTXFk7nr4dbfxE+9R+gvk62enERwpNSoN6A6HwUI2N0nVM/DNoSqIUQmhBiXAixvOq1tBDibiHEZUKINwghMs3XhRDi3UKIXUKIVwshDvTr5IdNruWglo1HVphU/ZSqDYrlWs/7yjYHLYmwnACQDJbwVJiqXqXSbC4EmGLTt/7MXK61HloKIp07qJ3ycFWTKgtH3Yhuu7sbGURQNkncCO/YDPOvDvDsx5/t7I1GhmLefKZJB/X5qHNqew7qFjf+RxjfDV/6FfPvqwTqloNa3sMSp9OqpaWD+mIURWE2FujJQZ2VDmrJgFGTKtnjZfAGNq6Z26GUa1vkM9LmZ8UpE+yhyRCaHqKeWdh44zUoZUsEg2X8U87I7O6KXmI+ZAb1JYkmo2iLGvVq/eIf3vIec9XEfb9z6R1oS9JB3QbR+ShA+wabTYBsd9kDMuLjYiZVs4ncUqH3mI/syqBFXl/JYAlPhQHOd1GP7TTzsB784Ppv1hZXRKh2KWVLjnEDR+ejFAths7CodzGRpWeoEkE0hGOuWVeEJ9l9R4xT3z5F9nC2/ffpGfJZ08nvFAdSu6y5HHE9FAW+9//CkQfgmX9pCtTm6gojYw6i/bGNG69KJHYmZ8iIj/WYjQV7clCntQpj0kgjGSDqnIq2qCHUWShYEPNh5NoWqPW02YDYKfWLy+2iKqI0Cosbb7wGRtYgECzjjkgR9ZJE57rPU9cz0kF9CdSkCgKKZ4oX/9Dlgu//M3jqn+GVr629g+LiSga1Py5r6UsRnY8SHA+uGGNGASlQ94DMzbuYyYgpGFkhUOfkBIBkSKwI1Ava+T94/fvh8b+F9dy/q1yS7eKk2d9oMkqj4abhi5tifqfoGUpVs5GkdJ+uQ2ic+avN6/PsP7Xpoq4aIOoU0w18ER8ev/0jZzqh5aDuKMIqEIUf+Rj8+/vh+CPnRXz4Y35cblmGSZzNSi0tIz7WZDYW4EyuO4G6Wm9QKNWkQC0ZKGpSBaDmm1q/Xm6XDmISnOagBqi5Eyhaqqv3ljNF3O46+Ea3QXvfic5C/lR375UZ1JckmjSdvZc0foQn4Af+HP71XVBYY4WAtoQITVDOl2Vc3jrsuGsH70+9n+SNyWGfStvIkVEPZLUKIZ+bgNc97FPZNKw4qC1olCgzviXDIjJtFmrnOajBnEW/7sfhG//n0m8udi5QG1nDMQ/X1sCl4probuCipzEM81o55Zp1RXiSoLfAltdtaT/mozkINNIlx7iPOkFNqlS1KuV8h8+3mVfD3b8BL3/5PIFa3r8SCeSMCj6Pi4BXDknWYjYWYLFQolZvdPzerCajCCWDpyU8VRi3yEHdvkDtNAc1QMM/hrvaXZRKvZCmUg2aK74ka9NtxIcQYEgH9aVoK3pixx3wmnfAZ+6BxgXPwOIiZREHgWNMXk5BVoM9kNFlrtuFTMmID4kNWDPio8Vt74NnPwWZI2u/uZmJ1QlOc1ADlGqJzh0JzWJP18zvGemgXofwBGhLXPX2q1h8dpHFZ9twq+sZCI5hpA1HuY/aRZ0zJ1c6yqFu8Zp3wuv/K8zfCDQnpeT9K5GwrFeJB70oUiBZk9l4kIaAxS7q6lYU4bgUqCUDpPWs1Csx6aAeBJFJPCLX1VuFlqVSd9C16oboXHcCdVUHl8fMYpdcRMuwtGajxNW8/r9CrQLfXBWx2aiDkaFUMcfrThlDOwUpUPdATq/KeI8LiAW9eN1KV4X0hWT1Cm6XQjQgl5lLBkto0izW1hSow+Nw08/C/b+39ptlBvW6BMeDuP1uinq080y3ShFcHoxmLeOUa9YVyRvgla9x3cRHicaK7cV8GBkIjaGndNkgcQ1akytdNRpRFLjz12BiN2BmUMv7VyIxa2lp9rg0MzHze6KbRokZTUblSQZPS3gy67zBO6gVl+Iowcodn8bvKiAaHcSPtTBy1JDxHuuidilQy/zpdQmOmePBDXu7uD3wg38Bj3wYjn/LfE3PgD9KKW82WHTS590JSIG6B7K6bDxyIS6XwkTEb5GDWrpqJMPBG/TiU31rC9QAt7wbXr4XFl+8+GdaqiOBWgjhKAe1oiiocyr55XDnBZ+egdD4SoM5GZGwDlOXw88/hnd8hne9+++JvPBHiNLy+u9pDgL1tO6o5bHt0pOD+gJkxIdEYpIzKsSk2eOSzMXM74luGiW2BGo5VpEMktB4CJfXxXI21LuDumqYq+e87T0vjbQ5+au4nDN2dE/ME4vlKZzuoIlzi3KOuksK1OuS2A6ZQ1A429n7ZP70uiiKQjQZbc/0EZs3m45/6j+aY0FtESJmg0SQArXdkAJ1D2S1ioyfWINJ1RqBOqdXpENdMjTCU+FLC9SBKNz6C3Df75z/ekWHehX8atvHqRQqiIZwlJsymoySXgzDoa9B+lD7b9TTEBpb6UQsIxI2IBiH7/ifvLztr/HVl2h88Dr49l+Y9+haNN0e0kG9Ni2BekO3RxsYWemglkiguRoxKGu9SzHbHHh30ygxKwVqyRBQXKYRIbMQ6Hyl3IW03NNtmpWcGFE29x23Uqu5OfTXn+z4ve5qgbon2oezshGRSbjpHvj8e83JknYxMmYdLrkkalJtf1Xi5W+Gy78bPvfzUFyA8KQUqG2KFKh7IKtXZQO/NZi0ykGtyWWfkuGxrkANcOPPwMlH4dTj517Tmg0SO3D9O/HhqiZVnnlyN1z1g/CXb4B7fwPKbRQorYzkjIHb58YTlPE/7bDrh1/P57/4Zr6V+a9w8IvwodfC85+7uNA2MjQCCcrLZemgXgNvyEsgHujZQS2EMB3UcoJFIpFxeRug+j2Efe6uHNRprdXLRV5fyWBR51RSp7zdRSOspoN4D8CRK8CmrprmpH4rPPVP1Mq1tt9XNar4PDr4pEC9IXe8H5ZPwFP/1P57jCyEpIN6PaLz0c5MH9/xPyF3HB74PxCZWjEsOWkM7QSkQN0ltXqDZUMKqGsxqfpZKlqTQS0d6pJhEZ4Koy2sI1D7QnDHf4av//a517Qlc6a9A1bcwA5a7q8mVXInNcSt74WfewiKS/D/boAn/uHiLs2rMcyIj5a4J+N/2iOYCHLZd13GIx/XED/2aXjzH8D9vw8ffeO5PDcAPUNVmC5h6aBem47cHpegqlepV+rSQS2RYEZ8yFrv0iiKwmw82FUGdVarEA148LrlcE8yWKLJKItHG6b5oNr55MoKHQrUTnRQA8S/72fZs+NZnv3HJ9t+TylbIhAoS5dvO3h88H1/Cl/5b+1PusgM6g1Rkyr5k3lEu850jx9++G/gzFMQlhEfdkVWLF2ybJhLpKWD+mImVT/pYpl6N80aVpGTDnXJEEnsSpB+Ob2+G+G6d0D6FTj6oPn3loO6A5z4cI0mo9SMmvlvj87C938Y3vaPcOCv4C/vghPfXvuNrYgP2WCuY65825UUThU4/uBx2H03/Oz9cMNPw7/8NPzzj0PqFTByVGpmR2wnDvDaQZ1Te3ZQl7LmZ95Jk1ISyVqUqnVK1QYxGfGxLrOxQHcZ1HqV8Yi/D2ckkaxPZC5C4bQG6kxvMR/SQd0WW7/nDvLGFKc//rG2xT4jaxAIlFDCUkRti9lr4Kafgc/9QntRHzKDekOiySj1cn2lt1BbjO+CH/lbuPL7zHGkAv6ofM7ZCSlQd0lWbwrUMtftIiZVPw1xrjlLt2T1iry+kqGx9bat1Mt1Th9YZ6bc44N9vwpf+y2zWCkuQniqo+O0xConCa6tDu/nOVHnr4f/cC+89ufgE++ET/0MLJ86/436+Q5qSfvsfctevCEvz3z8GfMFlxuufTv8/AFIXg8f/Q44+EWMiilMO3GA1w5tN3RZh5UliQ76zEska9Eye8gIivUxBerOHdQZrSyNHpKhEE1GqRQqNELTAxWojbThyPpFURSqe36AbbFHOPK1I229p5QtEQyWcKnjfT47G3H7L0PxLDzx9xtv2+G960TWHA+2w+67YevNlHIl/FG/o5qiOgEpUHdJVjfFVxnxcTGTTbdGLznURqVOudaQgxbJ0Nh621YA03G6Hlf/iFmEvPLVpoN6oqPjONJBPW/m3V2UO+ZywTU/Cu95FOJb4c9uhfv/wOziDqaDOmg2SZTu087whX3sfctenv/k89Sr9XM/8Abhtl+C9xyAm+5hubYLkBEflyIyF6FwpoDoYYXQioNaTrJIHE6uafaIB2UtvR47JiIs5Mt85bmzHb0vo1UZC0tnmWTwtISnqmeytxxqI9t2BEWtVKOqVx27AmzuHe9m9+5jHPjjr7W1vZExCATKeOKdjVscjdsL3//n8NXfhNyJ9beVGdQbEk1eYjzYJuVc2VHjZ6cgBeouaXXGlgL1xUw1l1n0kkMtJwAkwyY8GWbi8gmOf2MDgdrlhrv+G3ztf5kO6khnDmonZlC3CpJLzpj7I3D3f4d79sPZp+FDN8Fz/3pexIcU9zrnyrddiZE21nbXhMfhzl+lkI8AMuLjUqhzKqIu0JbWyaffgNZSRid95iWStcit1HrSjLAe73zdNq7ZEufnP/4Ejx3LtP2+jFZmLCyvrWTwqHOmQF1qJAbmoNbTOuDcFWCe+CR5/3UETn2ZpeeXNty+FfHhSUiBuiOmr4Sb3wWfe8/6UR8yg3pDWoalblcmlnIlKVDbEEcL1OVanVO5zpfMwTnXR0IWfhcxGTG/KBbz3TfFyMpBi2QTsOW2LZz45omN3ZKv+l5QXPDsv3SXQe2w/KzWwGXDGfPEdvjRv4O3/InZ1O+Fz0NozGzsIuMROmb3m3bjj/l59uPPXnIbPWUO8KSDem02nFxpAxnx4UwURdmiKMp9iqI8ryjKc4qi/GLz9TFFUe5VFOXl5v8TzdcVRVH+r6IoryiK8rSiKK8Z7r/g0jxzcpkP7z/U8ftyzYiPmKz11iXk8/BX77yBuXiQ//CxA7yyWNzwPUIIslpVRuVJhkLrWamXYpAfjEBtpM1nq5Mn2KPf9TNcc+2LPPzBhzfc1oz4KOOb7GzcIgFufS+UluGxv770NjKDekMisxFQundQl3IlafawIY4WqN/2kUd43z8/2dV7M9Lhe0kmVPOa9OKgXln2Ka+vZIhsu30bpVyJxecW199QUeDu3zAdvp0K1NkSgVjAUflZbp+b0GSofZFv5+vhZx+AH/xLGrM3Us6XpbjXBR6/h1f9wKt44TMvUCut3fxTT+t4Ah68UjBak9bkSi+NEmWTRMdSA35ZCHEFcDPwbkVRrgB+BfiaEOIy4GvNvwN8F3BZ8797gA8P/pTb49+fPcPvfelFnjqR6+h9y7LWa5vxiJ+P/dRNeFwK7/yrb7OwgQlEq9Sp1BuMS4FaMgRWjAj5CBR6jfiQDup28V//vczOZzn22W+gLa6/0st0UJfxT3S28lMCuD3wfX9m9iDKHl17G0M6qDfC7XUTngqTP9m9QC0d1PbD0QL1vj1TfPtohtNduKizegWf20XI5+7DmY02IZ+HiN/TUwa1jPiQbAZWcqg3ivkA2HUX3PIec+lXBzj14RpNRjsrSNweuOoHKOnmd66M+OiOq95+FZVChZe/+PKaPzdShnRPr0MrV7NbtweYg0LFpThq1YQEhBBnhBCPN/9cAF4AksBbgY81N/sY8H3NP78V+Fth8ggQVxRldrBn3R4/t28XExEfv/NvLyDWW/J8Aa1aLx6UE2LtsHU8xF//5E3k9Ao/+dePUihVL7ltpijraMnw8EV8+KN+cumgdFAPEo+f+mXfyxV7n+PRDz+67qZGxiAYLKOEpIjaFVOXw62/CJ99DzQaF/9cZlC3RS/Nx506hrY7jhao33rtHELAF57ufGY3p1VJhL0oinNcj50wqfp7FKibESrSxScZIvEdcdQ5deNGiWC6qL/zdzrOoHZqXIWaVLsqSGR+b2/suHMH4akwz/7T2jEfelp3tPtoIyLTERSX0pOD2sgYBOLOWjUhOR9FUbYD1wHfAqaFEC0F5yww3fxzEljdhelk87VNhxrw8t437OHbRzN8+bmFtt+XM6p43Yo0e3TAq+djfPjHr+flhQL/6e8fo1JbQxjh3ErP8YgUqCXDQZ1TSZ/1Swf1gAm+/ie54XWHePRD377kajmAUlbH662CPzrAs7MZr/t5qJXg0b88/3UhzHs3EB/KaY0S3Y4HwRSo/XFp9rAbnmGfwDDZPhHmmi1x/vWJ09xzx66O3pvRK9KVsA6Tkd4E6lyzCaVc9ikZJoqisPX2rRz/xnGEEH2ZkHJqflZ8R5yj9x3tePZ7pamkdFB3hcvj4oofvoInPvoE5UIZv3p+YWekDWe7jzbA5XERng73lEHt1EkpiYmiKBHgU8B7hRD51c8VIYRQFKV9C7K5v3swI0CYnp5m//79Fp5t+8w2BHNhhd/89ON4FoN42piAeeGVMkE33H///X07r2KxOLRr0k9+6kovf/FMmnd86Cvcc7Uf1wX1yVNLpjB15MVn2X/2hb6dh12vr2R92vm910I1XnmmRGPvaR647z7TyNEhN2fP8uRTBym9lNtw22OPHgPgwHMHcL082h68nj5XQnBDqE7Mc4RP/vdPMvvday+8SR87RHmLj2898ED3JzqiWPm9FZz7SV5z76/weFrFCJnX2l3TuUXx8uCDD1lyjFGjk+tbUAqkj6Y7/n2IuqCcL3M2d1Y+g/rAMJ/tjhaoAd56zRz/6wvP8/JCgcum1bbfl9MrxKW795JMqn5eONv9EuisXiXsc+PzjHaBIRl9tt62lef++TmWjy0T3x63fP9G1mBir/M6aL/mP7yGR//kUR7900e5/ddub/t9LQe1FPi656q3X8WjH3qUg589yNU/fvV5P9NTOjPXzgzpzEYDdU7tOYPaiZNSElAUxYspTv+DEOLTzZcXFEWZFUKcaUZ4tJoenAK2rHr7fPO18xBCfAT4CMANN9wg9u3b16/T3xBlboGf/psDnPBv56du3bHh9p849RhTlSL79r2+b+e0f/9+hnlN+sU+ILH/FX7/Swe55rIZfvXNrzrv56nHTsJjT/GG229m23i4b+dh1+srWZ92fu+5q3Ic3X8Ulz/CvpuuhvB45wd6yODmO78LAhu7fL/8+S9zKnSKu954V+fH2WT0+rkS4qe45ZWHeODfMrzt99+2psFm0fcItUbEkZ9fy7+3Esu89oWPwU9+EVwuM5f6mUlHXlvo7Pq6vunizOfOcNvNt+EJtC9NGlmDB3iAy6+9nJv33dzlmUouxTCf7Y5X/77nmllcCnzuqc6WH2X1KmOy8cgl6TXiw5wAkNdXMny23t7MoW4n5qMLSjlnuilnrp1h93ft5pEPPkJVv3SO5oWsNJiTDuqu2XLLFqJbomvGfMiIj43pJS8PzKJa3r/OQzEVgo8CLwghPrDqR58D3tn88zuBz656/R2Kyc3A8qookE3JnXunuHX3OH/8tZdXGiCuR06vyvzpHvi51+/iHbds488fOMxfPXjkvJ9lmysR5VhFMiwicxEKpwuI6Fx3MR+1ihmf4G/PQGakDVm/NFGueRuX73mO9IuLHPryobU3MnLUkCvmLOG1/8n8/7f+zPy/kQWZ7d0W0aQ5+ZQ7muvofa3xoMygth+OF6in1AC37p7gs0+e7qyxiyYF1PWYVP0USjVK1XpX78/qFRJhOWiRDJ+pq6bwR/0c+8axvuy/lHVug4fbfvU29JTO4x99vO33rER8SAdq1yguhavedhWHvnxoJbMRoFFvYGRkk8SNaA26u8XIGI6clJJwK/ATwF2KojzZ/O/NwO8C36EoysvAG5p/B/gicBh4BfgL4F1DOOeOUBSFX3vzq1g2qvzJfWs3Yl1NTq/KWroHFEXhN7/3St505Qy/9W/Pn9dTJ61V8LoVIn7HL5aVDIloMkqj1qDun+quUWIpZ2b4thkNIiPKVjG+C8/0Tq66cYGHP/Dwmpso5Tw1V/urxyXr4HLDWz8ED/wBpF4GPdN2drrT2XbHNhS3wmMfeayj95VyUqC2K44XqAHecs0cxzM6T5zItbW9EIKcUZUN/NZhsplr2q2LOqtXZca3ZFPgcrvYcusWTjx4YuONO6ReqVPVq44Vq7bdvo0tt27h4f/zMPU2J7NkxIc1XPW2q2jUGrzw6XPZpKVcCYRsMLQR0WQUPaVTK1+6+dB6yAxqZyKEeFAIoQghrhZCXNv874tCiLQQ4m4hxGVCiDcIITLN7YUQ4t1CiF1CiFcLIQ4M+9/QDlfOxfjB18zzsYeOcXzVBNhaLBtVGZfXI26Xwh+97Vpu2Jbgff/8FI8cTgOmkWYs7JPN3CVDQ50zxc+KMt6dg7qDBokgV4BdiHLt27ntu09x+N7DLDxzfvNaIQSu6jINj2yQaBnju2Dfr8C//hzoaQiODfuMRoLEzgRX//jVHPizAxQXim2/TwrU9kUK1MCbrprB53HxuSfbe3jmSzXqDSEF1HVoCdSLXQrUMuJDspnYettWlp5fOs9tagXy4Qq3/9rtLB9f5pl/fKat7UvZEr6ID7fX3eczszcz180wvmecZz9+LuZDT5n3t3RQr09r0F08034h3UIIYUZ8yBUAEhvzn9+4F7dL4fe+/OK62+X0ioz4sICA181fvOMGto6H+Jm/PcCLZ/Oymbtk6KhJ81lpVOPdOag7FKilg/oCrvwBJj1PEI43eOQDj5z3o6pWxe8rIXyxIZ2cTbnxZ8ATgG/8oXRQd8Dtv3479XKdh/6g/aaScgxtX6RADagBL2941RRfePo0tXpjw+1buW6y8Ls0kxErHNRy0CLZHPQrh7r1cHWyWLX7u3Yzfc003/zdbyIaG8csyXgEa1AUhavefhVH9x+lcMaMqzDSpjtdDvDWpzXozp/qvBFwpVhB1IXMoJbYmplYgJ+5Yyf/9vQZHjuWXXObSq2BVqlLB7VFxEM+PvbTNxHyufnJv3qUQ4tFmT8tGSork7l6VDqoh0F4HGXH7bzxpw2e/oenV2o9MOPyAoESBOPDOz874nLBW/+E/z979x0nVXX/f/x1trMV2AYsLCC9F0Gpgiii2HsvicaYGH9JjCammsSviYmJsSRq7L0Qe++uSgeR3kFgF7azvZfz+2NmcYGFbXN32vv5eOwD9s6dO5/93NmZs58593MozoRozaBuq8QhiYy5bAwrHlxBRV5Fm+6jAnXgUoHa7axxaRSU17JoR2Gr+xZVugvU6pF8RClNLT7K21+gbmi0lFarL6H4jrTJaYRGhHq8QN3UTzmY31yNMcy4bQYFmwvY/MbRZ9uBawa1inueMfqS0WBhw4INAAeuENAfeEfX9Ed3R/pQq0WNBIsfnnAMyXGR/N+7G1tc46W4yjWWTtBYz2PSunfjqe8dR0VNPTsLKlSgFq+K7RULBkqKox2fQd3Y0OgaH2r8crCxFzNi8Foa6xtZ8eCKA5uri6rp1q0aE6NZvh7XYwBc8AQMPdXbkfiVmb9zz6L+R9tmUatAHbhUoHY7cXgycVFhvLl6b6v7HihQa1B9RK6+dx2bQV1SVYe10FOzasRHhEWF0WdyH/Z85cwM6mAvVo28YCQ9BvVg4V8XtrpYbdV+tUfwlKThSfQa3+tAmw+1+GibphXHy/a2v0DdtOq4nsMS6GIiw/jF3KF8s6eY99blHHZ7SWUdgFp8eNiI3vH896pjiQgNoXdCcI8txLtCw0OJSYmhIC8OctZCVXH7DtCOAnV1cTW20eoKsEMNPZXwkk2MPz+FlQ+tpM79ulu1v4qoqBpC4zTL1xHDToW+k7wdhV9JGpbE6EtGs+I/K6jIb30WdXVxNSbEEOmeFCmBo00FamNMd2PMK8aYzcaYTcaYqcaYPxpj9h6yEnnT/r82xmw3xmwxxsxzLnzPiQwLZf7o3ny4PofqVhbrKqpwvbirQH1kYaEhJMZEdKhA/d0MdeVXfEf6zHSyv84+MLjzhKZiVbB/+hsSFsL0X05n38p9fPvpt0fdt6qoSjOoPWjUJaPYu2wvRd8WqcVHG0X1iCI0MrRjM6iLNINagseFk/oxvFccd32wiZr6g8fWxVXuArUmI3jctEFJfPCzmdx00hBvhyJBLj4tnuzd8TDyHHjzRmhlEsJB2lGgbhq/aAb1IcKjYORZnHBWDlWFVax5dg3Q1OKjhtDuiV4OUOQ7M383k7qqOpbcs6TVfauLq4lMiMSEaCHgQNPWGdT3AR9Ya4cD44BN7u3/ar4SOYAxZiRwCTAKOBV40BjjF6tZnT2+DxW1DXyyKfeo+6mA2jZJsZEdKlAXu/OrFh/iS9JnpNNY30jWsiyPHbOpWKXZlDDu6nHE9o5l4V8XHnU/9aD2rNEXjwZg/UvrqSyoJCQ8hIg4vfYejTGGuD5xHSpQH5hBrQ9ZJAiEhhh+M38EmfureGbx7oNuKz4wg1qvN044JjmW+CgV/8W74tLc75Wn3AGl+2DpQ22/czsK1E0tyvQBewvGXkL30g/pfWwvlt6zFNtoqS6qJiqqmvCeyd6OTuSA5BHJjL54NCv+veLA7/SRVBdXB/0Er0DVaoHaGJMAnAA8DmCtrbXWFh/lLmcDL1lra6y13wLbgeM8EKvjjj8mkdT4SN5cffSFHIoqawkNMcRHhXVRZP4pNT6KHfnlNLZh4bPmvpuhroG1+I706elg8Gibj6YWAXqDhbDIMKb+YirffvbtUT8EUA9qz+o+oDt9p/Zlw0sbqCysJDoxGmM0G6E18WnxHWrx0dSDWh9KSbA4YWgys4Ym88Bn2w4sMg7NJyNorCcSqOL6xLneK8Mi4cKnYOE9kLmi1fsB7SpQ52/MByC+b3wHIw1g6VMxtRWceGMShVsL2fbeNle7vG41RCSleDs6kYOc8PsTqK2obXUWtQrUgastM6gHAvnAk8aYb4wxjxljYty3/cQYs9YY84QxpukdJA3IbHb/LPc2nxcaYjhzbB8ytuQd6I3XkqLKOrp3C9cf8a04d0Ia3xZU8P76w3sPHo16fIsviuoeReqYVI8tlGitZcOCDfSf1Z8wfdgFwLHXH0tUj6gjzqKuq6qjvrpeM6g9bPSlo8ldm8uer/ao/3QbdXQGtVp8SDD6zfwRlNfUc/9n2w5sK1GLD5GAF5cWR2VBJfU19dCjP5x5P7zyPajc3/qd21GgXvvMWnoO6UnKGBVcDxMSAmMvYlCvlcT3jWfJPUtcLT66VROeqBnU4luSRyYz6sJRLH9g+YFJHS1RgTpwtaUqEgZMBG6y1i4zxtwH3Ab8G7gDsO5//wl8v60PbIy5HrgeIDU1lYyMjPZF7pC+DQ3UNVjufTWDWf1aHjRv3VVNJI2OxlxeXu4zOemoeGvpE2u4881v6Fa4mZA2FvRXfuv6o2X9qmXsCHPmQ4BAyK+0X2fPe+jAUHZ/tJvPP/0cE9q552bJ+hL2b9tP8nnJAfNc9MTvVeqZqWx5ZgvvPvkuMQNjDrqtpsDVMigzPzNgctYeTr1u1abVQggUbikkYVxCUOYW2pffEltC0a4iPnn3E8Ji2v4B087VOyEEFq9crA+5HaD3dt80rFccF0/ux7NLdnPV1AEMTIqhuLKO0BBDbKQ+oBUJVHF94gAozy6n+4DuMHw+7FkMr/8QLn3ZVTw9kjYWqIt2FrH7y92c+H8n6n31SMZdQshTp3PcTY/xya8+p76qnmmzajBt/ABApCud8PsT2LBgA0v+tYQ5d8xpcZ/qomp6DtEin4GoLaPCLCDLWrvM/f0rwG3W2gONmo0xjwLvuL/dC/Rrdv++7m0HsdY+AjwCMGnSJDt79ux2B+8Eay3PbPuCTVWR3D57aov7PLx1CWndLLNnT3MsjoyMDHwlJ53xu6Rsfvz8Kkq6D+HcCX3bdJ/l1ZsJ27aTU0+a7dhAI1DyK+3T2fOelJPEq2++yrDuw+hzbJ9OxfL2C28THhPOeb87j4jYwLhawBO/V5VjKrn3lXup/byW0793+kG35W3IYylLGTdlHKNmj+rU4/gjJ1+3ck7M4dtPv6XP4D5B+9rYnvwOjR3Ko688SsOnDZx8z8ltfozyl8spTCzkxBNP7GCUcjR6b/ddP587lLdW7+Ou9zfx3ysnUVRZq6sRRQJcfJqr5Ubp3lJXgRrgpNvhqdNh0b0w8+Yj37mqCLp1b/Ux1jyzBgyMu3Jcp+MNWElDID6NycdV8MWfw8lamknk3FqIVEsU8T0po1MYecFIlt+/nKk3T22xLZ5mUAeuVlt8WGtzgExjzDD3ppOAjcaY3s12OxdY7/7/W8AlxphIY8xAYAiw3IMxO8oYw9nj01j27X6yS1q+rKC4sk4L+LXRqaN6MbJ3PPd9so26hsY23afInV/90SK+Jn1GOtD5PtR1lXVseHkDIy8YGTDFaU+JTozm2B8ey7oX1lG8q/ig25ou9VJ7BM8bfalrscRuieqN3BZ9JvVh4g8msuz+ZeStz2vz/ar3V6v/tASllLgobpg1iA835LL82/0UV9WRoPYeIgGtaQb1QS2xQsPhgiddCybuOsrC2G2YQW0bLWueWcPAOQNJSE/wRMiBa+zFROx4jQnXTiAyspb6xnAI1RUs4ptO+P0J1JTWsPTepS3ergJ14GpLD2qAm4DnjTFrgfHAX4C/G2PWubedCPwcwFq7AVgAbAQ+AG601jZ4OnAnnTW+D9bCO2uyW7y9qLKWnipQt0lIiOHmuUPZVVjJa6uOvPBZc8WVtVogUXxSfN94ug/o3uk+1Jvf2ExNaQ3jrxnvmcACzNSbp2JCDIvuXnTQ9uqiagAtkuiAEeeNIKxbmP7Aa4eT/nISUQlRvHfje1jbtsWAq4qq9AGLBK3rZh5Dr/go7nx3I0UVrhnUIhK44tLcBepDFxVOSINzHoJXfwDlLXzI29gANeUQdfQxyZ6Feyj+tphxV2v2dKtGnw9bP2TKj8fQLbqGuoaY1u8j4iWpY1MZfu5wlt23jOri6oNua6xvpLa8VgXqANWmArW1drW1dpK1dqy19hxrbZG19kpr7Rj3trOstdnN9r/TWjvIWjvMWvu+c+E7Y2BSDOP6JvDG6sM6k2Ctpaiiju4xGlS31UkjUhjXrzv3f7qdmvrWP6soqqzVAonis9JnprPnqz1tLki1ZPVTq+k+oDv9T+jvwcgCR3zfeMZdNY7VT6ymPLf8wPamGdSagep53Xp048frf8zUn7fc2koOF50YzUl/PYndX+5m/YvrW78Drg9Z9PyVYNUtIpRb5g1jTVYJy7/dr6sRRQJct57dCI0MbXlR4SEnw4TL4dXrXAXp5qpLIDIOQkKPevzVT68mIjaCEeeN8GDUASo2GdKn0KPqK064dSwh8erfK75t1h9mUVNSw9L7Dp5FXV3iKlirQB2Y2jqDOuicPT6NDftK2Z538BtqZW0DtQ2NKqC2gzGGX8wdyt7iKhasyGx1f1cLFX0AIL4pfUY6FXkV7N/WhhXIW1CSWcLOT3Yy7upxmBC1sTmS6b+cTn1N/UGXdlUVuQvUmkHtiB7H9CBcr73tMuHaCfSZ3IePfvERNaU1re5fVVSl568EtfMmpDGydzz1jVYzqEUCnDGGuD5xh8+gbjL712Ab4Yu/H7y9De096irr2Pi/ja52eTH6u7xNxl0Ma19mwsUD6Na7d+v7i3hRr/G9GHb2MJbdu+xAURo4MKNaBerApAL1EZwxtjchBt5ave+g7UWVtQBq8dFOM4ckcdyAnjzw2Xaq644+i1ozqMWXpc9096HuYJuPtc+uBQvjrtLliEeTODSRkReMZOWDKw8MSqr2V4GByPhIL0cn4hISGsL8/8ynPLecjD9ltLp/1X61+JDgFhJi+N3prtmOmkEtEvji0+JbnkENrhnS5z8Oq56GHZ99t70NBepNr2+itqxW7T3aY9h82PcN5G9utX2KiC+Y9YdZVBdXs/yB75a0U4E6sKlAfQQp8VFMG5TEG6v3HXQpf1FFHYBm+LaTMYZfnDKUvLIanlu6+4j7qYWK+Lqk4Ul0S+zWoYUSrbWseXoN/Wf1p8cxRx94C8z49QxqSmtY8eAK4Lv2CJp5Lr4kbXKaa8HE+46+YKJttK5FXVSgliA3bXASd503hsuOT/d2KCLisLg+cZTuLT3KDqlw3iPw+g1Q6p4Y1oYC9Zqn1pDQP0Ht8tojvBuMOANWPA7duns7GpFW9Z7Ym6FnDmXJPUsOXKl4oECt8XRAUoH6KM4e34c9+ytZnVl8YFvTDOoeupSo3Y4/JpEZg5N4KGMHFTX1Le6jFiri64wxpM9I79AM6qylWRRuLdTiiG3Ue0JvBp86mKX/WkpdZR3VRSruiW86sGDiT468YGJNaQ1Y9VAXAbjkuHQGp8R6OwwRcVhcmqvFx1HXbhl4Akz+AbzyfWiob7VAXZJZws5P1S6vQ8ZeDAVbIKq7tyMRaZNZt8+iuqia5f92zaLWDOrApgL1Ucwb3YuIsBDebNbm40CBWgXUDrn5lKEUVtTy1OJdLd7+XX41g1p8V/qMdPZv3095TnnrOzez+qnVhMeEM/KCkQ5FFnhm/HoGlfmVfPPEN1Ttr1JxT3zSgQUTvzjygonqoS4iIsEmvm88dZV1FO0oOvqOM38B4dHw2R2tFqjXPqd2eR3WfwbE91WBWvxGn2P7MOT0ISz55xJqympUoA5wKlAfRXxUOCcNT+GdtdnUNzQCUFShAmpnTEzvwZzhKTzy5U5Kq+sOu724sqmFij4AEN/V1Id691dHbldzqLqqOja8tMG1mEusnt9tlT4znX7T+rH47sVU5FWouCc+68CCibe0vGBi1X5XgVpXAYiISLAYdfEowrqF8dnvPjv6jiEhrlYf6/4H6189YoG6qV1e+ox0eg7q6UDEAS4kBE64BfpO8nYkIm026/ZZVO2vYsV/VqhAHeBUoG7F2ePTKCivYfGOQgCK3AXUBK083mE3zx1KSVUdj3/17WG3aYa6+IPeE3sT1i2sXW0+Nr+xmZrSGi3m0k7GGGb8egYle0rIXpWt4p74rAMLJua0vGBidZFrQK2rAEREJFjEp8Uz7ZZpbHh5A1lLs46+c0wSXPAEZK08YoF67/K9FG4p1Hi6MyZ9Dwad6O0oRNosbXIag08bzOJ/LKY0qxQTYjThK0CpQN2K2cOSiYsKO9Dmo7iyloRu4YSFKnUdNTotgVNH9eKJhd8emJHepOkDAM1QF18WGh5K3yl927VQYtNiLgNmDXAusAA15PQhpI5NBdQeQXzb0RZMbGrxoQ9ZREQkmEz/5XRie8Xy0S8+OnovaoD0Ka4i9eCTWrx5zdNrCIsKY+SFapcnEkxm/WEWVYVVfPPYN0R1j8IY9Z8PRKqytiIqPJTTRvfiww05VNc1sL+yTsVTD/j53KGU19bzyFc7D9pe7J5BrRYf4uvSZ6aTuya3xUv5D1WaVcqOj3doMZcOMsYw/bbpgIp74vuOtGDigRnU+pBFRESCSERsBCfecSKZizPZ9Oqm1u8w6hxIHnbY5vrqeta/tJ7h5w4nKkHjQZFg0ndKXwadMoja8lq19whgKlC3wdnj0yivqefTTXkUV9bSI0bF084a1iuOM8f24alFuygo/67AV1TR1INaHwKIb0ufkY5ttGQuyWx13zXPrtFiLp006sJRTLh2AkPPGOrtUESO6qAFE1/6bsHEA4skqsWHiIgEmfHfG0/K6BQ++dUn1NfUd+gYW97eQnVRNeOvGe/Z4ETEL8y6fRag/tOBTAXqNphyTCIpcZG8uXov+ytq1R/ZQ3528hBq6ht4KGPHgW1FlbXERYYRrhYq4uP6Te2HCTWttvmw1rLmqTX0P6G/FnPphJCwEM567Cz6Te3n7VBEWjXh2gn0mdSHj37x3YKJVfurCI0IJaxbmJejExER6VohoSHM/cdcinYWseLBFR06xpqn1xCXFsfAkwZ6ODoR8Qf9pvVjxPkj6DWxl7dDEYeoCtgGoSGGM8f1IWNLPnuLqzS710OOSY7l/Il9eXbpbnJKXJc+F1fW0j1G+RXfFxEbQe8JvVtdKDFraRaFWwsZd41mT4sEi5DQEOY/6Fow8Ys/fwG4WnxE9VDPPBERCU6D5w1m0LxBfHnHl1Ttr2rXfctzy9n+wXbGXjGWEE1kEglaF/7vQs569CxvhyEO0at7G509vg+1DY0UV9bRUzOoPeb/nTSExkbLfz7fDrgWSdQMdfEX/Wb0Y++yvUe9VHH1U6sJjw5n5AVazEUkmKRNTmPidRNZeu9S8jbkUV1Urf7TIiIS1E75xynUlNTwxR1ftOt+655fh22wjLtaEz5EgpkmegQ2FajbaExaAsckxQCoB7UH9esZzcWT+/HSij1kFVW6ZlCrQC1+ov/M/tRX15O9KrvF2+uq6tjw0gZGXjCSyLjILo5ORLytacHE93/yPlX7q9R/WkREglrK6BTGf388K/6zgv3b97f5fmueXkOfyX1IHpHsYHQiIuJNKlC3kTGGs8b3AbSAn6f9ZM5gjDE88Ol29wxq5Vf8Q7/prn7IR+pDvfmNzdSU1qi9h0iQik6KZs5f5rArYxe7v9pNVA8t6iIiIsFtzh1zCI0I5ZPbPmnT/jmrc8hdm6vFEUVEApwK1O1w3oS+xEWFMSw1ztuhBJTeCd24/Ph0XlmVRU5JtVp8iN+ITY0lcWjiEQvUa55aQ0L/BAbMGtC1gYmIz5h43UT6TOpDY12jZlCLiEjQi+0Vy/RfTWfTq5taXcsFXO3yQiNCGX3J6C6ITkREvEUF6nZIT4xm7e2nMGlAT2+HEnB+NHsQ4aGG2oZGzVAXv5I+M509i/ZgG+1B20uzStnx8Q7GXT0OE6JeWSLBqmnBRAx0S1KBWkREZNovphHXJ46PfvHRYWPo5hrqGlj3wjqGnjlU6ziIiAQ4FajbSU3ZnZESF8XV0wYAaAa1+JX0GelUF1WTvzH/oO1rnl0DFsZdpfYeIsEubXIal793OVNvnurtUERERLwuPDqcOXfOYe/yvWxYsOGI+21/fzuV+ZVaHFFEJAioQC0+44YTBjFjcBKTNUNd/Ej6zHSAgy5RtNay5qk19D+hPz0H6fksIjD41MEk9EvwdhgiIiI+YdxV4+g1vhef3PYJ9dX1Le6z5uk1RCdHM/jUwV0cnYiIdDUVqMVn9IiJ4Lnrjmdkn3hvhyLSZj2O6UFsr9iD+lDvXbaXwq2Fmu0hIiIiItICE2I45Z+nULK7hGX3Lzvs9srCSra8vYUxl48hNDzUCxGKiEhXUoFaRKQTjDGkz0xn91e7D2xb/dRqwqPDGXnhSC9GJiIiIiLiuwbOGciQ04fw1Z1fUZFfcdBt619aT2NdI+OvGe+d4EREpEupQC0i0knpM9IpzSylZE8JdVV1rH9pPSPOH0FkXKS3QxMRERER8Vlz755LbUUtX/z5i4O2r3l6DanjUuk1rpeXIhMRka6kArWISCc19aHe/dVutry5hZqSGs32EBERERFpRfKIZI69/li+fvhrCrYUAJC/MZ99K/apXZ6ISBBRgVpEpJNSx6YSERfBnoV7WP3UahLSExgwe4C3wxIRERER8Xmz/zibsG5hfPLLTwBY/fRqTKhhzGVjvByZiIh0FRWoRUQ6KSQ0hH7T+rH17a3s/Hgn464ehwkx3g5LRERERMTnxaTEMOPXM9jy1hZ2frqTdc+tY8hpQ4hNjfV2aCIi0kVUoBYR8YD0memU7S3DNlpdjigiIiIi0g5TfjaFhPQEXrn4Fcr2lWk8LSISZNpUoDbGdDfGvGKM2WyM2WSMmWqM6WmM+dgYs839bw/3vsYYc78xZrsxZq0xZqKzP4KIiPelz3D1oU6fmU7PQT29HI2IiIiIiP8I7xbOnL/MoaqwiqgeUQw9c6i3QxIRkS7U1hnU9wEfWGuHA+OATcBtwKfW2iHAp+7vAU4Dhri/rgce8mjEIiI+qO/xfek9sTfTbpnm7VBERERERPzOmEvHMPSMoUz5+RTCIsO8HY6IiHShVl/1jTEJwAnANQDW2lqg1hhzNjDbvdvTQAbwK+Bs4BlrrQWWumdf97bWZns8ehERHxEWFcb1X1/v7TBERERERPySCTFc+val3g5DRES8oC0zqAcC+cCTxphvjDGPGWNigNRmReccINX9/zQgs9n9s9zbREREREREREREREQOaMt1M2HAROAma+0yY8x9fNfOAwBrrTXG2PY8sDHmelwtQEhNTSUjI6M9dw945eXlyomDlN/gpPPuLOXXWcqvs5Rf/6dzKCIiIiLin9pSoM4Csqy1y9zfv4KrQJ3b1LrDGNMbyHPfvhfo1+z+fd3bDmKtfQR4BGDSpEl29uzZHfsJAlRGRgbKiXOU3+Ck8+4s5ddZyq+zlF//p3MoIiIiIuKfWm3xYa3NATKNMcPcm04CNgJvAVe7t10NvOn+/1vAVcZlClCi/tMiIiIiIiIiIiIicqi2Lo17E/C8MSYC2Al8D1dxe4Ex5lpgN3CRe9/3gPnAdqDSva+IiIiIiIiIiIiIyEHaVKC21q4GJrVw00kt7GuBGzsXloiIiIiIiIiIiIgEulZbfIiIiIiISOcYY54wxuQZY9Y32zbeGLPUGLPaGLPSGHOce7sxxtxvjNlujFlrjJnovchFRERERJylArWIiIiIiPOeAk49ZNvfgT9Za8cDf3B/D3AaMMT9dT3wUNeEKCIiIiLS9VSgFhERERFxmLX2S2D/oZuBePf/E4B97v+fDTxjXZYC3Y0xvbsmUhERERGRrtXWRRJFRERERMSzfgZ8aIz5B66JI9Pc29OAzGb7Zbm3ZTe/szHmelwzrElNTSUjI8PhcP1LeXm5cuIg5Tc46bw7S/l1lvLrLOXX/3nzHKpALSIiIiLiHT8Cfm6tfdUYcxHwOHByW+9srX0EeARg0qRJdvbs2Y4E6a8yMjJQTpyj/AYnnXdnKb/OUn6dpfz6P2+eQ2Ot9coDHxSEMfnAbm/H4WOSgAJvBxHAlN/gpPPuLOXXWcqvs5Rf/+epc9jfWpvsgeMcxhgzAHjHWjva/X0J0N1aa40xBiix1sYbY/4LZFhrX3TvtwWYba3NPsqxNZ4+nH6vnaX8Biedd2cpv85Sfp2l/Po/r42nfWIGtVN/BPgzY8xKa+0kb8cRqJTf4KTz7izl11nKr7OUX//np+dwHzALyADmANvc298CfmKMeQk4Hlfh+ojFadB4uiV++pzwG8pvcNJ5d5by6yzl11nKr//z5jn0iQK1iIiIiEggM8a8CMwGkowxWcDtwA+A+4wxYUA17n7SwHvAfGA7UAl8r8sDFhERERHpIipQi4iIiIg4zFp76RFuOraFfS1wo7MRiYiIiIj4hhBvByBH9Ii3Awhwym9w0nl3lvLrLOXXWcqv/9M5lEPpOeEs5Tc46bw7S/l1lvLrLOXX/3ntHPrEIokiIiIiIiIiIiIiEnw0g1pEREREREREREREvEIFahERERERERERERHxChWoRTrIGGO8HYNIoNHvlfgzPX9FRNpHr5sinqffK/Fnev4GLxWoA4wxZoox5lRvxxGojDFJxpgEAGutNcbodygIGGPCvR1DIDPGDDLGTIIDv1calHiQMWaWMeYKb8cRqIwxfYwx/UDPX3+l13g5lMbTztJ4OjjptdZZGk87S+NpZ2k87f888RqvwUAAMcbMAx4CCg7Zrl9uDzDGnAa8BzxqjHkFwFrb6N2oxGnGmLnAr4wxA70dSyAyxpwOvA3cbYxZChqUeJL7feFfwLeHbFd+PcAYMx/X+8JjxpjPQc9ff6PXeDmUxtPO0ng6OOm11lkaTztL42lnaTzt/zz1Gq8CdYAwxswGnge+b61daYyJbvqF1i935xljTsT1pvRb4AdArDHmNu9GJU4zxhyP683yWOB8Dao9yxgzCvg/4Apr7YlAnjHmGHC9bnk1uABgjDkBeBW42lq7yBgTZ4yJBeXXE9z5vQf4ibV2HlBjjHkAlF9/odd4OZTG087SeDo46bXWWRpPO0vjaWdpPO3/PPkarwJ1AHAPlpOAnUC4+wXzGeAZY8zrxpgoDao7xrhEAiOBX1trP7bWlgCPA3HejU66gAWuAu4F0oCLmr/g6neq08qBb4B8Y0wiMB240xjzgXuwrRx3TjWQAww0xnQDXgaeNsa8Z4wZAcpvRxljwoBU4HfW2oXuzb8HQr0XlXSAXuPlAI2nnaPxdNDTa62zNJ52lsbTDtF4OmB47DVeBeoA4P5k6X1cn5z+FdgFLAJ+BzQCrzfbT9rButQArwDLm/1y5QBTvBeZdAVr7XLgDWvtF8A7uN5AL9HMD4+pwPUa9Rdcr1l3WWsvBTbimmGl161OcD9/L8H13pAHvItr8LAFuM+9j/LbAdbaelzvuwubba4EJhljIkC9Nv2BXuOlOY2nnaPxdHDTa63jNJ52kMbTztF4OjB48jU+zNPBSdcxxvS31u4GsNZWGGM+BboBidbaB937XAy8aoyJt9aWejFcv2OMmY5r0LwF+MZau7fZzVVArHu/64B0a+0fuj5K8TRjzCnAPGATsMpauwrAWvupcS3icxow1xjTH+gJ/Mhrwfohd35PATYDXwA3AgNwFQDeBLDW3myM+cgYM8Rau81bsfojY8wwINdaWwzgvkT9emCytfY/7t1+7p710cdau89bsfoj9+X/JwOZwFfW2o3u7aG43hdCrbW1xpjvA6ONMb/QHy2+Ra/xciiNp52l8XRw0mutszSedpbG087SeNr/OfUarxnUfsoYcxbwrTHm903brLUVwBvAf5vtehmQiGvavbSRMeYMXHnsC5wNXGuMiWo242MnsMYYcyFwPa4ZIeLnjKsH1r+BLCAFeMX9XADAWvsx8BhwJa5Pzh/1Rpz+qll+9+L6ZPVD4BRr7RZgO3CsMSbJGHOu+/YirwXrh9zP1U3AbcaYpKbt1tqluPLetN+luC5jr+ryIP2YO7/3A7XAQOAWY0wygLW2AddsyzXuIssNwNMaTPsWvcbLoTSedpbG08FJr7XO0njaWRpPO0vjaf/n5Gu8ZlD7IWNMCnA+rgVGLjDG1Ftr/wrgvnwO96cWlwO/BC621pZ5K15/Y4wZAvwR1wI5y40xJwG3Af+21lY37QZcB8wAzrfWbvJKsOJpA4C3rbX/AjDGrAOeNcZcYa19173PMGAirk/QN3onTL81gIPzuxZXb89zcF0u93+4Xtv641ropcBLcfodY0wCrpkIvwEmADcZY+631hbCgcW9QnEVWW4DLrLW6g+WNjLGpAM/BW6w1i42xgzH9XyNAfLdu0UBFwMnAGdYazd7JVg5mgHoNV7cNJ52lsbTQW0Aeq110gA0nnaExtPO0ng6YAzAodd4zaD2T/nAf92D6EuAK40xvz5kn3hcsxUutNZu6OoA/dy3uBq8rwXXZQq4enuNa7ZPDbAAOEeD6YCSj+sSFACstW/j+uTvHmPMePfmLcAkDaY7pKX8Xg08gqsP5TXALcDZ1tp13gjQX1n3YlPW2ruAW4FJuAbVyc12C3d/na/3hXbbCzyEaxEi3IPlOmBm0w7W2krgQeB0DaZ9ll7jpTmNp52l8XTw0mutszSedojG047TeDowOPYabzRb3r8YY8yhlzi4Zyi8CTxnrf2LMeZkXIsi5FhrG70Rp78yxoQ0z5kxJtRa22CMeQ140lr7tjHmOFz5rW82A0QCgHEtxvAJsNFae0Oz7X9yb3vZa8EFgKPk9w5gvfLrOe4ZCg8BK621t7sv89xgrd3q5dD8zqHvu83eF/6DK79PGmPm4HpfKLCuBV/EB+k1XppoPO0sjaeDm15rnaXxdNfReNpzNJ4OHE6+xmsGtZ9pYTAdZl2LHpwNnG+M+RBXT59wDabbr4WcNf2OZALZxpgzgb8BcRpMBxb3H1O1uJr9n2CM+W+zHondgFHei87/tZLfSJRfj3G/L+zBtRjFMGPMJ7hWcdcn0h1w6PsurkvSAfbgel84HbgTiNBg2nfpNV6a03jaWRpPBy+91jpL4+muo/G0Z2k8HRicfo1XD2o/0zQjoekTqKZfXmvtNmPMO7hW8J1t3auRS/u0kN86902FuJq71wLXWWuzvRelOMF93iOttVXGmInAq8BTxhgLHIerl5t0kPLrvBbeF/YYYzbg6vU2y2oF9045NL+4Lk1/DNiHq8fqHu9FJ0fjPnd6DZIDNJ52lsbTwUuvtc5Sfp2n8bSzNJ72X10xnlaB2scZ14Iix+FazXSR+wUywlpba4yZBIyz1j5ujBkMDAdOstau92LIfqUN+Z1grX0UVw/CkcBIa+0O70UsnmCMGQDkWmurmm0z1toaY8wsYAhwFjAN6AXcqcFI2ym/zjpKfq0xZhow01r7N2NML6APcLJVj7w2a0N+T7Cu3oR1uHoQXmat3e6daKUlxpiZwGQgF/jcWrvPfSmpXoOClMbTztJ4OjhpvOcs5ddZGk87S+Np/+eN8bRafPgw4+rB8yCuX9gJwEfGmDHuwd5M4HFcA0GAHcAPrLVrvBKsH2pnfn8LjNFg2v8ZY84CdgI/MsbENW13v1lOBO4B8q21Ddbar6y1/9Ngr+2UX2e1Ib8PAOvd23KAm621q70Rqz9qT35xzQKcosG0bzHGnAH8G9dAeSrwW2NMrHX1OdRrUBDSeNpZGk8HJ433nKX8OkvjaWdpPO3/vDWe1iKJPswYczPQ3Vr7B/f3NwG/B2YBvYEY61pkJNRa2+DFUP1SO/Ibbr+7NFH8mDEmEfg7UACMAD7GtVhPufv2M4AKa+3nTZ/wei9a/6P8Oqud+T1ogSppXTvzq/cFH2SMGQQ8hesPyRXuAfQvgRuttYV6DQpOGk87S+Pp4KPxnrOUX2dpPO0sjaf9nzfH02rx4YOaneRMoH/TdmvtA8bVf/wF4FRrba57Xw2m26ED+dWLZuAoBR6y1q50X3L6d8AaY5611pZYa9+BA4tiaHGG9lN+naX8Oqs9+dX7gm/KAx4Gvgaw1q4yxsTjuvTw7WbnUIXIIKDxtLM0ng5qGo84S/l1lvLrLI2n/Z/XxtNq8eGDmn0C8SUwxxjzazgwEHwA+AKYdMi+0kbKb/Byvwmucv9/JfAr4DzgKgBjzGnGmN4ajHSM8uss5ddZyq//s9aWAS9b1wIuTZMw8oF6AGPMDGNMkgqRwUHjPWcpv8FL75fOUn6dpfw6S/n1f94cT6tA7UPcv6z3N31vrc0FzgZuMsb8utngLgwY5I0Y/ZnyG5wOPe+AcW8PsdauwPWmOdcY8xrwH6CbF8L0W8qvs5RfZym//q+Fc2gP+TcH2G+MOQf4KxDZheGJF2i85yzlNzjp/dJZyq+zlF9nKb/+z1fG0+pB7SOMayXTV4B9wGZr7RXNbjvGfdtiXIO9E4DzrLWbvRGrP1J+g9ORznvT5ShNl6caY+4BrgDmWGvXH+WQ0ozy6yzl11nKr/87yjk80DPSGPMn4AKgEviezmFg03jPWcpvcNL7pbOUX2cpv85Sfv2fL42nNYPad8QAfwSmA5HGmBeabrDW7gROBd4G1gLnarDXbspvcGrxvLvfLEPdb5ZpQBpwit4s2035dZby6yzl1/8d6Rw2GmPC3fvUAonApTqHQUHjPWcpv8FJ75fOUn6dpfw6S/n1fz4zntYMah9ijIm31pYaY3riakreYK29tPlt3o3Qvym/wamV897TWrvfGBNjra3wbqT+Sfl1lvLrLOXX/7VyDqNwDbp7WGu3ezNO6Toa7zlL+Q1Oer90lvLrLOXXWcqv//OV8bQK1D7KGJMEPAQUAkuBocCfrbXVXg0sQCi/wamF8z4MuN1aW+vVwAKE8uss5ddZyq//a+EcjgB+Y7UoYtDSeM9Zym9w0vuls5RfZym/zlJ+/Z83x9MqUHtRUz+eVvbZAqQAs6y1a7smssCg/AYnnXdnKb/OUn6dpfz6P51DOZSeE85SfoOTzruzlF9nKb/OUn79n6+eQ/Wg9gJjTE9jTHTzJ4QxJsz9b29jTJz7/+cA4cAM/VK3nfIbnHTenaX8Okv5dZby6/90DuVQek44S/kNTjrvzlJ+naX8Okv59X++fg5VoO5ixpizgaeB54wxVxpjJgFYa+uNMScC/wGS3LvXAqdZazd4J1r/o/wGJ513Zym/zlJ+naX8+j+dQzmUnhPOUn6Dk867s5RfZym/zlJ+/Z8/nEO1+OhCxpihwKvAxbhO/JlAX+BBXL1dvgLutta+6rUg/ZjyG5x03p2l/DpL+XWW8uv/dA7lUHpOOEv5DU46785Sfp2l/DpL+fV//nIOw7z54EEoCciy1m4EMMb0AH4MXATkA2dba3ONMQagtZ4wchjlNzjpvDtL+XWW8uss5df/6RzKofSccJbyG5x03p2l/DpL+XWW8uv//OIcqsVH11oPlBpjfuf+fgKwFagGBlhrc8H1ZNAvdYcov8FJ591Zyq+zlF9nKb/+T+dQDqXnhLOU3+Ck8+4s5ddZyq+zlF//5xfnUC0+HGaM6QuUWWtLjKv5+InAjbg+HLDW2rONMZcCpwLX6Be6fZTf4KTz7izl11nKr7OUX/+ncyiH0nPCWcpvcNJ5d5by6yzl11nKr//zx3OoFh8OMq6VL+8CHjHGPGutzQc+NsZ8CqTgmkoPEAcU+8ITwp8ov8FJ591Zyq+zlF9nKb/+T+dQDqXnhLOU3+Ck8+4s5ddZyq+zlF//56/nUDOoHWKMSQZeAvYAWUAe8JL7idF8v58B3wOusNau6+o4/ZXyG5x03p2l/DpL+XWW8uv/dA7lUHpOOEv5DU46785Sfp2l/DpL+fV//nwO1YPaOSXAz4AbgNXAYOASY0wKgDGu5uNAKHC5rzwh/IjyG5x03p2l/DpL+XWW8uv/dA7lUHpOOEv5DU46785Sfp2l/DpL+fV/fnsONYPaw4wx6UAOEGatrWy2/XxgFrDNWvuAMWaitXaVt+L0V8pvcNJ5d5by6yzl11nKr//TOZRD6TnhLOU3OOm8O0v5dZby6yzl1/8FwjnUDGoPMsacDrwH/Bt40hgzvOk2a+2rwBdAsjHmDeALY0yaVwL1U8pvcNJ5d5by6yzl11nKr//TOZRD6TnhLOU3OOm8O0v5dZby6yzl1/8FzDm01uqrk1+AAfoB64DZQCpwC5ANjDpk3+eAXcAYb8ftL1/Kb3B+6bwrv/78pfwqv/rSOdSXnhO+9KX8BueXzrvy689fyq/yq6/gOodhSKdZa60xZh+wBNgG5Flr/2GMqQM+MsacaK3daozpDUwEzrE+1OfF1ym/wUnn3VnKr7OUX2cpv/5P51AOpeeEs5Tf4KTz7izl11nKr7OUX/8XaOdQPag7yRgzGOgB7AQeBL621v692e2/BEYCP7LWVhljYq215d6J1v8ov8FJ591Zyq+zlF9nKb/+T+dQDqXnhLOU3+Ck8+4s5ddZyq+zlF//F4jnUDOoO8EYcwbwF6AI15T654H7jTGh1tq/undbAPwaqAbw9SeEL1F+g5POu7OUX2cpv85Sfv2fzqEcSs8JZym/wUnn3VnKr7OUX2cpv/4vUM+hCtQdZIyZBtwNXGat/cYY8whwHDANWGqMCQVeAmYAxwLdcT15pA2U3+Ck8+4s5ddZyq+zlF//p3Moh9JzwlnKb3DSeXeW8uss5ddZyq//C+RzqBYfHeR+Ugy11j7l/j4ZeMpae7ox5hjgd7g+qTgeuMaX+7z4IuU3OOm8O0v5dZby6yzl1//pHMqh9JxwlvIbnHTenaX8Okv5dZby6/8C+RyqQN1B7k8lYqy1pe7/9wbeBuZba7ONMf2Bve59SrwZqz9SfoOTzruzlF9nKb/OUn79n86hHErPCWcpv8FJ591Zyq+zlF9nKb/+L5DPYYi3A/BX1toGa22p+1sDFAP73U+IK4DfAOH+9oTwFcpvcNJ5d5by6yzl11nKr//TOZRD6TnhLOU3OOm8O0v5dZby6yzl1/8F8jnUDGoPMsY8BWQDp+BnU+n9gfIbnHTenaX8Okv5dZby6/90DuVQek44S/kNTjrvzlJ+naX8Okv59X+Bcg5VoPYAY4wBwoFN7n9PstZu825UgUP5DU46785Sfp2l/DpL+fV/OodyKD0nnKX8Biedd2cpv85Sfp2l/Pq/QDuHKlB7kDHmGmCFtXaDt2MJRMpvcNJ5d5by6yzl11nKr//TOZRD6TnhLOU3OOm8O0v5dZby6yzl1/8FyjlUgdqDjDHGKqGOUX6Dk867s5RfZym/zlJ+/Z/OoRxKzwlnKb/BSefdWcqvs5RfZym//i9QzqEK1CIiIiIiIiIiIiLiFSHeDkBEREREREREREREgpMK1CIiIiIiIiIiIiLiFSpQi4iIiIiIiIiIiIhXqEAtIiIiIiIiIiIiIl6hArWIiIiIiIiIiIiIeIUK1CIiIiIiIiIiIiLiFSpQi4iIiIiIiIiIiIhXqEAtIiIiIiIiIiIiIl6hArWIiABgjMkwxlzn7ThERERERPyRxtMiIh2jArWIiIiIiIiIiIiIeIUK1CIiHmSM+ZUxZq8xpswYs8UYc5IxJsQYc5sxZocxptAYs8AY07PZfa4yxux23/Z7Y8wuY8zJ7tv+aIz5nzHmOfcx1xljhhpjfm2MyTPGZBpjTml2rARjzOPGmGx3HP9njAl133aNMWahMeYfxpgiY8y3xpjT3LfdCcwE/m2MKTfG/LuVn3OUMeZjY8x+Y0yuMeY3TuRTRERERIJLEI2n73M/dqkx5mtjzEwn8iki4g9UoBYR8RBjzDDgJ8Bka20cMA/YBdwEnAPMAvoARcB/3PcZCTwIXA70BhKAtEMOfSbwLNAD+Ab4ENfrdxrwZ+C/zfZ9CqgHBgMTgFOA5pcZHg9sAZKAvwOPG2OMtfa3wFfAT6y1sdbanxzl54wDPgE+cP88g4FPW02QiIiIiMhRBMt42m0FMB7oCbwA/M8YE9XKfUREApIK1CIintMARAIjjTHh1tpd1todwA3Ab621WdbaGuCPwAXGmDDgAuBta+1Ca20t8AfAHnLcr6y1H1pr64H/AcnAXdbaOuAlYIAxprsxJhWYD/zMWlthrc0D/gVc0uxYu621j1prG4CncQ3iU9v5c54B5Fhr/2mtrbbWlllrl7XzGCIiIiIihwqW8TTW2uestYXW2npr7T/dP/ew9h5HRCQQhHk7ABGRQGGt3W6M+RmuAfMoY8yHwM1Af+B1Y0xjs90bcA1k+wCZzY5RaYwpPOTQuc3+XwUUuAfETd8DxLqPFQ5kG2Oa9g9pfnwg55DHarpve/QDdrTzPiIiIiIiRxVE42mMMbcA17of0wLxuGZli4gEHc2gFhHxIGvtC9baGbgG0Rb4G64B7WnW2u7NvqKstXuBbKBv0/2NMd2AxA4+fCZQAyQ1e5x4a+2otobfjsc5pkMRioiIiIgcRTCMp939pn8JXAT0sNZ2B0oAc7T7iYgEKhWoRUQ8xBgzzBgzxxgTCVTjmo3RCDwM3GmM6e/eL9kYc7b7bq8AZxpjphljInDNFunQwNRamw18BPzTGBPvXkxmkDFmVhsPkUvbCs/vAL2NMT8zxkQaY+KMMcd3JGYRERERkSZBNJ6Ow9XnOh8IM8b8AdcMahGRoKQCtYiI50QCdwEFuC79SwF+DdwHvAV8ZIwpA5biWlwFa+0GXIu+vIRr9kc5kIdr5kZHXAVEABtxLR7zCq6+eG1xH65efkXGmPuPtJO1tgyYi2uxmRxgG3BiB+MVEREREWkSFONpXIs0fgBsBXbjKsZnHmV/EZGAZqxt6xXdIiLiNGNMLFAMDLHWfuvlcERERERE/IrG0yIi/kczqEVEvMwYc6YxJtoYEwP8A1gH7PJuVCIiIiIi/kHjaRER/6YCtYiI950N7HN/DQEusV6+vMUYM9MYU97SlzfjEhERERFpgcbTIiJ+TC0+RERERERERERERMQrNINaRERERERERERERLwirLUdjDH9gGeAVMACj1hr7zPGXAj8ERgBHGetXdnsPr8GrgUagP9nrf3waI+RlJRkBwwY0NGfISBVVFQQExPj7TAClvIbnHTenaX8Okv5dZby6/88dQ6//vrrAmttsgdC6lIaTx9Ov9fOUn6Dk867s5RfZym/zlJ+/Z83x9OtFqiBeuAX1tpVxpg44GtjzMfAeuA84L/NdzbGjAQuAUYBfYBPjDFDrbUNR3qAAQMGsHLlyiPdHJQyMjKYPXu2t8MIWMpvcNJ5d5by6yzl11nKr//z1Dk0xuzufDRdT+Ppw+n32lnKb3DSeXeW8uss5ddZyq//8+Z4utUWH9babGvtKvf/y4BNQJq1dpO1dksLdzkbeMlaW2Ot/RbYDhzX3sBEREREREREREREJLC1ZQb1AcaYAcAEYNlRdksDljb7Psu97dBjXQ9cD5CamkpGRkZ7Qgl45eXlyomDlN/gpPPuLOXXWcqvs5Rf/6dzKCIiIiLin9pcoDbGxAKvAj+z1pZ29oGttY8AjwBMmjTJ6jKAg+nSCGcpv8FJ591Zyq+zlF9nKb/+T+dQRERERMQ/talAbYwJx1Wcft5a+1oru+8F+jX7vq97W7vU1dWRlZVFdXV1e+8aEBISEti0aVOb94+KiqJv376Eh4c7GJWIiIiI+AuNpzWeFhEREfEHrRaojTEGeBzYZK29pw3HfAt4wRhzD65FEocAy9sbWFZWFnFxcQwYMABXCMGlrKyMuLi4Nu1rraWwsJCsrCwGDhzocGQiIiIi4g80ntZ4WkRERMQftLpIIjAduBKYY4xZ7f6ab4w51xiTBUwF3jXGfAhgrd0ALAA2Ah8AN1prG9obWHV1NYmJiUE5mG4vYwyJiYlBOztGRERERA6n8XTbaTwtIiIi4j2tzqC21i4EjjSqff0I97kTuLMTcQFoMN0OypWIiIiIHEpjxLZTrkRERES8oy0zqEVEREREREREREREPE4F6iMoLi7mwQcfbPf95s+fT3FxsecDEhERERHxMxpTi4iIiEhrVKA+giMNpuvr6496v/fee4/u3bs7FJWIiIiIiP/QmFpEREREWqMC9RHcdttt7Nixg/HjxzN58mRmzpzJWWedxciRIwE455xzOPbYYxk1ahSPPPLIgfsNGDCAgoICdu3axYgRI/jBD37AqFGjOOWUU6iqqvLWjyMiIiLSaTlrctj+4XZvhyF+RGNqERERCVTWWlY9voqSPSXeDsXvtbpIoi/409sb2Liv1KPHHNknntvPHHXE2++66y7Wr1/P6tWrycjI4PTTT2f9+vUMHDgQgCeeeIKePXtSVVXF5MmTOf/880lMTDzoGNu2bePFF1/k0Ucf5aKLLuLVV1/liiuu8OjPISIiItJV3r3hXfZv388tebdoQTk/443xNGhMLSIiIoHry//7kow/ZDD5J5OZ/8B8b4fj1/yiQO0LjjvuuAMDaYD777+f119/HYDMzEy2bdt22GB64MCBjB8/HoBjjz2WXbt2dVW4IiIiIh5VvLuYrKVZAFTkVhDbK9bLEYk/0phaREREAsH6l9aT8YcMTKhh9xe7vR2O3/OLAnVrMzO6QkxMzIH/Z2Rk8Mknn7BkyRKio6OZPXs21dXVh90nMjLywP9DQ0N1OaKIiIj4rQ0LNhz4f+7aXBWo/YwvjKdBY2oRERHxf5lLMnnjmjdIn5HOgDkD+PLPX1JZUEl0UrS3Q/Nb6kF9BHFxcZSVlbV4W0lJCT169CA6OprNmzezdOnSLo5OREREpGttXLCRnkN6ApC7LtfL0fgfY0x3Y8wrxpjNxphNxpipxpiexpiPjTHb3P/2cO9rjDH3G2O2G2PWGmMmejv+jtKYWkRERAJJ0bdFvHT2S8SnxXPx6xczeN5gAHZ/qVnUnaEC9REkJiYyffp0Ro8eza233nrQbaeeeir19fWMGDGC2267jSlTpngpShERERHn7d+xn30r93HsD48ltncseWvzvB2SP7oP+MBaOxwYB2wCbgM+tdYOAT51fw9wGjDE/XU98FDXh+sZGlOLiIhIoKguqebFM16ksa6Ry969jOikaPpM6kN4dDi7MnZ5Ozy/5hctPrzlhRdeaHF7ZGQk77//fou3NfXES0pKYv369Qe233LLLR6PT0RERKQrNLX3GHXhKHZ+tFMzqNvJGJMAnABcA2CtrQVqjTFnA7Pduz0NZAC/As4GnrHWWmCpe/Z1b2ttdheH7hEaU4uIiIi/a6xv5JWLXqFwayFXfHgFScOTAAiNCKXf9H4qUHeSCtQiIiIiclQbXt5A36l9SUhPIGVMCsv/vZzG+kZCwnQxXhsNBPKBJ40x44CvgZ8Cqc2KzjlAqvv/aUBms/tnubcdVKA2xlyPa4Y1qampZGRkHPSgCQkJR2yvEQwaGhra/fNXV1cflkdpWXl5uXIVhHTenaX8Okv5dVYg59day/Z7t7Pvo30MvWUou0N2szvju5YejemN5H2cx8dvfkx4QrgXI+0cb55DFahFRERE5IgKthSQuyaXeffOAyB1bCoNNQ0UbiskeUSyl6PzG2HAROAma+0yY8x9fNfOAwBrrTXG2PYc1Fr7CPAIwKRJk+zs2bMPun3Tpk3ExcV1Jm6/VlZW1u6fPyoqigkTJjgUUWDJyMjg0OecBD6dd2cpv85Sfp0VyPldet9S9r21j2m3TmPu3+cedntmRCZPPP4EfRv6MmL2CC9E6BnePIea9iIiIiIiR7RhwQYwMPKCkQCkjEkBIG+d+lC3QxaQZa1d5v7+FVwF61xjTG8A979NSd0L9Gt2/77ubSIiIiLShba+s5UPf/4hw88Zzsl3ndziPupD3XkqUIuIiIjIEW14eQPpM9KJT4sHIHlEMibUkLtWfajbylqbA2QaY4a5N50EbATeAq52b7saeNP9/7eAq4zLFKDEX/tPi4iIiPirnDU5vHLJK/Se2JtznzsXE2Ja3E99qDtPBWoRERERaVHehjzyN+Qz6uJRB7aFRYWRODRRM6jb7ybgeWPMWmA88BfgLmCuMWYbcLL7e4D3gJ3AduBR4MddHq2IiIhIECvLLuPFM16kW49uXPrWpUTERBx1/wGzB5C3Lo/KgsouijCwqAe1iIiIiLRow4INmBDDyPNHHrQ9dWwqe5ep40R7WGtXA5NauOmkFva1wI1OxyQiIiIih6utqOXFM1+kqqiK7y/8PnF9Wl/TYsDsAQDs/nI3I87z3z7U3qIZ1EdQXFzMgw8+2KH73nvvvVRW6hMTERER8V/WWja8vIH+s/oT2yv2oNtSxqRQvKuYmtIaL0Un/kJjahEREfEnttHyxlVvkL0qm/NfPJ9e43u16X7qQ905KlAfgQbTIiIiEsxy1+ZSuKXwoPYeTVLHpAKQt15tPuToNKYWERERf/Lpbz5l02ubmHfPPIadOaz1O7ipD3XnqMXHEdx2223s2LGD8ePHM3fuXFJSUliwYAE1NTWce+65/OlPf6KiooKLLrqIrKwsGhoa+P3vf09ubi779u3jxBNPJCkpic8//9zbP4qIiIhIu214eQMm1LR4iWLqWFeBOnddLv2m9evq0MSPaEwtIiIi/mLdi+tY9LdFTPrRJI7/6fHtvv+A2QP47LefUVlQSXRStAMRBi6/KFB/8LMPyFmd49Fj9hrfi1PvPfWIt991112sX7+e1atX89FHH/HKK6+wfPlyrLWcddZZfPnll+Tn59OnTx/effddAEpKSkhISOCee+7h888/JykpyaMxi4iIiHQFay0bFmxg4JyBxCTHHHZ7Qv8EIuIitFCiH/HGeBo0phYREfGkTa9tYv/2/Uz/5XRvhxKQVvxnBSmjUzjt/tMwxrT7/upD3XFq8dEGH330ER999BETJkxg4sSJbN68mW3btjFmzBg+/vhjfvWrX/HVV1+RkJDg7VBFREREOi17VTZFO4pabO8BYIwhdUwquWtzuzgy8WcaU4uIiHRc4dZCXrv8NT751SfkbdAkAU+rLKgka0kWI84fQUhYx8ql6kPdcX4xg7q1mRlOs9by61//mh/+8IeH3bZq1Sree+89fve733HSSSfxhz/8wQsRioiIiHjOhpc3EBIWwohzjzzzI2VMChte3oC1tkMzTKRreXs8DRpTi4iIdFRjQyNvXPMGYd3CwMCSfy7h7CfO9nZYAWX7B9uxjZahZwzt8DHUh7rjNIP6COLi4igrKwNg3rx5PPHEE5SXlwOwd+9e8vLy2LdvH9HR0VxxxRXceuutrFq16rD7ioiIiPiTpvYeg04ZRLee3Y64X+rYVKqLqynNKu3C6MTfaEwtIiLSeUvvXUrWkixOe+A0Jnx/AmufW0tZtt4jPWnrO1uJ7RVL74m9O3WcAbMHkLcuj8oCLfTcHn4xg9obEhMTmT59OqNHj+a0007jsssuY+rUqQDExsby3HPPsX37dm699VZCQkIIDw/noYceAuD666/n1FNPpU+fPlrQRURERPzK3uV7Kdldwuw/zT7qfiljUgDIW5dHQj+1ZJCWaUwtIiLSOQWbC/jst58x/JzhjLlsDH2n9GXlQytZdv8yTv7ryd4OLyA01DWw/YPtjLxgJCakc1cGqg91x7RaoDbG9AOeAVIBCzxirb3PGNMTeBkYAOwCLrLWFhnXNZ73AfOBSuAaa+0qZ8J31gsvvHDQ9z/96U8P+n7QoEHMmzfvsPvddNNN3HTTTY7GJiIiIuKEDS9vIDQilOHnDD/qfqljUgHIXZvLkPlDuiI08VMaU4uIiHRMU2uPiNgITn/4dIwx9BzUkxHnjeDrh79m5m9mEhkX6e0w/V7mokxqSmo61d6jSfM+1CpQt11bWnzUA7+w1o4EpgA3GmNGArcBn1prhwCfur8HOA0Y4v66HnjI41GLiIiIiMfZRld7j8GnDiYqIeqo+0Z1jyK+Xzx567RIj4iIiIgTlvxzCXuX7WX+v+cTmxp7YPvUW6ZSXVzNN49/48XoAsfWd7YSGhHKMScf0+ljqQ91x7RaoLbWZjfNgLbWlgGbgDTgbOBp925PA+e4/3828Ix1WQp0N8Z0roGLiIiIiDguc3EmZXvLGHnRyDbtnzomldx1uQ5HJSIiIhJ88jfm8/nvP2fE+SMYdfGog27re3xf0mems/RfS2moa/BShIFj6ztbGXDiACJiIzxyPPWhbr92LZJojBkATACWAanW2mz3TTm4WoCAq3id2exuWe5tIiIiIuLDNizYQFhUGMPOGtam/VPGplCwqYCGWv1hJL4lu6SKkppGb4chIiLSIY31jbxx9RtExkdy+oOu1h6HmnbLNEr2lLDxlY1eiDBw7N++n8IthQw53XMt65r3oZa2afMiicaYWOBV4GfW2tLmvxzWWmuMse15YGPM9bhagJCamkpGRsZBtyckJAT1qt0NDQ3t/vmrq6sPy6O0rLy8XLkKQjrvzlJ+naX8Okv5BdtgWf38arpP7s6Sr5e06T6FoYU01jfy/nPvE3tMbOt3cJDOoTSprW+koKwGgOS6BiLDQ70ckYiISPss+vsi9q3cxwULLiAmJabFfYaeMZTEYYksvnsxoy8Z3WIRW1q39d2tAAw9vfP9p5t4ug/12z98m77H92XC9yd4IDrf1KYCtTEmHFdx+nlr7WvuzbnGmN7W2mx3C4+mBoR7gX7N7t7Xve0g1tpHgEcAJk2aZGfPnn3Q7Zs2bSIuLq4dP0pgKSsra/fPHxUVxYQJgftk9aSMjAwOfc5J4NN5d5by6yzl11nKL+zK2MWX+79k1o2zGD17dJvuk5eUx+Y7N5Memc7Y2WMdjvDodA6lSVFlLRYwBnJKq+mf2PIf9iIiIr4od10uGX/MYNRFoxh14agj7mdCDFN/MZV3rn+HXZ/vYuCcgV0YZeDY9s42kkcm0+OYHh47pif7UO/6YherHlnF/m37A7pA3WqLD+P6COZxYJO19p5mN70FXO3+/9XAm822X2VcpgAlzVqBiIiIiIgPWv/yesKjw9u1ennisERCwkO0UKL4DGst+ytqiYsKp3uEoaSqjoqaem+HJSIi0iYNdQ28ec2bdOvRjfn/md/q/uOuHEdMSgyL717cBdEFnprSGnZ9sYshZ3iuvUcTT/Wh/vLPXwJQsKnAE2H5rLb0oJ4OXAnMMcasdn/NB+4C5hpjtgEnu78HeA/YCWwHHgV+7Pmwu8b999/PiBEjuPzyy70dCm+88QYbN6qvkIiIiHheY30jm17dxNAzhhIR0/bFYULDQ0kekUzuWi2UKEfWlWPqsup66hoa6RkTTnykITw0hOySaqx1dSPUmFpERHzZwrsWkr0qm9MfOp3opOhW9w+LCuO4m45j+wfbyVuvCQPttePjHTTWNbZrgkZbeaIP9Z5Fe/j2s2/pcUwPynPKqS6u9lB0vqfVArW1dqG11lhrx1prx7u/3rPWFlprT7LWDrHWnmyt3e/e31prb7TWDrLWjrHWrnT+x3DGgw8+yMcff8zzzz/f6r719c7OzNBgWkRERJyyK2MXlfmVh60Q3xYpY1I0g1qOqivH1PsragkLCSEuKpwQY0iNj6Kytp6SqjpAY2oREfFdOWty+PLPXzL60tHt6ls86UeTCI8OZ/E/NIu6vba9s42oHlH0m9qv9Z3bqXkf6o768o4viU6OZs5f5gCQvynfQ9H5nrbMoA5KN9xwAzt37uS0007jn//8J+eccw5jx45lypQprF27FoA//vGPXHnllUyfPp0rr7yS/Px8zj//fCZPnszkyZNZtGgR4Fq053vf+x5jxoxh7NixvPrqqwD86Ec/YtKkSYwaNYrbb7/9wGPfdtttTJ48mbFjx3LLLbewePFi3nrrLW699VbGjx/Pjh07uj4hIiIiErDWv7yeiNgIBp82uN33TRmTQmlWKVVFVQ5EJv6uK8fUI0eN4q47/0zPGFdx+vbbb2fG5PFceMoMbr75FyxctEhjahGRALDqsVXcO+BeHhr7EE/PeZr/XfQ/3v3xu3z+h89Zdv8y1r2wjh0f7SB7VTYle0qoq6zzdsitaqh1t/ZI7MZpD5zWrvtGJ0Yz/vvjWffCOkr3ljoUYeCxjZat725lyGlDCAnzfHm0s32o9y7fy44PdzD1F1PpM6kPAPkbA7dA3aZFEoPRww8/zAcffMDnn3/On/70JyZMmMAbb7zBZ599xlVXXcXq1asB2LhxIwsXLqRbt25cdtll/PznP2fGjBns2bOHefPmsWnTJu644w4SEhJYt24dAEVFRQDceeed9OzZk4aGBk466STWrl1LWloar7/+OitWrCA+Pp7i4mK6d+/OWWedxRlnnMEFF1zgrZSIiIhIAGqoa2Dza5sZdtYwwruFt/v+qWNTAchbl0f/E/p7Ojzxc105pt5XVMHZ8+eRtWMz4f3Tefvtt9m6dSvlNfWs2bGPYem9NKYWEfFzOatzePfH75I6JpWE9AQqCyoP9PmtLKwE2/L9wqPDGXjjQJjdpeG22Vd/+Yqc1Tlc/MbFRCe23trjUFN/PpWVD65k2f3LmPu3uQ5EGHj2rthLZX6lI/2nmwyYPYDPfvsZlQWVbWrZ0tyXd3xJt57dmPzjyYRHhxMaGRrQfaj9p0D9xwQHjlnSpt0WLlx4YIbGnDlzKCwspLTU9anUWWedRbdu3QD45JNPDrpksLS0lPLycj755BNeeumlA9t79HCtDLpgwQIeeeQR6uvryc7OZuPGjYwcOZKoqChuvPFGzj33XM444wyP/KgiIiIiLfn202+p2l/VofYeAKljXAXq3HW5KlD7Oi+Op8H5MXVFdS0FeTls37qF8WPHEBUVxbXXXssZZ5zBqCknkldWTaM9QuVCRER8Xl1VHa9e9irRSdFc8dEVhxVyGxsaqS6udhWrCyqpzK888P/F/1hM8TfF3gm8FdnfZPPVnV8x9oqxDD97eIeO0eOYHow4fwRfP/w1J/z2BCLjIz0cZeDZ+s5WTIhh8Lz2X0HYVs37ULenbUv2N9lsfWcrJ95xIpFxrnOZNDxJBWqf0I7Bb1eKiYk58P/GxkaWLl1KVFRUq/f79ttv+cc//sGKFSvo0aMH11xzDdXV1YSFhbF8+XLefvtt3nnnHf7973/z2WefOfkjiIiISBDb8PIGIuMjGTRvUIfuH5cWR1SPKC2U6A98dDwNnR9Tf/rVYkoaIrjrtv93YEz9+eefs3z5cl555RXuf+ABHnj2darrGp38MURExEEf//JjCjYVtFicBggJDSE6Mdp127CDb9v23jZK8nzvfbChtoE3rn6D6ORoTr3v1E4da9qt09j4v42semwVU2+e6qEIA9e2d7fRb3o/uvXs5thjNO9D3Z4C9Zd3fElkQiTH3XTcgW3JI5LJWprlRJg+QT2o22DmzJkHFnXJyMggKSmJ+Pj4w/Y75ZRTeOCBBw5833TJ4ty5c/nPf/5zYHtRURGlpaXExMSQkJBAbm4u77//PuDqrVdSUsK8efP417/+xZo1awCIi4ujrKzMqR9RREREglB9TT2bXt/E8HOGExbZsXkLxhhSx6RqoURplZNj6obQbhQXFvDpxx8CrjF1aWkp8+fP51//+hfr1q6lR0wEYZHd2F/sewUKERE5um3vb2PFv1dw/M+OZ9Dc9n+ontAvgZqCGgci65wv7viCvHV5nPnImZ0ulKZNTqP/Cf1Zeu9SGuoaPBRhYCrdW0rONzkMPWOoo4/T1Id69xe723yf3HW5bH59M8f/9HiiEr77sD5pRBLFu4v9oqd6R6hA3QZ//OMf+frrrxk7diy33XYbTz/9dIv73X///axcuZKxY8cycuRIHn74YQB+97vfUVRUxOjRoxk3bhyff/4548aNY8KECQwfPpzLLruM6dOnA1BWVsYZZ5zB1KlTmTFjBvfccw8Al1xyCXfffTcTJkzQgi4iIiLiETs+2kFNSU2H23s0SRmbQt66PGyj2ifIkTk1ph43fjxzpkzgt//vBweNqS+88ELGjh17YEydGh/FaWefrzG1iIifqcir4M3vvUnKmBRO/uvJHTpGXN84avJrsD7U6ql4VzEL/7qQcVeP81ihdNqt0yjNLGXDgg0eOV6g2vbuNgDHC9TgavORuzbX1SO9Db76v6+IiItgyk+nHLQ9eWQyWCjYEphtPvynxYcX7Nq168D/33jjjcNu/+Mf/3jQ90lJSbz88suH7RcbG9viAPypp55q8XGXL19OWVkZcXFxB7ZNnz79oF58IiIiIp21ccFGonpEcczJx3TqOKljUqktr6V4dzE9BvbwUHQSKJweU//jgf+SU1rNsNQ4IsNDD2zPyMg4aDwNcMqcWYz7dCmDkmOJ6eBVAyIi0nWstbx17VtUF1dz1SdXERbVsdfu+L7x2DpLZX4lMSkxrd+hC+RvzMc2WI794bEeO+aQ+UNIGp7E4rsXM+ayMRhjPHbsQLL1na10H9idpBFJjj/WQX2ozz16m4/8Tfls+N8GZtw247AZ9U2x5m/Mp/eE3o7E6k0alYmIiIhPqq+uZ+enOxk8bzAhYbroqzU5a3LYu2xvm/e31rL5zc2MvHAkoRGhrd/hKFLGpACQty5PBWrpUtZa9lfUEhsZdlBx+kiSYiPZX1FLdkk1g5Jj9Ie7iIiP+/q/X7P1na3Mu3ceKaNTOnychH6uhYJLs0p9pkBdts/VxjU+7fB2Vx1lQgxTb5nK29e9zbefftvpSQiBqK6qjp2f7GTidRO7ZBxwUB/qVgrUX935FeHR4S32EE8ckogJNQG7UKIK1CIiIuJzSveWsuD8Bexdtpdpt05j7t/nejskn/fKxa9QuKWw3fcbd9W4Tj920x+MuWtzGXbWsFb2FvGc8pp6ahsa6ZXQ+oKKAKEhhtT4SLKKqiitqiMhOsLhCEVEpKMKNhfw4c0fMuiUQRx/0/GdOlZ8X1cRuCSzhN4TfWP2aVOBOrZXrEePO/bysXz2289YfPdiFahbsOvzXdRX1XdJew9o1oc64+h9qAu3FbL+xfVMuXkK0UmHLwIaGhFKz0E9VaD2BmutZjW0kS/1URIREemMzMWZLDh/AbXltQw6ZRCL715M/1n9GXp61wwi/VFFXgWFWwo54Q8nMOmHk9p8v7CoMI+sXB4ZF0n3gd21UKIPCvTx9P6KWsJCQojvFt7m+/SIjqCgvJbs0mriuoUT4s6PxtMiIr6jobaB1y5/jfDocM5+6mxMSOfey5oK1KVZpZ4IzyPK9pURnRzd6SvZDhUWFcbx/+94PvvtZ+SuzSV1bKpHj+/vtr6zlfCYcPrP6t9ljzlg9gA+++1nVBZWEp14ePEZYOFfFhIaEcq0W6Yd8TjJI5PJ35TvVJhe5bPXy0ZFRVFYWKiBYhtYayksLCQqqm0zR0RERHzV149+zVOznyIiNoJrl17LJW9eQuq4VN64+g2f+oPC1+xZtAeAwacOJq5PXJu/PFGcbpI6NpXctbkeO550XqCPp+saGimtqqdHzHdF5rYwxtA7IYra+kb2l9cCGk+LiHhMdSmU7uv0YT6//XOyV2Vz1mNnEdc7rvU7tCImJQYTZnxqPFm2r4y4Pp3/2Voy6YZJhMeEs/gfix05vr+y1rL1na0MmjuIsC5ci6J5H+qWFH1bxJpn13DsD48lNvXIM+qTRiSxf9t+GuoanAjTq3x2BnXfvn3JysoiPz8wPxloTXV1dbsGyFFRUfTt29fBiERERJzTUNvA+z99n68f/prBpw7mvBfOo1sPV/H0wgUX8sixj/Dqpa9y9edXqx91CzIXZRIaGerVS1ZTxqSw9e2t1FfXd3gBI/GsQB9Pl1XXUVJVD/GRFO87/HWhtfF0SXkNBZmNpMZHERJiNJ4WEfGED38N334FNyyEqI71Vt6VsYtFf1vExB9MZPg5wz0SlgkxRCZFUprp5wXqmjKoq4LYo/fj7tazGxOuncDKB1cy5845B3pwB7u8dXmUZpYy6/ZZXfq4fSb1Iaxb2BH7UC/860JCwkKY/svpRz1O0ogkGusb2b99P8kjkp0K1yt89q+H8PBwBg4c6O0wvCYjI4MJEyZ4OwwRERHHleeUs+CCBWQuymT6r6Yz5845hIR+V2xKHJrIGf89g9cuf43P//A5J/3lJC9G65v2LNxD2nFpXToT5FCpY1Oxjda1sriP9HYMdoE8nm5stMz6x+f07R7Ni9dPbHGf1sbTG/eVcvoDX/GDmcfwm/lHX7RIRETaoDQbNr0Dg0+C926F8/7b7kNUFVXx+lWv03NwT+b9a55Hw4tIjvC5GdS9xvdq+x0Kd8CLl0B4NFyfAa1cPTT151NZ8e8VLLt/GafcfUrngg0QW9/dCsCQ+UO69HFDI0JJn57eYh/qkj0lrH5qNRN/MLHVDyySR7qK0gWbCgKuQK0pSCIiIuI1e1fs5ZFJj5C9KpvzXzqfk+86+aDidJMxl41hwrUTWPjXhWz/cLsXIvVddZV1ZH+dTfqMdK/GkTrG1d8wd53afIjzFu0oIHN/FZce3/Hn/cg+8VwwsS9PLdpF5v5KD0YnIhKklj0E4y6Bsx6AvV/D2v+16+7WWt778XuUZ5dz3vPnERHj2YVso5KjfKZA3VjfSEVuRdtnUO9aCE+cCsddD/XVsOOzVu/SfUB3Rl44kq//+zXVJdWdjDgwbHtnG30m9fFI25j26j+7P7lrc6ksPHjMsfBvCwGY8asZrR4jaXgSAPkbA+/qOBWoRURExCtWP72aJ2c+SWh4KNcuuZbRF48+6v6n3X8aKaNTeP3K1w+sei6uIn9jfSP9pvfzahw9B/ckLCpMCyVKl3hx+R56RIczb1TnFn76xSnDCAmBv3+4xUORiYgEqeoSWPUMTPkxRMTABY/DB7+Col1tPsS659ex/qX1zP7TbNImp3k8xKYZ1L6wNkNFXgW20RKX1oZC6apn4X/XwHmPwHE/gBk3w8J/telxpt06jdqyWt65/h3qa+o7F7SfqyyoJHNJJkPO6NrZ001a6kNdureUbx77hvHXjCchvfU2LBExESSkJ1CwqcCpML1GBWoRERHpUg11rn7Tb17zJunT0/nBih/Qa1zrlzeGR4dzwYILqKuo47XLX6OxobELovV9exa6FkjsN827BeqQsBCSRyZroURxXH5ZDR9tyOWCY/sSGRbaqWP1Soji+pnH8PaafXyzp8hDEYqIBKGVT8LgudCjv+v73uNg+s/gteuhofXCaNG3Rbx343ukz0xn+q+O3oe3o6JSomioaaCywPtXzZTudc3kPuoM6sYG+Oh3sPAe+N77MOhE1/bR50PxHtizrNXH6XNsH07+28lsWLCBZ09+9rDZu8Fk2/vbwMLQM4Z65fHTJqcd6EPdZPHdi2lsaGTGr1ufPd0keWQy+Zs0g1pERESkwyryK3hu3nMsv385U34+hSs+vILopOg23z95RDLzH5zProxdfPHnLxyM1H9kLswkeVTygUUlvSllTIpmUIvjXvk6i/pGyyXHeaatzfWzBpEUG8lf3tvkE7PqRET8Tn0NLHsYpv+/g7dP/QmEd4Ov/nHUuzfWN/L6la8DcO6z57bY7s0TIpMjAXxiocSmqwGPWKCuKYOXLod9q+G6TyGp2azf0DCY/lNX4boNpv9yOue/dD57V+zl8amPs3/7/k5G75+2vbON2N6x9J7gnbVSDu1DXZ5Tztf//ZpxV46jx8AebT5O0ogkCjYXYBsDa8yiArWIiIh0iZzVOTw6+VEyF2dyzjPnMO+eeYSEtX8oMv7q8Yy7ehxf3vElOz/d6UCk/qOxoZHMJZle7z/dJHVsKuU55VTkV3g7FAlQjY2Wl1bs4fiBPRmUHOuRY8ZGhvHzuUNYsauIl1ZkeuSYIiJBZe3LkDISeo2hsrCSgi0Frq9t+9k/5i80Ln2U4oUffLf9kK+MP2aQuSiT+Q/Op3v/7o6FGZHs6mntC32oj1qgLt4Dj8+D2GS44jWI7nn4PuPdxeucdW16vNEXj+aqT6+ian8Vj015jD2L9nQiev/TUNfA9g+2M+T0IZiQoy8u6aTmfagX/3MxDbUNzPhN22dPg6tAXV9VT/HuYmeC9BLvLfUuIiIiQcNay/8u/B+N9Y18f+H36TOpT6eON//f89m7bC+vXf4aN6y+gdhenilU+Zv8DfnUlNT4TIE6ZUwKAHnr8hg4Z6CXo5FAtGRnIbsLK7l5rmcvz71kcjofrM/h9jc3MLxXHBPS2z6TSUQk2DQ2NFKyu4SCzQUUbMpjzP6/8NW681h/890tts8YOnQ6p2b/gMf+eyU1NZEtHnPMZWMYe/lYR+OOSokCfKdAbUIMMSkxB9+QuRxevtI1G33Kj8EcoZgaHgVTb3T1or7giTY9Zvr0dK5beh3Pz3+eZ056hnOePqfVNWACxZ6Fe6gprWHo6d5p79GkqQ/1ptc2sfKhlYy+dDSJQxLbdYzkEckAFGwqaNfMa1+nArWIiIg4rnBLIfu37+f0h07vdHEaICI2ggsWXMBjxz3Ga1e8xhUfXuHY5aC+7ED/aS8vkNgkdaxrwbrctbkqUIsjXli+h+7R4cwb1Xrf+vYIDTHcf8kEzvz3Qn703Creumk6KXFRHn0MERF/lL8xn5w1ORRsLqBwcyH5m/Ip3FpIQ00DAMOGbWfAiZBTPJjh5yaTNDzJNXHgkLpqY67hhju3kNn79sOKrmGRYQw53fmF68K7hxMSFkJJZonjj9Wasn1lxPaKPXj8unYBfHAbnPMQDJ3X+kEmfQ/uGweFOyBxUJset+fgnly75FpePudlXr3kVYp2FjHjthmYIxXCA8TWd7YSGhHKMScf49U4mvpQf3TzR9RV1jHztzPbfYykEUkA5G/KZ8h87yz46AQVqEVERMRx297fBsDg0wZ77JipY1I57YHTePsHb/PVX75i1u9neezY/iJzUSZxfeLoPqC7t0MBIDY1lujkaHLXaaFE8byC8ho+2pDDVVMHEBXeucURW9IjJoL/Xnks5z+0mBufX8Xz100hogNtiEREAkX2qmweOfYRAEyIoccxPUgansSgeYNIGp5E0rBE0tZ/n9CZf+V7o849+sFqH4JHZtN91EYYd0kXRH84E2KIS4ujLKvMK4/fXPm+8u/aezQ2QsZfXK1Srn4bUke17SCRcTD5Olh0L5z1QJsfOzoxmis/vpI3v/8mn/3mM4p2FHH6Q6cT6sB7q6/Y9u42Bpw4gIjYCK/G0dSHeucnOxl10agDs6HbIzoxmpiUGPI3BtZCiSpQi4iIiOO2v7ed5JHJHu8rOOHaCez6fBdf/PEL+p/QnwGzBnj0+L5uz8I9pM9I96lZL6ljU7VQojji1a+zqGuwXHqcc1cMjOqTwN/OH8tPX1rNne9u5E9nB8elzyIiLWlaTO/Sdy7lmJOPISzykBLS7iXwdSGMOKv1g0VEwwWPwzNnQ7/joad3rrRK6JfgMy0+ug/oDrWV8MYNUJYD133m6jvdHsffAPdPgFm3QUJam+8WFhXGec+fR49BPfjq/76iZE8JF/7vQqISAu/qocJthRRuKeS4nxzn7VAAGHjyQHZ+upOZv2v/7OkmSSOSKNhU4MGovE9TAkRERMRRteW17P5yt0dnTzcxxnD6w6fTY1APXrvstaBanK8ks4SSPSU+096jScqYFPLW59HY0OjtUCSAWGt5cfkejhvQk8EpLSwo5UFnj0/juhkDeXrJbv63UosmikjwKs8pB6DvlL6HF6cBFt0H026CkDbOvO01BmbeAq9eBw11Hoy07eL7xvtOi48+sfDceRAWBVe91f7iNLgWUJxwBSz5d7vvaoxhzh1zOOuJs9j1+S6enPEkJXu8nxtP2/au60rOrmgj0xZTfjqFG9bcQOqY1A4fI3lkMgWbCrDWejAy71KBWkRERBz17Wff0lDb4FiPtMi4SC5ccCGVhZW8fuXr2MbAGagdTeYiV+HMVxZIbJI6JpX6qnqKdhZ5OxSfYozZZYxZZ4xZbYxZ6d72R2PMXve21caY+c32/7UxZrsxZosxpg2NKAPbkp2F7Cqs5NLju+YDmdtOG860QYn89o31rM0q7pLHFBHxNWXZZYSEh9CtR7fDb8zbBHu/hvGXte+gx98AUQnwxd88E2Q7xfeLpzSr1KuFvfqaeioLKonvHQlZK+Gch12LHnbU1Bth9QtQ0bEZtRO+N4HLP7ickswSHjv+MfZ9va/jsfigre9sJXlUss8sKBgWFdap4jS4ZlBXF1cf+BApEKhALSIiIo7a9v42ImIjHC2k9hrfi3n/mseOD3ew6O5Fjj2OL9mzcA/hMeEHFib0Fc0XSpTDnGitHW+tndRs27/c28Zba98DMMaMBC4BRgGnAg8aYwK3MWQbvLg8k4Ru4Zw2uneXPF5YaAgPXDqB5NhIbnj2awrKa7rkcUVEfElFTgWxqbGYkBZaiS1+AI6/HsJbKF4fTUiIaxHAVc/A7sWeCbQd4vvG01DTQGVBZZc/dpOmomLPXg0Qk+zKSWfE94FR58Cyhzt8iGNOOoZrF19LaGQoT53wFFve3tK5mHxETWkNu7/YzdAzhno7FI9q6l0dSG0+Wv0tMMY8YYzJM8asb7ZtnDFmiXsWyNvGmPhmt2m2h4iIiACuy/K3v7+dgScNJDTC2frapBsmMfTMoSz8y0Lqqrxz2WhXylyUSb+p/QjxsUXckkcmg0F9qDvnbOAla22NtfZbYDvgG40TvaCwvIYP1+dw3sQ0RxZHPJLE2Ej+e+WxFFbUcuPzq6hT2xoRCTLlOeXE9o49/IaSvbD5XZh0bccOHJfqWtTvteuhqmuvuIrv6ypfebMPddle1yKNCT1rOtbWoyXTfworHofqjv9cySOTuW7pdSSPTGbB+QsCYnbujo920FjfGHAF6qQRSQDkbwqchRLbskjiU8C/gWeabXsMuMVa+4Ux5vvArcDvD5nt0Qf4xBgz1Frb4NmwRURExB8UbCqgZHcJM3/T8UVA2soYw5SfTWHr21vZ/MZmxlw6xvHH9Jbqkmpy1+Zywh9O8HYohwmPDidxSKJmUB/OAh8ZYyzwX2vtI+7tPzHGXAWsBH5hrS0C0oClze6b5d52EGPM9cD1AKmpqWRkZDgYvvd8lVVHbUMjA20OGRlt/0OsvLzcIzm5akQYj67bz42PfMxlIyI7fbxA4an8in/ReXeWr+U3e1s2UalRh8U0aPuTkHQCO5av7cTRIxkcO5aIJy5n48hboQsWfC4vL6c0z1XAXfT+IpJKkhx/zJbkf+F6L8vOWUN0YxjrPHTOR8SNpnzB78hMP69Tx+nzkz7su2Yfr//5dfpd1PbWWr72/AXY/NhmwuLC2FGzg50ZO70djsdYawmNCWXNJ2uoHOW5qwG8eQ5bLVBba780xgw4ZPNQ4Ev3/z8GPgR+T7PZHsC3xpim2R5LPBaxiIiI+I1t77sWJXFigcSWDJg9gIT0BNY8tSagC9RZS7OwjZb06b7Vf7pJypgUcteoQH2IGdbavcaYFOBjY8xm4CHgDlzF6zuAfwLfb+sB3UXuRwAmTZpkZ8+e7fGgfcGGz7fD+i1cdNrsds2gzsjIwBM5mQ3UvbWBpxbvYv6U0Zwz4bDPCoKSp/Ir/kXn3Vm+lt+V5SvpP6f/wTFVFcPSDLhhIf26d3JdgOnHw6NzSOm+DyZc3rljtUFGRgbHnn0s3/zoG/p378/k2ZMdf8yWLFu7jI1sZNyY3kQWjfDcOR+RTOqz5zLo0r+1v/XKIbIfyqb8q3Jm/WcWpo0fHvja87exoZEVF61gxJkjOPGkE70djsftGL2D8JJwj+bcm+ewo9eEbsBVjAa4EGh6VUoDmi913eJsDxEREQkO29/bTsroFBL6JXTJ45kQw9irxrLzk52U7vXepZtOy1yUiQk1pB3vm8Os1LGp7N+xn9qKWm+H4jOstXvd/+YBrwPHWWtzrbUN1tpG4FG+a+Oxl+/G1wB93duCUkF5DXGRYV3a3uNQvz19BMcN7Mltr61l/d4Sr8UhItJVGhsaqcyvPLzFx8onYOip0NniNLiKqOc/Dh//Hj69A7K+hkZn2ynFpMQQEhbi3RYf+1yLT0ZQ7LkWHwCpoyDtWPjmuU4favw148lbn0fONzkeCMw7CjYVUJlfyaB5g7wdiiOSRyQHVA/qtrT4aMn3gfuNMb8H3gLa/ddHsFyS2FG+eGlEIFF+g5POu7OUX2f5Y37rK+vZ9eUu0s5P69LYq4dVYxstb/z5DdIvbdsMY3/L79p31hIzKIYlX/vmRWoFpgAsfPDMB8SPiG/9Dh7gy+fQGBMDhFhry9z/PwX4szGmt7U2273buUDTmi9vAS8YY+7B1TZvCLC8q+P2FYXltSTGRng1hvDQEP5z2UTO+vdCfvjs17x90wx6xng3JhERJ1XkVWAbLbG9mhWo66pdC/Fd+brnHih1JFz5Bqx/Fd74EVQXw9B5MGw+DJwFEdGeeywgJDSEuLQ4rxeo4/rEYSr2Qc+Bnj34jJvhle/DsddAaHiHDzPq4lF88LMPWP3UanpP7JoFij2tabJKj0E9vByJM5JGJrH6qdVUFVXRrUfnZsz7gg4VqK21m3ENrDHGDAVOd9/U5tkewXJJYkf52qURgUb5DU46785Sfp3lj/nd/OZmbL1lzg/nMHC2hwffrch5OIeyL8uY9XDbLkv0p/w21DWweMtiJlw3wWdj3t9vPxv+sIG+EX2ZOHtilzymj5/DVOB193MxDHjBWvuBMeZZY8x4XC0+dgE/BLDWbjDGLAA2AvXAjcG8pkthRQ2Jsd7v/ZwcF8nDVxzLhf9dwk0vruLp7x1HWKhvLVIqIuIpTQvkHVSgXvsS9B7nmqnrSb3Hur7m/gkKd8DWD2DJf+DVH8CAGTDsVNes7bheHnm4+L7xlGZ6v0BNeS708/AayP0mQ4/+sO4VGH9phw/TrUc3hp8znHXPr2Pu3XMJi+zo/FbvKc92PYfjese1/U6NjYCFEO9dtdVWySNcs+8LNhXQb5oHrmjwsg6NqNy98zDGhAC/Ax523/QWcIkxJtIYM5Agn+0hIiISzLa9t42IuAiv9Eked/U4CjYXsG/Fvi5/bKflrM6hrrKO9Bm+2X8aoMfAHoTHhGuhRDdr7U5r7Tj31yhr7Z3u7Vdaa8dYa8daa89qNpsaa+2d1tpB1tph1tr3vRe99xWW15LoI7OVx/Xrzv+dM5pF2wu5+8Mt3g5HRMQxTQXqA8W9xgZY/ABM/6mzD5w4CKbeCNe8Az9fB6PPh2+/hP8cB4+cCF/8HXLWgbUdfoj4vvE+MYOainyITfH8A8z8BSy8p9PtUsZfM56q/VVse3ebhwLrWmXZZcAhH7IcqnI/bPsYPrsTnjkH/jYAHpoG5W1flNlbkka4FvnM3+T7sbZFqwVqY8yLuBY5HGaMyTLGXAtcaozZCmwG9gFPgmu2B9A02+MDgny2h4iISLCy1rL9/e0cc/IxhEZ0/QyEUReNIiwqjNVPr+7yx3banoV7AHx2gURw9QJPGZVC3ro8b4ciAaCgvNYnZlA3uWhSP66c0p//frmTt9cE3odgIiLw3ezTA8W9ze9CVHfoP73rgujWA8ZeCBc8AbfugJP/6CoovnQ5PDwD8jZ16LDx/VwFatuJIndnfDeDOg9iUz3/AMfMhohY2PxO5w4z9xji+sSx+qnVHgmrq5XnlBMZH0l4tLvVSWOD68ONlU/A6z+CBybBvWNh8f1gG+H4G+D/fQMjzoJnz3U913xY9wHdCYsKC5g+1K3O0bfWHumagPuOsP+dwJ2dCUpERET8W/6GfEozSznh9yd45fGjEqIYfu5w1r+4nnn3zPPLyxKPJHNRJt0Hdnf9YePDUsamsPn1zVhr27z6u8ihGhst+ytqSPJyD+pD/f6MkWzKLuXXr61j8oCe9EqI8nZIIiIedVCLD2th0b0w/Wfgrff00HA4Zpbr69S/wjfPwpPzXUXriVe1K674vvHUV9dTVVhFdJJne1y3prailpqSmu8K1DEeXCSxiTGuWdRf3g0jzuzwOQsJDWHslWNZ/I/FlOeWE5t6lJnIPqg8u5zBo/fDp3+GzOWwb7WrTUy/41ytUKbeCCkjDm/nceJvoK4Snr/A1R89qmvWU2mvkNAQEoclkr8xSGZQi4iIiLTXtvddlwIOOW2I12IYd/U4qouq2fr2Vq/F4GnWWvYs3OPT7T2apI5Jpaqw6sAfuCIdUVRZS6PFZ1p8NIkIC+GfF42jvrGRP7y5vvU7iIj4mbLsMqK6RxEWFQa7F0NVMQw/vdX7dQljXEXp770HSx+CV6+F6ra37EjolwDglTYfTTPT43tHuIqg3RxawG/YfKivhh2fte9+5XnwzXPwxd1QspdxV4/DNljWPb/OmTgdVJ5dxtknPgUYV2uan62Fm1bCOQ/CpO9Dr9Et95o2Bk75P1e/9RcuhtrKrg69zZJHJAfMDGoVqEVERMTjtr+/nZQxKcT39d6Mg2NO9u/LEltStKOIitwK+k33/YVQUse6LllVmw/pjMKKWgCfavHRpH9iDD8/eSgfbczlg/XZrd9BRMSPVORUfNfeY9G9MP3/+d7CcSkj4AefudpZPDIL9n3Tprs1jU9LMkucjK5FpXtdRfGEpDpX/2mnZqSHhMCMm+Gre46+n7WQvcbV2/vROa62F9s+grJseGgayRtuY9zcBlY/udprLVE6qrYw35Xfk34PQ+ZCdM+239kYmP9P14KTL18O9TXOBdoJSSOSKN5dTF1lnbdD6TQVqEVERMSjakpr2PPVHobM997safjussTtH2ynPDcwZvHuWeTuP+0HM6hTxrgW/dFCidIZBeWuPwgTfazFR5NrZwxkVJ94fv/mBkqq/P+PQxGRJuU55a4Cde4GVwFz7CXeDqllEdFw1v0w53fw3PmuGdWtFFKbCtTemEFdts+1cF98QrUz7T2aG30+lGTCnmUHb6+thC3vw9s/hXtGwoKroaoITvoD3LodLnoGzrjHNeO4z3hOm/Ei8yc9QPG7z7j6OPuJkMocakjsxAFC4Kx/Q2Q8/O8aaPC99/nkkclgoWCL/8+iVoFaREQClr99yh8odn66k8b6RgafNtjbofj1ZYkt2bNwD1E9okge4fAfNB4QnRhNXJ84zaCWTiksd82gTvLBGdQAYaEh3HXeWArLa7jr/c3eDqdDauob+GB9NuU19d4ORUR8SFl2GbG9Y2HxA3D8DyHcx3vtjz4frvsE1rwEL1121AXuYlJjCAkL8WqBOia63DWD2kmhYa7WFgvvgZIsWPE4PH8R/GMoLPkPJA6Gq99yLQx46l9diyuGNftAOCoBpt1E442rWLnqWFjyANw/AZY82K6WKt5QU1ZDt7Bi6sM7OWYODYPzHnUV5l+73ucK9EkjkgACog+1CtQiIhKQNr2+iXvT72X/Dt9efTkQbXtvG5HxkfSb5v02FMkjkkk7Lo3VT/nfZYktyVyYSb9p/TAh/rHoYMqYFM2glk4pbJpB7WM9qJsb0zeBa2cM5MXle1i2s9Db4bTb++tyuOG5VUz766f886MtB3IuIsGtPKecuF5RsOF1mHStt8Npm57HwLUfQ4+B8N8TYPeSFncLCQ0hrk8cpZneKVCHR4cTboshxuECNcD4y10z4B+eCZnLYNzF8PP1cM07MO0mSBrSapuRbolx2OFn8+jDF1F/1iOQtQLuGwsf/AaKdjv/M3RAeXY5cXHlNMb06vzBwiJcs8orC+Gt/weNjZ0/pockDknEhJqA6EOtArWIiASkrCVZlGaV8srFr1CvWWFdxlrL9ve3c8zcYwgN940+heOuHkfeujxyVud4O5ROqSyopGBzgV+092iSMiaF/I35NNb7zkBe/EthRS0hBrpH+26BGuDnc4fSt0c3fv36OqrrfGt2VWv2lVQBcNzARB74bDvT//YZf3xrA3uLq7wcmYh4S215LXUVdfRIqXct4tetu7dDaruwCDj1LzD/blhwJXz5jxYLivF9472zSOK+cuL6xGEq8pyfQQ2ume8/XuJq3XHeI66Z5h04n+OuGUfV/iq2rU6AC5+EH37l6kn+yGx4+UrYs7TV1ipdqTynnPj4ckxCmmcOGB4Fl74Ihdvh/V/6zM8aGhFKz8E9VaAWERHxVaWZpYRFhZH9dTYf//Jjb4cTNPLW51G2t8wn2ns0GX3JaEIjQv1+scTMxZkAfrFAYpPUsak01DZQuNX/ZpWKbygor6VnTAShPn7VQHREGH85dww78yt48PPt3g6nXfLLaoiJCOWxqyfxyc0ncMbYPjy3dDez/v45Ny9YzbbcMm+HKCJdrCzb9XufkFgJcR6YgeoNw06D6zNg+yfw3LlQdvAVXfH9vFOgLttXRlyfOCjvogI1uD5k6OQCl4PmDiK2d+x34+nu/eCUO+Bn62DATPjfNSQWLu98rB5Sll1GfHwZYckeHDdHxMDlC2DvSvjkdp8pUiePSFaLDxEREV9VmlVK2vFpHP/T41l+/3I2vb7J2yEFhW3vbQNg8Km+U6Du1rMbw84axvoX1tNQ618zG5vbs2gPoRGhpE320EyQLpA6JhWA3HVq8yEdU1he47P9pw91wtBkzp2QxkNf7GBLjv8UdfPLakiJd/WWHZwSxz8uHMeXvzyRK6f25/11Ocz915f84JmVfLOnyMuR+qfqugZeW5VFQ6NvFDLEN9lGy6bXN1FT6BstdspzXItLx8eVQ1xvL0fTCQl94ep3oO9k+O8JdKvcd+Cm+L7xlGaWdnkLuIMK1E4vkuhBIWGuxce3vbft4MXHI2Ph+Oth7EXEVOzxXoCHaGrxEdFngGcPHJUAV7wG2z6GL/7u2WN3UNKIJPZv30+Dn13BdSgVqEVEJCCVZJaQ0C+Bk/92Mr2P7c1b33+L4l3F3g4r4G1/fzup41KJT4v3digHGXfNOCoLKtn2/jZvh9JhmQsz6TOpD2FRYd4Opc2SRiQRGhFK9tfZ3g5F/FRhRS2Jsb7d3qO5358xkriocG57ba3fFCTzy2pIPuRDgD7du3H7maNYdNsc/t9JQ1j+7X7OfXAxlzyyhC+35gdET/+u8tzS3dy8YA0frPfvNlPinNK9pTx7yrMsOG8BWS9neTsc4LsCdUxUmX8XqMG1yN2c38Hgk+he/N2i2fH94qmvrqdqf9e1M7LWUravjNg+sVCRD7GpXfbYnjD+6vFHXnw8oR9R1b4zi9c1g7rC8wVqgOiecNWbsG6BaxFRL0semUxjfSP7t/v32ksqUIuISMBpbGikbG8Z8f3iCYsM48IFF2IbLa9c8opfz6D1ddUl1WQuyvSp9h5NBs8bTExqDGueWuPtUDqkvrqefSv3+VV7D4CwyDB6T+xN1lLf+INb/E9heQ2JMf4xgxqgZ0wEvz9jBN/sKea5pb65cNSh8strSI5rOcc9YyK4ee5QFt82h9+dPoJvCyq46onlnPnvhWwq1PtpW7y6ai8AL63wnZmF4js2vrKRh8Y8RNaSLKK6R1GV7Ru938uzXQXqqNAi/y9QN+kxkKjq767oiu/rmkzRlQsl1pTWUFdZ55rIUZ7bdS0+PCR55FEWH++eTlR1nncCa0FFTgXxCRWY+D7OPEBsClz1Fix/FFY85sxjtFHSiCQAv2/zoQK1iIgfKd5dTE2Zb1z658sqcitorG8kvp9r4NnjmB6c9fhZ7F22l09/86mXowtcOz/ZSWN9I0NOG+LtUA4TEhbCmMvHsPXdrVQWVHo7nHbbt3IfDbUNfrVAYpO0KWmu+P38skPxjsJy/5pBDXDO+DROGJrM3z/YzD4/WGgwv+zIBeomMZFhXDfzGL785Yn87fwxlFbVc9+qanbklx/1fsFuc04pm7JL6Z8YzVfbCthT6H/vP+KMmtIa3vzem/zvwv/Rc3BPfvjND+k3rR81ub4xzi/PKSckLISw+nz/7UF9qB79DyqgHihQd2Ef6rK9rvZPrhYf+X7V4qPJuGuOsPh4Qj8ia3ynQFqRs5/IyGpnc5yQ5ppJ/dW/4MnTXQty7v0aGrt2zJs03FWg9veFElWgFhHxI0/NeopXL3nV22H4vJLMEgAS+iUc2DbygpFM+vEklvxzCVvf2eqt0ALa9ve3E5kQSd+pfb0dSovGXz2exrpG1r3YwmWJPm7PQtfMu37T/GsGNUDfKX2pr6onb53vzKoR/1Bd10BZTb3f9KBuYozhznNG02jhD2+u9+l2GNV1DZRV17daoG4SGRbKxZPTefmHUwgLgRufX0W1Pnw6otdX7SUsxPDg5RMJMZpFLS6ZizN5ePzDrHlmDTN/O5PvL/o+iUMTSeifQHVOtbfDA1wF6thesZiyHIgPkBnU3dPpVvXdDOqmvxO6tEC9z12gTo2A+irX4oV+5oiLj3d3t/jwkfc8W5xNdX08hDhc9uw5EH6yHGb8DCoL4Y0b4e5BsOBq+PopKHL+aqqImAgS0hNUoBYRka5RX11Pye4Str23jV1f7PJ2OD6t6VK9phnUTeb9cx69xvfijavfOFDEFs+w1rL9/e0MmjuI0PDOrRLulNSxqfSa0Msv23zsWbiHpOFJRCdFezuUdus7xfWBReaSTC9HIv5mf0UtAIkx/jWDGqBfz2hunjuUTzbl8d463+09nO++KuvQHtSt6Z3QjevHRrI5p4w/vb3RidD8XkOj5Y3Ve5k1NJlRfRKYMzyVBSuzqGto9HZo4iUNdQ18fvvnPDnzSbBwzRfXMOf/5hwYN3Uf0J36snqfuFqyPNtVoKYsJ3BafHTvf1CLj5jUGEyo6dK/CZoK1Ak93DN7jemyx/aUbj26Mfyc4ax7ft3BrRMj42gMCXcVaX1ASFUOtSR2zYNFxMCQuXDqX+HGpfCjxTB0HuxaBI+dBPdPhHd/AZvfhWpnPhBJHplM/ibfmcHeESpQi4j4ieaf7n/66099ekaWt7U0gxogLCqMCxZcQENtA69e+qpaDnhQ7tpcyvaVMXi+7/Wfbm78NePJXpVN7rrc1nf2EbbRkrk4k34z/G/2NEBCegKxvWLZu3Svt0MRP1NY7i5Q+9kM6ibfmz6AMWkJ3P7WBkoq67wdTovymgrU8e3P8djkMH40exAvLt/Dm6v1+32oJTsKyS2t4dyJaQBcdnw/Cspr+HST/7z/iOfs376fJ2c+yZd//pIxl4/hh6t/eFjbroT+rnFryW7vT6JomkFN2b7AKVDHphLaUAW1rlY7IaEhxPWJoyyrrMtCaCpQx8RW+mV7jybjrhlHVWEVW989+KrU6qhkKPb+lSINtQ1ENBZSH+GlHt/xfWD8ZXD+o/CLrXDR09A93dWv+p4R8PgpHu9bnTQiiYLNBVg/WaC5JSpQi4j4iZI9rsHqmMvGkLUkiy1vbfFyRL6rNLOU8OhwonpEHXZb4pBEznjkDDIXZfL5Hz73QnSBafv72wEYfKpvF6hHXzqakLAQ1jztP7Oo8zflU11UTfp0/+s/Da52B32n9NVCidJuBRWu4qm/9aBuEhYawl/PG0NRZS1/eW+Tt8NpUUdnUDf5xdyhTOrfg9+8tk79qA/x2qos4qLCOHlEKgCzhqbQOyGKF5brapJgYq1l1eOreHj8wxRuKeT8l87n3GfOJSrh8DFq9/7dASjeVdy1QbagPKechD7hUFftl20oWhQSQk1k0kEF1IR+CV3e4iMyIZLwhiK/WyCxuUFzBxHbO/awqxJrIlOgxPuvceW55cTFldMY4wP900NCoNcYmP5TuOoNuHU7zL4NlvwH1rzssYdJGpFEfVU9xbuLPXbMrqYCtYiIn2gqUM+6fRaJQxP57Def0ajLRFtUmllKfL94zBEumxtz6Rgm/mAii+5axPYPt3dxdIFp23vb6DW+F3G947wdylHFJMcw5PQhrH1uLY31/vH709R/2h8XSGySNiWN/dv3++UCleI9TTOok2L8cwY1wOi0BK6bOZCXV2ayZIdvXPbcXH65q0Cd0sYe1IcKCw3hgcsmEBEWon7UzVTW1vPBhhxOH9ObKHf7htAQw8WT+/HVtnwy9+u1MBhUFlay4PwFvH3d26RNTuOGtTcw+uLRR9y/+4DuAF4vMDU2NFKRV0GP1FrXAol+2IbiSKqjUqH4u57A8X3ju7zFh2uBxDy/LlCHhIUw9sqxbH13K+W533046ZpB7QMF6uxy4uPLMd3TvB3K4cK7waA5cPFz8OGvIXutRw6bPNI1I9+f+1CrQC0i4ieaCtQJ/ROYc+cc8jfms/Y5z7yhBZqSzJIDK3Mfyan3nkrK6BRev/L1A5fbScdUF1eTuTjT59t7NBl/zXgqcivY8dEOb4fSJpmLMolJjaHHIP+dwdRvqqs9SdYyzaKWtiss9+8Z1E1+dtJQ0ntG85vX1/lcATe/rAZjoGcn+nz3TujGPReNVz/qZj7ckENlbQPnTji4OHLRpH4Y4OUV3i/giLP2Lt/LQ2MeYus7Wzn57ydz1adXHdZ67lAxKTGYcOP1GdSV+ZXYRkv3ntWB097Drapb6kGL1sX3i6c0q7TLWiceVKCO8d8CNbgWH7cNlnUvfLf4eHVUCpR4f6xXnuOaQR2e4sOTO1JHwWl/hwVXQuX+Th8ueYSrQJ2/0X/7UKtALSLiJ0r2lBDbK5awyDBGnD+C3sf2JuMPGdTX1Hs7NJ9Tmlna6h8B4dHhXLDgAuoq6nj1slf9ZjatL9rx8Q5sg2XIaUO8HUqbDJk/hG6J3Q5ffdxH7Vm4h/Tp6Ue8IsAf9D62NybUqM2HtEthRS1R4SFER/jmwqtt1S0ilL+cO4ZvCyp44LNt3g7nIPll1STGRBAW2rk/C08cnsINs9SPuslrq/aS1r0bkwf0PGh7n+7dOHFYCgtWZmqxRE8q2u1qReEjGhsaeevatwgJC+G6Zdcx/dbpmJDW38NNiCEqNcrrPajLc1wzYuPjy10zqANIdVTKYTOo66vqqdpf1SWPf6BAXeHfM6jBNWM37bg0Vj+5+kCBvzoq2SdafJRllxEfX0ZEWn9vh3J0Yy6AYafDaz+Axs59gN2tZzdiUmL8eqFEFahFRPxEyZ4SEtJdRVdjDCffdTIle0pY+dBKL0fmWxrqGlyDkn5Hn0ENrk+aT3/odHZ/sZsv7viiC6ILTNvf305U9yj6Tunr7VDaJDQilDGXj2HLm1uoKuqaP0g6qmxfGcXfFvvtAolNImIiSB2bqoUSpV0KymtIjIn06w9nmswYksT5E/vy3y92sjXXd67ayS+rIclDi1D+4hT1owbILa1m0fYCzp2QRkgLRclLj0snr6yGzzbneSG6AFRTBg9MhL/1hwenwes3uHq7fvsVVBV7JaT1L64nb30ec++eS+8J7ZuBHNXL+wXqsmzXa1R0t1LXYm8BpKUWH0CX9KG21gZMi48m464ZR966PHJW5wBQE+kbiySWZ7tmUEf1O8bbobRu7p+grgoy7ur0oZJHJqvFh4iIOK80s/RAgRrgmJOP4ZiTj+GrO7+iprTGi5H5lvLscrC0qUANMO6qcYy/Zjxf3vElOz/d6XB0gcday/b3tzPolEGEhPnPsGL81eNpqG1gw8sbvB3KUe1Z5P/9p5v0ndKXrGVZ6p0vbVZYXkuSn7f3aO4384dT32j5eGOut0M5IL+shpT4wxdr64jw0BDuv1T9qN9cvZdGC+dObLn36exhyfSKj+LF5d4v4gSE0mzo3h9+tRvO+Q+kT4X9O+HTP8M9I+HesfDyFfDF3bD1Q9f+R2rnYK1rJnZVkWu//TshdwNkfQ27l0DBdlch6Sgaahv4/Pef02tCL0ZdOKrdP05kaqTXW3w0zaDuFlocgDOoD2/xAV1ToK4qrKKxrpG4tMBo8QEw+pLRhEaEHrgq0dXiw/szqMtzyoiLqyC0px9MngkNh//P3nnHt3XW+/99JHnIlmTJkvd27NhxmqRJkzRdNB1pSymUWVpWoaVAKZd1mRf4wb2MCxcu+0JpoVBWS6GUFrrTNm2TrsyuTCfelodkaxzZlmTp/P44luMkjm1t6ei8Xy+/Eh+d8fjo6Og5n+fzfL7v+h3s+xMcejiuXdlW2BjdP5qyyJpEo0t3A1RUVFRUFkeSJNy97lMyfi/+zsX8euOvef6Hz7P5G5vT07gMI1LoZLGIj7m88edvpP/Ffv7+3r/z0b0fzfhCf5nE0L4hxCGRljdmR/50hMq1lZSfUc6+3+1j/cfWp7s5p6V3ey95RXlUnpn9D4i1m2rZ9ctdOA46KF+Z/Q9lKsnH6fNTbkyMeJoJWA0FWIvz6c+gmRujXj8t5Yn7zqs2y3nUH/rdTv7zn/v577evSti+s4W/7xlgTZ2ZZWWGeV/XaTVcs6GOnz15hP7xCWotRSluocLwDsou37xCqF4r/0QIh8B5FIZekX9e+KX8r6ABQ4UsNk9PnfivNg90enl/ukK5oJmuELT54BsFzyAUGKCkFky18r8ltVBSAyV1vPJ3B+6eMd506/uXFOtxMoWVhQyNDBGcDJKnz0vgiVo6EYE6X3KAcWNa2pAsZAf18cGhWQd1X/IFas+AfAxjtREGleGg1lv0tL+1nVf/9CqXff8ygnkmmPaDX5Q/J2kiODrEdGkBujx92toQFYZyWaS+6zq48TGwLotpN7YVNvxuv5zBnYXPs6pAraKiopIFTI5NEpwInuCgBqjZUEPHOzt4/n+fZ8PHN1BcXpymFmYOkQ7mUh3UIMcPvOued3H7xtv5SeNPqDuvTnaob2mmal0VmjizOZVM58OdALRckV0CtSAIrPngGh7/3OM4DmbuVLi+HX3UnF2DNi+7M3iB2QiY/uf7VYFaZUk4xQArKpd+L88Gai16+scn0t0MQB78HhX9lBkTE/ERIZJHfevTR9nUXMrVZ87vJF6IEc8U9+4ZICxJ3Hh+E4VZcg88YPfIxSLfsrBz9t0zAvU9O/v47GVtKWqdQvHYT1/IT6OFsuXyz6p3ysskSRaZJ5zHxee5/2oWudbCYZhwyC5Rdz+4B+R/B3YRHuujtf8wX/nqJJr998JA3XEB21wHJXN+L5hfPCqskAfl3L1ubG22WM9KXIh2kYKSAjQTI4orkhjMM0IoCFNuKCzBUGlA0AopcVBHirIbq41weFQRAjXIMR+v3/M6hx88DBZBvr7dfVC+Im1tCrsGmAyayaoh7rqNcNGX5RkfH94K+dE/10cKJToOOFSBWkVFRUUlObh7T+8KvuhbF3HgvgM88+1neONP3pjqpmUcsTioAcrPKOeGHTfw2l2vcezxYzz5lSd58itPUmgppOniJpq3NLNsyzIszZZkNDtrOfLQEarWVWGoTJ9LIlZWv3c1W7+4lX137kN3eeZ1ifxeP0N7hzj/P85Pd1MSQmlrKYWWQvpf6Gfdh9eluzkqGY4kSTjFANYE5SNnCrWlRRwYTL4QshTck0GCISnhAjXIedS7usf4j7+/yqqaEppP4yaeSygs8fThEe5+qY8nDo4QCstTlO/fN8BPrl3LiqrMH6y4b+8AOo3Am9csnNtbY9azeXkZf9nVxycvaY27SGVO4x0EUxQiqiDMuJ2jHzgBQKORhUVDOdScdcJL27/1DE/94Clu3PF+atuFGQF75mdwHxz45/HftfnHBWtzRLiuQ18uu65d3a70CdRDotyv8y4g/mcrggCWBjnmo2o1Gq0GY7UxtQJ1eR5MT0KhOenHTAXLtizDUGXg5d+9TOVnKuXr2pVegVo7OURAsKbt+DGz/kYY2AMP/Bu84zfy9RoFZR2yQD16YJSmi5uS0cKkknlPYyoqKioqpzArUNefKrra2mysvWEtu365i3M+cw7mRnOKW5dZePo8FJgKKDBF/8BdtbZqtpiNb8THsSeOcWzrMY49fowD9x4AwNJsoenSJpZtWUbTxU3oS7Nk6lgSmByfpP/5fs7/cnYKqIZKAy1XtPDKH15h7aVrF98gxQy8OIAUlhSRPw2ya712Uy39L/SnuykqWYBnappAKKyoDGqQHdSPvz5MOCzNW0AvlYx45foVyRCoI3nUb/rps9zy573c9/FzT+uC7hub4K+7+rhnVz9Dnimsxfl8+PwmrtlQR9/YBJ/76ytc/fMdfOGKNm44rynt5+10hMIS/9g7wOa2MkqLF79ur9tYz0f+sJunDo2ypaMiBS1UKB47WNM/i2vCMcFz33+O9re2U3vuTGG20tMIRJIk51y7eueI2H2w89fUGt7FXkhroUTRLmKsMsy407M/YuwUzA3yua9aDcgxH6mI+IgI1AbjJBSXRS0+ZioanYbV71/NCz98gdIPlsoDLu70ZexLYYm8kIPpgix0qAsCvOl/4Y7L4YVfwDm3RLW5ocpAgamA0f2jSWpgclEFahUVFZUsINJpmk+gBrjw/13IK394hW1f38Zb73xrClsGvlEfD93yEIa3ZYaD1tPniSre43QUlxez6rpVrLpulezkO+ycFatfv/t19ty2BwSoWFVBXnF0GYEr3rGCc//93LjbmG6OPX4MKSzRemVrupsSM2uuX8ORB4/g2ueCS9LdmhPp3dGLoBGoO6cu3U1JGLWbaul8pJMp9xSFJVk18VIlxThFWTy1Kk6gLiIQCjMq+qlIUHHCWBmNCNRJcqnPzaP+r3/t5ztvO55HHZgOs/XAMHe91Mv2Tjlm6Q2tZXz9zR1csqKC/Jmiu8vKDDz66Qv40t9f5VsPHuCpQyP877vOpDID7x87Oh2MeP28fd3SinJd3F5OubGAu17qVQXqePDaoemCdLeC7d/dTkAMcNG3Llp8ZUGAolL5p/rM48vDIUwjY2h0Vlw9rmQ1dVHEIZGGjWY5jzuNOcJJw1wPrjmFEmtNDL+c/OK13kEvRbYidIExWaBWEGdefybP/c9zjDwxAtfMOKjTxOTYJIYiD1Jxlj6f5Onhmj/Ary+BqjXQuHQjkCAI2FbYcBzI3PjChVh0LpEgCHcIgjAiCMJrc5adKQjCC4Ig7BMEYZcgCBtnlguCIPxUEIROQRBeEQRBnb+poqKikgDcvW60BVqKyuYvpGOqNbHx3zby8h9eZvjV5Hew5vLYvz/G/r/uZ+yFsZQe93S4+9xRx3sshiAI2NpsbLxlI9f+41q+4PwCN+y4gc3f2Iyp1kS+IX/JPwExwOOffzzl71MyOPLQEQothdScHeM02Qxg+VXL0eg0jO8ZT3dTTqFvex/lq8pjmg2QqdSeUwsSDO4cTHdTVDIcpy8AgLVYOdc/QJ1FnnWTCTnUEYG6PIn3mIvay/nohc38+cVe7t83QOeIyHceOsA5//0EH//THo6OiHzy4lae/cJF3HnDRt64qmpWnI5gNRRw2/vP4r/fvoo9PS4u//EzPPSqPWltjpX79g5gLNRxcfvSXHs6rYZr1tex7dAIA67MKZyZdXgGwbhwpEqycfe5eennL7HmA2viq7FgrqcwMIKp1oS7O40O6iGR0qqAMt3TcDziYwZTnQl3nxtJkpJ6WHFQlPOnfSNykU4FUdZRRmlrKe5X3PIAgDt9ArXX7sVkEtFYsvf5BEsDvO1X8Lcb5XtcFJR1lGWtQL0UB/XvgJ8Dv5+z7H+A/5Qk6WFBEK6c+X0z8EagdebnbOCXM/+qqKioqMSBu9dNSX0JwgJTwc7/0vnsvm03T37lSa574LqUtKvryS5e+cMrAEz0pf9hG2QHddW65OblaXQa6s6to+7c6J2tk2OT/KT5Jyl9n5KBFJbofKSTZZcty+oiknn6PMpXleM95E13U04gPB2m7/k+zvzgmeluSkKp2VgDAvS/0E/zpc3pbo5KBqNkBzVA39gkZzWkty2jSYz4mMvnLmtjV/c4/37Py0yHJXQagUtXVPDujXW8obUM7RIiOwRB4LqN9ZzdVMpn/rKPj/9pD+88q5ZvvGUlhoL0Twr2+ad55LUh3rq2OqqCju/eUMf/bevknp19fGbL8iS2UMF47dFlUCeBp//zaZDgwm9cGN+OzPUUTo1gbjSnzUEdEAMExABm64RyBWpzA3Q9M/urqdbE9OQ0U+NTSY3u8w56ZYFaHAaDshzUIBfo63+1/3gGdZoQh0SMRhFteZZH5LVcAhtvgns+AB98EHRL+662rbCx77f7mByfRG/JrijKRZ8oJUl6BjjZFicBkfnTJUBE0r8a+L0k8wJgFgRBYan6KrlEKCzxSr+Lx14fSvqIqorKQrh7F3cF60v1nPfF8zj8z8P07kh+7te0f5oHb34QS7OF8lXlTPSmX6Ce9k/jG/Fhqs3cQkonvE/b05fPFi/2vXZ8w76sjveIUL2hGvGQmFH3+eFXhgn6gorJn45QWFIoP8CoOdQqi+AQZQe1TWlFEjPJQS36KdBpMCZZ4M3TavjZdWvZ3FbGl97YznNfvphb338WF7WVL0mcnktzmYG/3Xwun7iohb/v6efKnzzL7p70z+B69PUhJoMh3rZ2afEeEepKi7igtYx7dvUxHQonqXUKJjQNvtG0ulEdBx3s++0+1n98PeYGc3w7szRQODVCSUMJrm5XIpoXNeKQCIDJ5Eu7Mz1pWGYyqGeIPGMlu1Cid9CLodoA4igUZ2E+8iJY26xM9E8QNtak1UEt2kVMJpHC2sa0tSFhnP9Z+f72yJeXvEnZCnnwIxtd1LH2Rj4NPCoIwg+QRe5IkGYNMPdK7J9ZdsocLEEQPgJ8BKCiooJt27bF2BRlIoqiek6SyELnd3QizOvOEK87Q+x3hvAF5eVvbs7jHcuV5eLJNbL5czVyZATLesui7Q+dGSK/NJ97b76XM39y5oKO63jpvrMb52Enq/5nFcOPD+Pb60v7+Z0clKfI2n32tLdlIU54n366tPcp067f/ntlgXGoaIjxbZkXjxENoklkWpzm4T89TFHt/DE6qcb+L7nr1Cf14diWfR3MhdA2aOl6tounnnoqofeoTPuMqMSHc0agthQpq+9VmKfFZiigfzz9kQ6jXj9lxoKk9hUiVJv1/Pr6DQnZV55Ww+cub+PCtjI+85d9vOvW5/nExa188uIWdGma0fP3PQPUlepZ32CJetv3bKzjY3/cw9OHR7lkhbKm/Scd3wjoS+Ws5DTx5FefJK8ojwv+IwE52CV1FE4NU9JgwjvoJRQIoc1fuiM/EUQE6uIir4Id1PVyxIckgSDMGlvcfW4qVifnMxgOhWVnbyTio3RZUo6TTqzLrUhBCfd4EZYJJ0wHQJf673Cv3ctyo4i2QQHnWKOBt/4Sbr8I9v4J1r530U3KOmSBevTAaEyzfdNJrAL1zcBnJEm6VxCEa4DfAJdGswNJkm4DbgNYv369tHnz5hiboky2bduGek6Sx9zz654I8txRB9s75Z8ep/zAUGEq4IpVVVzQauP5o07+squP1e0t3PQGdUpytpKtn6tQMMTTzqdp29i2pPabvmXioY8/RM1EDcvflJzpos7DTrb/eTtnXHsGb//823km8AxPPf4U564/l/w0Tsfufrqbl3iJjVs20rw5sz+rJd8u4cGbH1zy+5Rp1++jDzxKj76Hy95xWUrEjWQyZBni8A8OU6epY9XmVYtvkAK2PrqVzrxOLr/m8qyOUJkP4xEj/3r4X6yuXY211Zqw/WbaZ0QlPpw+PyX6vFPyiJVAXamevgxwUI94p5Ie75FMNjSW8tCnLuAb97/OT584wjOHR/nxu8+k0Vac0nYMuafYcdTBv13UgiZKRzjAJSsqsBnkYomqQB0lnvTGewzsHODAvQe48BsXUlyWgOtOb0YStFjrNCDJjl5Lc/SDHvHgtcuRZ3rtOBhXp/TYKaOwRB7UmHBCsW1WoE6mg9o34kMKS5hqTHLER/2mpB0rXVjb5D6d84gLi7ESPP1QmvrnsQm7kzzDNLoyhQywFJrg3X+C310J1WuhomPB1UsaStAV6hjdP5qiBiaOWHt81wN/n/n/X4GNM/8fAOZK9LUzy1RUMgb/dIgDzhDff/QgV//fDtZ+8zFu/tMe/rF3gJYyA19/cwdbP/sGXvjyJfzvNWt469oavvP2VbxpdRXffugAf9mZvVPyVbIT76AXJCipX1rhv3UfXodlmYUnvvwEUjjxkQWSJPHgzQ+i0+u4/EeXA2BrtwGycJ1OPH1yx9JUl7kRHxHW3rg2qe9TsnH3uDE3mLNenAYoX1mOpkDDwM7M6bK4ulyU1JcoTpwGqN0kT4FXYz5UFsIpBrApLH86Qq2lKHMc1FkeoWIqzOOH7z6Tn123lmOjIlf+9Fn+srM3pZFN9+8bQJLgbeuii/eIkKfVcM36Wp48OILdnf7rIqvw2tMaQ/HEl5+gyFbEOZ89J2H7nCosx1rmA0hLzEfEQZ3PmHId1DAT8yEXSjRUGRC0QlIFau+ALPzLGdTKjPiwtcnPg45DDiipT1sOddjZj2/SBAp4RpmlvB3WXAeHHlp0VY1Wg7XNmpURH7E+9QwCkQoAFwNHZv7/APABQWYT4JYkKfNKLKvkLKGwxJt/tp3v7Zzi1qePoRXgExe38tePncO+r1/Gbz64gQ+d10RLufEE0UWrEfjRNWdy4fIyvvz3VzOycriKcnH3ylW8lypQa/O0XPytixl5dYRX73o14e159U+v0vVkF5f89yUYKg3AcYHacTC9X4TuvplztUhedyZwwvv058S/T8nG1eNa8jWZ6Wh0GgwtBgZ3RlclO5m4ulxYmlLrmkoVZR1l5BvyVYFaZUEcoh9rlounp6PWomfQNUkozYOTo14/5SZlnOM3r6nmkU+/gdW1JXzx3le5+Y97GPcFkn5cSZL4+54Bzqwz0xSHc/vaDfWEJbhnp3pfjIoYCyTuu3MfD3/qYabcUzEf+tjWY3Q90cUFX7mAggTORJgqrKDE5AJIS6FEcUhEo9Og9Y+CSaEZ1HA85gNZ0DNWGWeNLsnAOzhHoPaNpDU3PVkUlRWhM+hwHnKCuS59OdSeQSZDpek5djIpawfHkcXXQ86hVqRALQjCXcDzQJsgCP2CINwI3AT8ryAILwPfYSZLGngIOAZ0ArcDH09Kq1VUYuS1ATeHh0Xe1pLH3v+3hb9//Dw+u2U5GxpLyVvEpZav0/DL961jXb2FT929l2ePZN+UCZXsJFqBGmDlNSupPLOSp772FKFAKGFtmRyb5NHPPkrN2TWs/+j62eWlLaWgmRkxTyOePg/6Uj15RenLIoyGldespHJt4t+nVODudVPSoAyBGsDYbsS+x054OjOKVI13jWNuMqe7GUlBo9VQs7GGgRcyx7Guknk4fcp1UNdZigiGJEa8sYtj8RKYDjM+EaTMUJi2NiSaarOeP394E19+YztPHBzm8h8/k/T++n67h0PDXt6+riau/dRbi7ig1cZfdvamfeAiq/AMxuSg3vvrvbz005e4dc2t9DzbE/X2kiSx9UtbKakvYf3H1i++QRRMFZZTpB0FQZ6tlmpEu0hxRTGCd0jZDmrzcQc1gKnWlFwH9VyBWhwBQ1nSjpUuBEFAX6eXBeqS2rQ5qIXJIQJC4iLkMoayNnAcWtKqtg4brh4XgRQM1CaSRQVqSZKukySpSpKkPEmSaiVJ+o0kSdslSTpLkqQ1kiSdLUnS7pl1JUmSbpEkaZkkSaskSdqV/D9BRWXpbO+UxbOL6vIwFUYvYBXl6/jNBzfQUm7kI7/fze6e7C4MppIdzArUUbiCBY3AJf99Ca4uF7tv252wtmz90lYmxya56ldXIczJWdQV6CisLMR5MP0RH9kQ7xFh9n3qTuz7lGyCE0EmRieUJVC3GZmenM6IvLaAGGBidEKxAjVAzaYahl4eIjgRTHdTVDIUp+jHWqwMd+/J1Fr0APSNpS/OwenzA2R1BvV8aDQCH71wGf+45TxM+jze/5uX+K9/7mcqmJxB4Pv2DJCnFbhqdfxO0+s21jPonuIZ1QSzdGJ0UHvtXqrXV6PRabhz85088ZUnCEVxjRy49wD23XY2/+dmdIWxlvWan6nCcjTefozVxrRFfBgqi+ScZIOCBWpLI7iOR3ea6kxJd1ALGoHiUi1MT0GhOWnHSidFdUVy5GNJ+hzU+dMOQgXKi1DB1io7qJcQYVW2ogwk5MGCLEJ5wYYqKguwo9PBiioTpoLY84hK9Hn8/oaNVJgK+NBvX+KAPXlfZCoqIAvUemv0ruBlly+jcXMjz3zzmdlR+3jo3dHLntv3sOnTm6hcc2qHtai+KCMiPrIh3mMuyy47/j4FxOwY5Y4MmpgbzOltSAIxthsBMiKHOjKlV6kRHyDnUEshicHdmROropI5TIdkd69VoQ7qiEDdn8ZCiaNeZQrUEVZWl/Cvfzuf689p4I4dXVz98x0cHEpsn306FOb+lwfZ3FZOaXH81+qlKyqwGfK560W13s2S8QyCMXqBWhwSqTu/jo/u/ShrPriG7d/Zzh3n3rGkmYDh6TBPfvVJyjrKWP3+xBcRnCqsAFcv5kZzehzUQyJldYJcSFCnzHswcELEBxx3UCcrv9476KW4ohjNlEPOn1ZSPvIc9HV6PP0egoVVJwwApIqAGKCowIWkRPe/3gJ5RfJ9bxFsK+T4zdED2TXgqQrUKjnDZCDEru5xzm+Jf7pHmbGAP9x4NkX5Oj5wx0t0O3wJaKGKyvx4ej0xZf0KgsCWH2wh4Atw2/rb6Hs+9lHsUDDEgx97EFOdic3f2DzvOkX18oh5Ogv+ZZuDGuT36ZLvXoJvxMfzP3o+3c1ZEhEBVUkOan2NnoKSgozIoXZ1uQAU7aBWCyWqLMTYhDxYp9QM6ppZgTp9DuoRj7IFaoDCPC3/efUZ/PZDG3D6ArzlZzv49bPHCCeon7LjqJNRr5+3r40v3iNCvk7DO8+q44mDIwx70hf/klV47VHnJPu9foK+IMYqIwXGAq7+zdVcc+81jB8b57Z1t7HrV7sWFCn33bkP5yEnF3/74qQUMp4qLAdXD+YGc3oc1HYRS5U/JuE/qzg54qPORHAiyJQrOZ8976BX0fEeEYrqigAYHzOkxUEtDokYjSIaS13Kj50SbMvBcXjR1aytVgStkHU51KpArZIz7OoZIxAKc16LLSH7qyst4o8f3sh0KMz7fvMiQ3EU2VBRWQh3nzvmYnTVZ1Vz4/M3kqfP43cX/o49v94T036e/+HzjLw2wpU/v5L80zjaiuqKmJ6annXXpprgRJDJscmsE6gBas+upf1t7Tz3/eeYcKTPUbdUYslFz3QEjUD1+uqMEKjHu+T4KCU7qIvLirEss6g51Crz4pyZTWJLgCs1EynQaakwFdA3lkYHtah8gTrCRW3lPPrpC3jD8jK+9eABPnDHSwkRgO/b04+pUMfFKxI3lfzaDXWEwhJ/3ZWm4mLZhscetZAq2kUADFWG2WUr3r6Cm1+9mbrz6njwYw9y99V34xs91YAUnAzy9DeepubsGtqubouv7adBFqh7KWmQHb3hUOpqY4RDYXwjPizWSWXnT4PsoHb1QVg+v6Za+fkhWTEfJwjUxQqMn5hBXycPwI72FchO33Bqa7t47V5MJhFdeX1Kj5syypYmUGvztZS2lGZEdGE0qAK1Ss6wvdNBnlZgY1PiKrq2lBu584aNjPsCvP83L6akWrhK7uHujV2gBqhYVcFNO2+icXMj/7zpnzx4y4NRFeQb7xrn6f98mva3ttP2ltN3xvX1cockXTEf7r7os7oziYu/dTFBX5Bn//vZdDdlUdw9bgStgKkm+wYDFqJ6QzXDrwwzPTWd1na4ulzkFeVRVFaU1nYkm9pNtfQ935e06bQq2UtEoFaqgxqg1lKUVgd1JOJDqYUoT8ZqKOD2D5zFd962it0941z+42d4+FV7zPsT/dM88voQV62ppkCnTVg7G23FnNdi5a6X+hLm9FYsfi9IITmKIgq8djn2zlBpOGG5sdrI+x55H5f/6HKOPnaUX676JUceOnLCOjt/sRNPv4dLv3spQpIiGkK6ItAVYKsTCE+HExLTt1QmHBNIYYkS80RM2d5ZRX6RfO2Iw8AcgTpJhRJnBWqfsh3U+ho9CDB6xCvnbItDKT1+xEFdUNuY0uOmjCU6qEHOoVYd1CoqGcqOTgfr6i0U5Se2kMXqWjO3X7+enrEJPvi7nYj+9AobKspiyj2F3+2P2xWsL9Xz3ofey7mfP5ddv9jF7y/9PeKwuOh2kiTx8CceRqPVcMVPr1hw3aJ6WUxLl0AdcTxEOpjZRllHGWuuX8POn+9Mmwt9qbh73JhqTGh0yupG1GyoITwdZujl1HamT8bV5cLcaE7aw2+mULupFtEuJrUoUSYhCEK3IAivCoKwTxCEXTPLSgVBeFwQhCMz/1pmlguCIPxUEIROQRBeEQRhXXpbn1oiBfyUmkENcg51vyu9GdTmoryEiquZjiAIvOfseh785PnUlxZx85/28Pm/vhxT3/2R14aYCoYTFu8xl+s21jPgmuTZzuwSFlKOxy67fKP8rhSH5P6vscp4ymuCRmDTpzdx086bKC4r5s9v+jMPfeIhOfrBPcX272yfrfGSVMwNlJbL7UxlzEfEXV6s9yo/4gNmXNRyzEfE4JIMgToUCDExOoGxxgjiKBgqEn6MTEFboMXcYJaL85nrZJd6ChEH3RgMExQ3Naf0uCnDthxGDy1t1Q4bY51jURnT0o2ynixVVE7DmC/A64Mezk9QvMfJnLvMxv+9Zx2vDbj5yO93Ja1SuEruERFuEhGloNFp2PI/W3j7n9/O4K5Bbl9/O4O7Fo4zOHDvAY48dITN/7V5UWdyXkke+lJ9+gTqmQ5lNkZ8RNj8jc0gwLZvbEt3UxbE1eNSVP50hOoNco5lumM+xrvGFZ0/HSFHc6gvkiTpTEmS1s/8/iXgCUmSWoEnZn4HeCPQOvPzEeCXKW9pGnHMRnwo10FdZyli0DXFdAqn789l1OunTMEO9YVoLjNw783n8omLWrh3Tz8X/2Abn71nH3e91EvniHdJszru29tPfWkRZzUkPorpso5KrMX5/Nc/X+fe3f1MJlFcCKbp+ksI3kEwRpc/DfNHfJxMZPbh2Z8+m53/t5Pb1t/Gw594mMmxSS75ziUxN3nJmOspMboAUlooMSLe6/Ncyo/4ALA0zBZKNFQaEDTC7IzMRDI7KFJtlB3bCo74ALC2WXEedkJJXcpzqP1D/UxOFqIvU95zCjDjoD6y+HrIDurwdJixzrEkNypxqAK1Sk7w3FEHkgTntSZHoAbY0lHB99+5mueOOvnkXXvT9sChoiySkfW76rpV3LDjBgSNwB3n38HLv3953vX8Hj+PfOoRKs+s5Ox/O3vR/QqCIHdIDjkT1tZoiHQos9VBDfL7vOGWDbx858sZnRkWb+xMpmKqNVFcUZxWgVqSJNlBnQMCdcXqCnSFulwTqE/mauDOmf/fCbx1zvLfSzIvAGZBEHLAzibjFP3oNAImfWJnvWUStRY9obDEUJqK4Y2K/pzInz4deVoNn7u8jXs+eg7r6i08c3iUL//9VS794TOs++bj3PT7Xdz2zFH29I4TmD6xT293T/LcUSdvXVuTlJku+ToN//32VYQl+Pe/vszG72zla/94jdcGEiOcDbom+d2OLt5z+wtc9dPtCdlnWvDYY4qh8Nq9aPI06Ev1C66nK9RxxY+u4H2PvY8p1xSv/PEVVr57JVXrUnArNtdTnC8bPiKFqVNBREgtYCxHHNQN4OoFZCOPocqAtz/xkSqeAdlEkwsRHwDW5fLzoFRSN3t+U0XY2Y9vyoSgUegsRFONHG80tfj3QfX6atbeuBZNXvbIvsrt9amozGFHpwNjoY7VNckVVN6+rhbPZJBv/HM/X7z3Vb7/ztVolHpzVEkJs7nKCRYDq9ZWcdOum/jbNX/jH9f/A/teO5d9/7ITIhue/OqTeO1e3n3fu5cc5WBrt9H5cGdC27pUPH0eisuL0RVk91fbBV++gL2/3suTX3mSd9/37nQ35xTC02E8/R5FOqgFQaBmQw0DO9NXuG9qfAq/x6/oAokRtPlaqs6qyiWBWgIeEwRBAn4lSdJtQIUkSZEg3CEgMu+3BphrO+qfWRZ7aG4W4RQDWA35io65qbXIsVj945Oz/08lI94p1tUr/z6zGOsbS1nfWIokSXQ5fOzqHmdn9xi7esZ5fL+cTVuYp+HMOjMbZtbd3TOOJMHbkhDvEeGylZVs6ajgxa4x/rKzj3t29fGHF3o4o8bEtRvqecuZ1ZgK85a0L0mSODIi8uhrQzy2f5hXZ4TuZWXFXL6ykmAoTJ42ewSMWbzRF0gE8A35ZLfsEu8vy7Ys4+ZXb2bnL3ay7sYUpS2ZG9COHqS4vDqlER+RfG5d0JEjAnU9DOya/bWkriQpDupIjrix2gi7lR3xAbKDOiAG8AvlFLq7Untwr50pc+JqjmUcGg3YWmQXde36BVe1tdt4y6/fkqKGJYbsfopXUVki2zsdnNNsRZeCztcHz2vCPTnNj7YexqTX8f+u6lD0A5ZKcnH3uuUR/crTT0OMleKyYt732Pt4/POP8+KPX2TklRHe+Zd3UmQrYnDXIC/9/CU2fHwDNRuX/gBma7ex77f7mHJNUWguTHibF8LT58nqeI8IRbYizv38uTz1tafof6F/NgYhU/AOepFCEuYGc7qbkhSqN1Rz+MHD+L1+CtLgLhzvGgfICQc1yDEfL/38Jab901k/uLQEzpckaUAQhHLgcUEQDs59UZIkaUa8XjKCIHwEOQKEiooKtm3blrDGppNDPVMUSFLcf48oihl7TkYmZFfu48/tYap3aUJjopAkiWHXJFOmYFznJ5PPb6yUA28qk39cfj1HxsMcGQ9x2OHi58fGiHxAW8wael7bSU8K2nR1BVxaWsjzg9M83S/y1X+8xn/98zU2Vuq4sFZHi1lzyrNGWJI46gqzZyTEnuFphifkljeXaHjX8jzWluuoNgAMsePZ6OouZMr73nJkF5P6KgaibEvv/l6k4hjuLxfA7sO7YWn1yWJGFEVecXqoGdiLprSW7n3dKTvfnbs60RZrCY73suvVLgKHXSk5biqZe/1axtzU977MyzO/TxVM4TzsTPj5HnhaNj680vUKptFuXnu9m4luZdatEkWR8Sm5L7t3n4PlhS/zagrvF9OuXjxFhoy4RyWLFSEz48/ez1DV4vWkYiGd93jFPwmoqPQ6J+gbm+SmC1IXlP/JS1pwTQb47Y5uzPp8PnVpa8qOraIsPL0eTLUmNEkaXNHmabnix1dQeWYl//rYv7ht/W1cc+81/Ouj/8JQaeDib18c1f5s7XKMjuOQg9qzUyusuvvcWFutKT1mstj06U289LOX2PqlrVz/1PUZNcgVmWqqRAc1zORQS2DfbU9+EaR5cHW5AHLCQQ2yQP38/z7P8MvDUQ2GZSOSJA3M/DsiCMJ9wEZgWBCEKkmS7DMRHiMzqw8AdXM2r51ZdvI+bwNuA1i/fr20efPmJP4FqePHr++gwaxj8+bF46UWYtu2bWTqOQlMh/nisw9jqGhg8+blKT22dypI4NHHOKujhc1vWBbzfjL5/CYD0T/Nvl4Xe3vHubCtjNW15pQe/03Igwuv9Lu5e2cfD+wbYPvAFC3lBq7dUMdVq6s5MOThsdeHeXz/MA7RT55W4JxlNv6to4ItHRVUmOI3D2TM+z50O6y6gNaVm6Pa7MDUAcrbyjPjb5iHbdu2sXrjm+Cev1C3qo7hl4dT1lbHLx0E6kXyQxOcu+UtoFFeEdUTrl9nHfzhjtnfp9ZOsWfXHi688MKE9r23PrqVY3nH2PKWLQjfE9l48ZtAr8x+3rZt21h7zVpe+dwrmPQrsWoeTeln7YUffo88c33Gfr4TgrCTioBIe5L+xnTe41WBWkXxbJ+pgH1ekgokzocgCHztTR14ZpzUJXodHzyvKWXHV1EO7l53SlzBZ37wTMo6yvjL2//C7RtuBwne+Zd3UlgS3YOMtU0WiJ2HnCkXqD19HpouVsbnLN+Qzxu+9gYe/reHOfroUVquaEl3k2aJFOtRqoO6ZoMskg7sHEiLQJ1zDupzjhdKVLJALQhCMaCRJMk78//LgP8CHgCuB7478+/9M5s8AHxCEIS7gbMB95woEMXj9PlpshWnuxlJJV+nodJUSP/4ZMqPPer1A+R0BnUsGAp0nN9q4/wk1rRZDEEQWFNnZk2dma++aQUPvmLn7p29fOvBA3zrwQMAFOdr2dxWzmUrK9jcVk6JPrUO/ZThtYMp+iKJXruXuvPqFl8xnZTUgauPkgYThx44hBSWUpKp67V7KasLg6FckeL0KZTUytdRaBq0OkrqSgj6gky5ptBbFs4ojwZxUMRYZUQITcH0FBSaE7bvTMRUYyKvKA/7sTxW2vpAkiAFZptQMIReOw7Gs5J+rLRSthxevjvdrUgKqkCtoni2d45SVVJIc4ofdDQage+9YxXeKTmT2qTP4+3rMmuqvkrm4+51p6wTXbOxho/s+gj3feA+imxFdLyrI+p9WJotaHQaHAcdSWjh6fF7/Pg9fkVEfEQ46yNn8fwPn+eJLz/Bsstid7glmkjhTiWd67kU2YowN5rTVijR1e2i0FIY9eBQtmKqMWGqNdH/Qj9nfzI+t2yGUwHcN+PI0gF/liTpEUEQdgL3CIJwI9ADXDOz/kPAlUAnMAF8KPVNTh9OMYC1OD/dzUg6dZYi+scnUn7cWYHakBv3GaVSXKDjmg11XLOhjkNDXrYeGKajysQ5y6wU5uWAuOiJPoM6FAgx6ZzEUJX46LyEUmCA/GJs9RDyh/CN+JIS93cy4pBI43nTYKxM+rEyAl0BFJeBZwAsDbOF1j39noQK1N5Br5w/LY5AcXlKxNp0ImgErMutDB+ahHIdTI5DUfJzoX0jPoxGkelShWsutuXgSHLWUJpQBWoVRRMKSzx31MmlKyrSMkVep9Xw0+vWcsPvdvL5v72CsTCPLR3KLoqgkjjCoZlidAkukLgQhkoD73/s/TFvr83TUtpSmnKBeraYZJ1yYie0+Vou+uZF3Pe++3j9ntchQ54VXD0uimxF5CtYPKreUJ0+gbrLlTPxHhFqN9XS/7yyCyVKknQMWDPPcidwyTzLJeCWFDQt45gITDMRCGE1KN/dW2vR82LXWMqPOyqqDmql0VZppK3SmO5mpI5wCHyjUQup4rCc2WqsyoJzZa7HZpLb6+p2pUagtouYbYHcKJAYwdwArl5ZoK47LlBXrErcM7t30CvHIPpGwVCWsP1mMtblVgZ3D8Kb6+TzmwKBWrSLmEwinvL6pB8rrZQ2g6sPpgOgU9bzWBaW61U5mXBYwjMVTHczMpL9gx5cE0HOT2G8x8kU5mm57QPrOaOmhFv+vIfnjqZWuFPJXnzDPsLT4ZQK1InA1m5LuUDt6fMAynP1rrpuFRWrK3jyq08Sng6nuzmAHPGh1PzpCNUbqnF1u/CN+lJ+bFeXK2fiPSLUbKrB1e1CHEpOsReV7MIpBgCwGpT10DUftRY9dvckwVBq7+8jHlWgVomRe67H5D64+HrJRhyRM3y10cWXiHb5eybjHdQA5npMJhdwvP5HMgmIAQJiAJPZl1sCtaUBXHK501kH9cxzRaLwDnoxVBuOO6hzAGubFVeXi7CxFtx9KTmm1+7FaBQprEtd7bG0oCuQ42nGjqW7JQlHFagVwL17+jn720/Q40z9g3Smk4786fkwFOj43Qc30FBaxE137uKVflda26OSHUSiFLJNoLa2WRnrHEupoKpEBzXIU+Qu/vbFjB8dx7nDme7mALJArdT86QiRHOrBXal1UUuShKvbhbnRnNLjppvaTTM51C8q20WtsjQcM+5eW04I1EWEJRhyT6X0uKMzxfPMSs0mVkkeBUYMYle6WwHewZhiKCIDoalwI8eNuR5DvjzDIlL/I5lE3OWGYjF3Ij4AzPUwLgvUxiojgkbA0584gTo4IWdam2pMIA7L+d45gLXNihSW8FMmu31TwMTgMIIAxXU5cP2WtYHjULpbkXBUgVoB7OweYzIY4oePKzOHJh52dDporzRmhEPEUpzPH248G0txPtff8RKdI950N0klw8nWrF9bu41wMDxb7C0VePo9IGSJIyZKmrc0gwC+rvQPQkqSJBfurM+uazJaqs6qAoGUx3yIQyLTU9M556CuWleFRqeh/wVVoFaZ46AuTn/fLdnUlsoZp31jqc2hHvX6sRkK0KSg6JqKwqg4g2JfT7pbIedPx1ggEbIk4sPSgG5ygEJLIa5uV9IPF3GXF+W5cstBbT7uoNboNBiqDAkVqGevuWrjTMRHbgjUtjbZIOjxmVPmoJ4e6sHjMWDIhbgjW6sic6hVgVoB7Ld7EAS4f98grw8mf3Q1W5gKhnipeyzt7um5VJYU8qcPn41Oq+F9v34p5Q8kKtlFtjqobe3yZy6VMR+ePg/GKiNaBRYF0hXoKKkvYXJgMt1NYdI5SXAiqHgHdYGxAFu7LeUCtavLBZBzGdR5+jwqz6xk4IWBdDdFJQNw+mQHdS5EfNRZigDoH0/t/X3U688I84ZKFlLRgUHsTncrwBt9gUSYEWEFKK4oTkKjEsyMcGpuNKfGQT3jLs9nDEw5JFBbZjKoZzDVmhIa8eEdmCNQ51LEx3IrAGOO4pQJ1KGxfnxTJrT5ynsePAVbGziOpLsVCUcVqLOcYCjM4WGRazfUUaLP4/uPKs/mHyu7e8YJTIfTmj89Hw3WYn5/w0YmAtO8/zcvzlZSV1E5GXevmwJTAYUlheluSlRY2+QOSaoF6mxzmkeDtdXKZH/6BepIBqLSM6hBjvkY2DmAXKsuNURmHeSagxrkHOqBnQMZk7Wukj4cOeSgriwpRCNA/3jqHdRlOVCEUiUJlK+UHdQp/G6cF2/sDuoiW1F2GBrM9eDqxdxgTkkGdUSgzpt25JiD+njEB8wI1Il0UA/OdVCP5IyDusBUgKHKwEhvQcoiPgTvEFOh5BdjzAhsy2FUedqfKlBnOcdGfQSmw5zdZOXjm5ex7dAoLxzLjJzSdPPsEQc6jcDGpsy7Sa2oMvHbD21k2OPnA3e8hHtSLXKpciqePk/WuacB9BY9xeXFOA+l7l7k7nMrLn96LqWtpRnhoI44eJTuoAa5UKJv2JfQh5TFiDiocy2DGuQc6qAvyMjrI+luikqacYoBivO16HPAAZWn1VBVoqcv1Q5qUXVQq8RIsZWQtjBljsjT4onNQe0b8mVH/jRASR24+ylpMOLqdiV9wNxr9yJoBYSJ4dzKoDbVwIQDpmXTmKnOhLvPnbDzfYJALeaOQA2yi7r/kCZl9wvt1DBBbWaZE5OGrRWcnekfLEwwqkCd5ey3y2JBR7WJ689tpNJUyP88cjCljq9MZUeng3X1FooLdOluyryc1WDhV+8/i84RLzf8bicTgel0N0klw3D3urNSoAY55iNVDmpJkhTvoC5tKWXaO83kWHpF6lxyUFdvkJ1ZqYz5GO8ax1BpIC8HC5fVnVMHoOZQq+D0+bHlkHhaa9Gn1EEdCks4VYFaJQ5EQyMMv57eRngHY4qh8Nq92ZE/DZBfBAUmyuolgr5g0vuA4pCIpSYfIRSAQnNSj5VRaLSyG98t9z9MtSaCviB+d2JmOXsHvej0OgpKCnIq4gPkWbUDr/kh4JN/kkxeyEGosCLpx8kI9GbILwaPsuLxVIE6y9k/6CFfp6HZVkxhnpZPX9rKnl4XWw/ktgNp3BfgtUF3RuVPz8cblpfxk2vXsrd3nJv/uIdgSJ3arHKcbC5GZ223pkygnhqfIjgRVLZA3SrPBHEeSe8MGXevm7yiPPQzhb2UTOWaSjQ6DQM7U9fxc3W5cjLeA+RYk6KyIvqfVwXqXMcpBrAWKz9/OkKtpSilGdROn5+wBOWqQK0SI77iBhh+Lb2N8NjBGH3Eh2gXs6ugtrkea7kcvZHsHGrfkI+yxpDsTBdyrICquQHGuwFmZ2Qmagadd9CLsdqIIAg5VSQR5EKJk84pwoaa2QGAZCFJEnrdGFIuxdPYliuuUKIqUGc5B+xe2iqM6LTyW/nOs2ppthXz/UcPEgrnrov6+WNOJAnOb81sgRrgylVV/OdbVvL04VGePTKa7uaoZAjBiSATjomsja2wtduYdE4y4Ui+K8zdN1NMMkvP1VKwts4UGjkyltZ2uHvclDSUyJ1shaMr1FGxuiKlDmpXtyvnCiRGEASB2k21qoNaBYfox5pD+ch1pXqGPFMEUpS/Hql9ojqoVWLFV9wIw/vT2wivPWoHtRSWEIfF7In4ADDXU2KS+7mubldSD+W1e7FVB3MrfzqCuR5ccg61qVY2vESeL+IlIlATnJRjRAqV+7xyMpG6RAFtedJzqKfGpzAUe9Faa5N6nIzCthxGVYFaJUOQJIn9dg8dVcddgzqths9d3sbhYZH79irL7h8N2zsdGAp0rKnNji+At62Tb6SvD6Qu61Qls5kVXbM14qNNHhxyHEq+izpSaVvJDmpzkxk0GeCg7nHnRP50hOoN1QzuGkRKwYBveDqMu9edsw5qkHOonYecaY+yUUkvTl8AmyG3HNSSBIOu1Fz3qkCtEi9pj/jwixAKRh1DMTk2STgYzi4HtaUBQ4FsTkh2oURxSMRim8qt/OkIlgZw9QLHBepEO6jleI+ynHKnR54HRX8puHuTeiyv3YvJJJJX0ZDU42QUZW2qg1olcxj2+BnzBeioPlGUeeMZlayuLeFHjx/GPx1K2PGyKdd6R6eDTc3WWWd5pmMo0NFgLWK/PTcF6mAoTGA6uh+lx6G4e7NcoG6fEahTEPORCw5qXYGOwvJCxjvH09oOV48rJ/KnI1RvqMbv9jPWmXznuqffgxSScrJAYoTaTfJg7cBLuTvAnuuEwxJjvgDW4twRT2stcmRSqmI+ZgVqQ2FKjqeiPCaKamS3aXAqPQ2IuKejFPq89pliddmSQQ1grkc3NUC+IT+pDupwKIxvxIfJMiHnMeca5kYYlx3UhioDgkZIiEAtSdJxgdo3CoayuPeZTZgbzWjyNLjHTUl3UIsD4+j1UxTW1Sf1OBmFrVVxAvWi1eMEQbgDuAoYkSTpjJllfwHaZlYxAy5Jks6cee3LwI1ACPikJEmPJr7ZKgAHZsTMkwVqQRD44hXtvPfXL/LHF3q58fymuI91/74Bvvmv/fzsunWcs8wa9/6SSd/YBD3OCT50bmO6mxIVHVWm2fc0U/jLzl6++a8DnNVg4fwWG+e32mivNMY9vX8yEOLFLic7Oh08e8TBwSFv1Pu4cHkZd96wMa52ZDIRV3C2CtQlDSVoC7QpEag9fR40Og3FFcVJP1Y60dfq0+qgDvgCTDons/aajIWaDTUADOwcwLo8ud99413y4EMuO6irN1SDIBdKbLmiJd3NUUkD7skgobCENYcc1HWlRQApK5Q4KsoCtc2YO+dYJbFImjwobYbRg1B9Zuob4BmMOX8ayC4HtbkeYf/9lDSsSGoG9YRjAikkYSwWwdiatONkLHMiPrR5WgyVhtlnsXgIeAMEfUGMNUYQh8GQIwX8ZtDoNJQuK2XU7mSZO7kCtX+gF5+vCGO1OanHyShsynNQLypQA78Dfg78PrJAkqR3R/4vCML/Au6Z/3cA1wIrgWpgqyAIyyVJSpyNV2WWiNu2vfLUUeDzWmyc32Lj/57q5Jr1tRgL82I+ztb9w3z2npcJSxKfunsvD33qAmwZnA24vVMWxLIhf3ouHVUmHn5tCNE/jaFgKR/N5PPisTEkSaJ/fIJvP3QAAJuhgPNbrJzXYuOC1jIqSxZ34ITCEq8NuNne6WD7EQe7e8YJhMLkazWc1WDh3y5uoTBPG1XbIg90SsXd6wYBuUOThWi0GqzLrTgPJV9Q9fR5MFYb0WTJjIlY0VfrGXtG/kymIwN61tWfQw7qso4ydHodgzsHWf3e1Uk9lqvLBZCzGdQABcYCys8oV3OocxinTxZPcymDusJYgE4j0JcigXrE48dQoKMoPzP6mipZSsVKGNmfHoHaa48phkIcmhGosyqDWo6eMDeakypQR86NPt+VmxnUloZZBzXIMR+JcFB7B2dc+9VGEA/JER85hrXNiv1od9Id1MHhbjweA2XZNAAVL6ZqCPhg0gV6c7pbkxAW7ZlIkvSMIAiN870myE/I1wAXzyy6GrhbkiQ/0CUIQiewEXg+Mc1Vmcv+QQ/1pUWnFZ+/cEUbb/n5Dn79bBef2bI8pmO8cMzJLX/ewxnVJr52VQfv+fWLfOYv+7jzQxvRaDIzP2l7p4MKUwHLyrLr5rRiJkv8oN3D+sbSNLdGpsvpY02dmT/ftIlB1yQ7Oh2yyNzp4B/75MJhLeUG2V3dYmPTMuusuN7rnODZzlF2dDrY0enEPRkE5L/z+nMbOL+1jI2NpejzoxOmcwV3rxtjlRFtlMJ9JmFrszH08lDSj+Pp9yg6fzqCvlbPlGuKybFJiqypH6CJPBjlUga1Rqehal1VSgoljneNI2iEnLiWF6J2Uy37/7ofKSwhZGg/QyV5OMQAALbi3HH36rQaqsyFqYv4EP2Uq/nTKjEQDoVxHnbid/ihcmX6cqg9g1EXSIQsjfgoqQP3ACUNRvp2JE/giwjUhcJ4bgrUhgoIiLLYl1+Mqc7E6Oujce/WM1Nf6njER3nc+8w2rG1WDt4BkruXZPbqwmMD+CZM1OTQDCwEYSbm4wjUbUh3axJCvEPnFwDDkiQdmfm9Bnhhzuv9M8tUksCBkwoknszqWjNvWlXFr589xvvPaYja9fxqv5sP37mL+tIifvuhjZQW5/P1N3fwlfte45dPH+WWizJv+m04LPFcp4OL2svT4jCMh0hUy4EMEqi7HT6uOEPupFSb9bxrfR3vWl9HOCxxcMgrR3R0Orh7Zy+/e64bnUZgTZ2ZUa+f3jHZCVRVUshlHRWc32rj3GU2tSjPEnH3urM+SsHabuXAfQeY9k+jS+KsAHefezaKQcnoa+Wc0rEjY2kRqCPFeXLJQQ1y7MTuX+0mPB1Go0ueS9/V5cJUZ8rqQalEULuplj2378F52DmbZa+SOzhnBOpcclAD1JqLUppBbVP7YioxEAqE+EXHL2j8UCN8+Qx4/ufpaYjXDpboIyxFu0i+IZ/8bBKw8gpBb6G8PsyUawq/x0+BKfGf30j8iW7akZtFEgVBHgxw9UL5Cky1Jjof6Yx71uIJDurDI7KYmGPY2myMO4tAHJWLm2pjn9m/EIJoZypsyToNKG5sy8FxSBWoZ7gOuCuWDQVB+AjwEYCKigq2bdsWZ1OUhSiKC56TqWmJLscEa8yBBdc7vyTMw8EQX/7DNt67YulfZoNimP9+cZICrcDHO0K8svM5AKoliY2VWn7w6CF04z20lWbWg3SPJ8T4RBDbtGPB87LY+U0HkiRRnAdbdx+izt+d7ubgC0qMTwQJu4fYtm3+mIZWoLUZ3tdQSKcrzH5niINjbqz5Am9YkU+HVUtVsYAgjINrnNd3H5l3P6kiE9/30zF0aAhDiyFr2gunnt/R8ChSSOLRux6luDE5+dCSJOHqdVG8vjirzlUsSBa5UO2OB3ZQMZX6DLtjzxwDDew5vAfhqPI6f6e7P7iL3UxPTvPQ7x7C0JK8mTk9+3oQLILir+PF8Gl8AGz97VYq3xjdQ3I23eNV5ud4xEcWCUgJoK5Uz7ZD8bv1loLD62dFdW7P1FCJjTx9HsZqI5P2STniI10Oaq8dGs6NejNxSMyueI8I5npsOvm70dXjomJV4vuAsoNaQjM1kpsCNRyP+ShfganORNAXxO/xU7iEOMvTMStQVxlhz3BM1222Y22zIkkapnWl5HkGwNKYlONo/SNM6XIvQkUWqJWTQx2zQC0Igg54O3DWnMUDQN2c32tnlp2CJEm3AbcBrF+/Xtq8eXOsTVEk27ZtY6FzsrtnHGnrc1x57ho2dyz8JfVK4BX+truf//fujUvK7e0fn+DLtz5PQUEBf/vYOTTaThSW1p8T5M0/285vD4Z56FPnUppB0zB/9fRR4CAfvup8yk2n/zJZ7Pymi9VHXsAVmGbz5vPT3RRe7nPBEzu4ZOMqNq9cvKNyWfKbFDeZ+r6fjCRJ7HDsoOXalqxob4STz++gcZCD3zlIc0kzKzavSMoxfSM+ngk+wxnnncHZm89OyjEyhSeDTyJoBMrzytNyXYz9egxPnYeLLrko5cdOBae7PzhrnBz89kGqqWbd5nVJO/7usd20XJFdn/lkIIUlXv30qxS7iqM+F9lyj1c5PQ4xgCCApShz+papoNZSxIjXz1QwFHVNjmgZ9fp5Q4451FUSh6XZgnvQLcdAhIIgjqQ+tsBjj7lIYlYVSIxgrqdEI8esubqTJ1CXlEkI2gLIV3bR8dMyk/cNcgY1yHVu4hWoC0wFsms/RyM+bG3ybLjJkI08V1/SBOr8sANfoTJcxFFhWw77/pzuViSMeOaqXgoclCRpbiWbB4BrBUEoEAShCdlg+VI8DVSZnwMzBRI7luCA+NQly9EIAj/auvjIyqjXz/t/8xI+/zR/uHHjKeI0gLEwj5+/Zx1jvgD/fs8+wmEp+j8gSWzvdLC8wrCgOJ3JdFSbODjkZToUTndT6HbKI/XzXQMqyWXCMcH01HT2R3wstwLgOOhI2jHcfTOF++qy+1wtBU2ehpKGEsaOjKXl+O4ed07lT0cobSml0FzIwM55x9sTQnAyiGgXMTeZk3aMbEHQCNSeXcvAC8k73yqZi1P0U1qUjzbH8sdrLXKE06AruTEfk4EQXv+0GremEjOWZgtT9ik5EqHijPS4qL32mDOosyp/OoKlgeJCeTZrsgolinaR8sZwTOdVMVgawCUXSpwVqOMslCgOinK8B8wM5qR+BmS60Vv1FFoK8YhmcCcvR71QOy4XDcw1ytoU5aBeVKAWBOEu5CKHbYIg9AuCcOPMS9dyUryHJEmvA/cA+4FHgFskSQoltskqAPvtHkyFOqqXMKJXWVLIB89r5L69AxwcOv1N1j0Z5Po7XmLIPcVvP7RhtmjffJxRU8JXr1rBU4dGuf3ZYzH9DYlmKhjipa4xzmvJ3szKjioT/unwrDicTrodEwgC1C/Bda+SWNy9M6JrlgvUBcYCjDVGnAfnj4hJBJ4++Z6WK4XlrK3WtAnUrh5XzuVPAwiCQPX66qQWSox85i1NlqQdI5uo2VTDyGsj+L3+dDdFJcU4xUDOxXsAszMc+5KcQz0685lSBWqVWDE3m/E7/ExPTacn5iMcmhH6oo+hyGYHdX7Ajq5Qh6vblZRDiEMitppA7sZ7AJjrYbwbOG58iVeg9g56TxSoi3MvgkIQBGxtNsZGisGVHIE6OBHEUORBa61Nyv4zGksTuPthWhl95kUFakmSrpMkqUqSpDxJkmolSfrNzPIPSpJ06zzrf1uSpGWSJLVJkvRwMhqtAvsHPXRUm5YcAn/zhcswFOj4waOH5n19MhDiw3fu5MiIl1vffxZnNSxepO/9mxq4YmUl33/0ELt7xqNqfzLY0zOOfzrM+VksUEcGBV4fjO/LMBF0O31Ul+iTPtVU5VRmBWoFuIJt7TbVQZ1ALC0WnEecSFJqZ66EgiG8A96cFKhBLpQ48uqI/ECeBFxdLgDMjeak7D/bWHvDWj6y+yPkFSWnkI5K5uL0+bEW5554GnFQ949PJPU4o+IUAOWqQK0SI5ZmC0gzhZPTIVD7RkFvBl10A1kBMUBADGRtBrXg7qWkviR5DuohEUu5X45uyVXmRHwYqgwgHH/OiJVZgTo4CaEAFOZmP9raZmW4Nx/cvUnZv2j3YjSK5Fc1JGX/GY0uXx5cGcsM02i8JK8cvUrSCIUlDg556Kha+g3OXJTPxy5cxtYDI+zqPtF9F5gOc/OfdrOrZ5wfv3stFy5f2sieIAh8752rqTIX8sm79uKaCET1dySa7Z0OtBqBs5utaW1HPLSUG8jTCuy3p1+g7nL4aLSp7ul0oBQHNcwI1IccSRNUPX0etAVaispy41q1tlrxu/1MOpPrsjsZ76AXKSwp4pqMheoN1YSnwwztG0rK/se75EFeNeJDxtxgpvLMSjRatZuaa+Sqg7rcWEieVqBfdVCrZDiWZnmmz/ix8RmB+rXUNsAzGJOIKhcBJEsd1LJwam40ywMDScBr91JinshtgdrSOBvxoc3TYqg0xOWgliRJFqhrjMez2pdoLlQa1jYrwz35hJ09Sdm/r7efUEhHUXXuOdQBOYd6dH4jarah9vyzkG6nj6lgeEn503O54bwmyo0FfO+Rg7NiUSgs8dl79rHt0Cjfedsq3rQ6ui+lEn0eP79uHSPeKT7311dS7uqby45OB2vrzBgKYq79mXbydRpay40csHvT3RS6nT4arGr+dDpw97rR6XXorfp0NyVurG2yoOobTk5sjafPg6l26bNJsp3SVnl2i/NI8mJT5iPi2MnFDGqAmg01AEnLoXZ1udAWaLMzG1NFJYE4RD+2HCzgp9UI1Jj1qkCtkvGcIFCXtYPjCISSM7toXrz2mHJmvTPPVln5PVtSC55BShqMSYn4CPgCBLwBjAZvbgvUeoscITPpAuTZmZEowViYHJskFAjJDuocjfeIYGuz4XKZkiZQ+we68XgM2TkAlQjKlsv3YgWgCtRZyP6Z+IcVUX7B6vO1fPKSVnZ2j/PUoREkSeJr97/Gv16x8+U3tnPdxvqY2rOmzsyX3riCrQeGuWNHd0z7iBf3RJBXBtyc35q98R4ROqpNs+9xunBNBHBNBGlSBeq04OnzUFJfogjR1dYufyaTFfPh7nPnTLwHyAX7gJTnUEccO7ka8WGsMWKoNCQth9rV5cLcYEbIscJwKipz8U+H8ExNYy3OPQc1QK2liL6xJEd8eP1oBHIyRkUlMRgqDWjyNbJAXWCQi+qNHU1dAzyDMeUkzzqoszHiQ1cARTbK64NMjE4QnAgmdPeRc1NU4MntDGpBmHGrHy+UGI+D2js4MyhSbQTfjIM6R7G2WXG7jWgmhiAcTvj+p0d68XgM2TkAlQhsy8GhOqhV0sR+u4c8rUBrefQfwHdvqKPBWsT/PHKI7z1yiD+/2MvNm5fx0QuXxdWmG85r5NIVFXz34QO83OeKa1+x8PwxB5JEVudPR1hRZcIh+hnxTqWtDd1O+QGp0aYK1OnA3etWTJRCsgXqiIM6V7A0WRA0AmOdqRWoIw5qpVyX0SIIAtUbklcocbxrXI33UMl5xnxyVJw1Bx3UIOdQJ91BLfopLS5Aqw6GqcSIIAgUVhXiOuaSF6Q65sNrB2P0DmrRnsURHwDmemyV8vNZJAowUUQE6gJhPCZ3uqKwHM+hNtYa4xOoB+YI1DnuoC5tKWU6lMd0WC+L9QkmPNaPVzRQlKvxpLY2cBxOdysSgipQZyEH7B5ayo3k66J/+/K0Gv79sjYODnm59emjvOfser5weVvcbRIEgR+8azXlxkI+cdce3JOJHdldjO2dDorztaypM6f0uMmgY6ZQYjpjProdchxDozVHb/Jpxt3rxlSnDNHVVGMirzgPx6HEC9ThUBjvoFcx52opaPO1mBvNKXdQu3vdFJUVkafP3aJ11RuqcRxy4Pckvkq2q8ulCtQqOY9TjAjUueqg1uMQ/UwFQ0k7xojHr8Z7qMRNYXWh7KAGKE9xoUSPXXZtR4nX7kWj01CUrc82lgbMJlksTXTMR0Sgzgs5cttBDXKxuXHZQV1SV0LAG2DKHZtp7AQHtTgChoqENTPb0BXoMDeaEacs4OpL+P4Fnx1/uDR3ZyLaWsDRmRR3eqpRBeosZP+gJ+p4j7lctaqKzW1lXLuhjm9efUbCYgTMRfn89Lq12F1TfOne1OZRbz/iYFOzlTwFFFSKCNTpjPnodvoQBKgrzdJOXBYz7Z9GtIuKcaoKGgHrcivOg4nPTPYN+whPh3NKoAbZhZCODOqE5E+/8lc48nj8+0kDNRtqQILB3Yl1Ufs9fibHJrE0WRK6XxWVbMMhyoM/thwVqCN9rv7x5MV8jIp+ylWBWiVO9FV6xo+Ny896FStheH/qDh6Hg9pQacheActcT3Gh3PdLdKFE0S4iCGE0gbGcFlGBUyI+gJhd1BGB2lBlyPmID5jJoR43grs34fvW+UcJ6nLXoU5hCRSawJOcWjmpJPvVvBxDjn7wz4qYsaDRCPzuQxv57jtWJ3yK31kNFj5/eRsPvzbEH15ITgj+yfSNTdDtnOA8BcR7AJQU5VFj1rPfnkaB2uGjukRPYZ42bW3IVSLTwZQiUIMc85GMiA9330zsRA5lUINcKHGscyylg4CuHlf8+dPjPfDwF+C+j8GxbQlpVyqpXi8/ECc65mO8S3ahqQ5qlVxn1kGdo/nItRa5MHJfEmM+Rr2qg1olfgqrCgmIASYcEzMCdQod1N7YHNTikJid+dMRzPUUhIbQ6DSzsWuJQhwSMZgm5SKB2tydKQecEPERMcDEI1DrrXp0Bbqcj/gAOYd6dLAQKQkO6nzJQbgox93/tlZF5FCrAnWWcWBGtOyozlzH4E0XNHNRWxnf+tcBXhtI7BfofDx3VBa+lFAgMcKKKhP7B5N/7k5Hl3OCRgVlOEmSxMjrI4SmkjdtNlHMiq4KE6hdPS6CCY7+iVTWzjkHdWspfrdffjBMAZIkybno8QjUkgQPfR7OuQWuuRP+dgP070pcI1NAka0Ic5M54QK1q8sFoDqoVXIep092UOduxEfEQZ0cgToclnCIqkCtEj+F1YUAcsyHpQkmnDCVoucWjx2MMQjUdjF786cBzPUI7j5MdaakRHyUN4QRcj3eA2QH9fhJDuq+2AVqY/XMrHffaM67061tVsZGiwkOJL6oaqF2HCmGgStFYWsDx5F0tyJuVIE6y4jEPsTjoE42Go3A/15zJqXF+Xz1H8kvmrG900m5sYDW8izudJxER7WJLoePyUB6BNUep49Gq3IKJHZv6+aXZ/wS1z5XupuyKJHCJ0oTqJFIeG5yrjqora1WIPHn83RMjE4wPTkdX8THwX/BeDec+0loPB+u/gXcdW1qpwUngJoNNQzsTOz0uVkHdaM5oftVUck2nGKAfJ0GQ4Eu3U1JC2WGAvJ1GvrHkjP46J4MEgxJlOVoEUqVxKGvkt3+48fGQaOB8hWp+T4P+CAUkJ2+UeK1e7NcoJajJ8yN5sQ7qO0iZTXBmIR/xWGulx3UkiSLy0J8DupZgVocViM+2my43SaCw10J3W94OoyhyIPOVpfQ/WYdtuWKKJSoCtRZxn67h+qSQsxFme0uKS3O532b6tnX52LEG1thgaUQDks81+ng/BZbwrK0M4GOKhNhCQ4Np75QomsigGsiSJNNOQJ13Tl16Ap1jO8eT3dTFiUiUEdG7eMiOAkv3Q6/fys8/nU4+iQEUuO6nYu1TRZUEx3z4enzkFeUR6GlMKH7zXRKW0oBGOtMjUAd96CJX4SHvwRX/RB0M99dbVfAFd+FP74DxhLbUU0m1Ruqcfe48Y36ErZPV7eLfEM+eqs+YftUUclGHGKAMkOBovpz0aDRCNSa9UlzUI/OZHyrDmqVeCmsmuOgBqjogJEUxHx47HIRvyjvEaFgiAnHRHZHfJhqwDuEpcGYFAe1pdyvFkgEOcdXlw8TTrR5WgyVhllDTLScKFCPqhEfbVZcLhOCO7ERHz67g/z8IAWV0WfTK4qy5TCqCtQqKWb/oCej4z3msrlNHiV85nDis2cjHBzy4vQFFJM/HSGdhRK7HLLw0qAgB7UuX8Ol7+zGlSUCdVFZEXn6ODLgJsbg6e/Dj1fLovRZ14M2H7Z9D77fAr+9ErZ9F3qeh+lA4hp/GqytVhCSI1Cb6kyJFTMmx8GXvHtWIjA3mRG0QsoKJUaK8cQc8bHtv6HpDbJzei6r3glv+Bz84a3yQ2cWUL0h8TnUri6X/J4m4jre+yd48lupm2qtopJAnD5/zsZ7RKix6JNWJHHEowrUKolBWygLd8cF6jNSk0PtHQRT9CKUb8QHEhirjEloVIrQ5UNxOeUNQbx2L6EEzrIVh0RKSidjOreK5KSYD29/9IaxcCiMOCRirDHK5qBQQC5kl8MYq41MBK3kTw/L0X8JYrK7C1EsxpDBCQMpQSEO6tycQ5elTAVDHHP4uOKM7BjdXFltosxYwFOHRnjnWbVJOcb2zlEAxQnUtRY9xgLdbOZ4Kul2ygJ1k4IyqNFoWNPyFC89VJzxRVI8vZ7Ynarufnj+F7DvT9D+Jrj+n1DeLr+28m3AV2Q3a+8L0PU0PPIlcB6Fuo2ygNh8IVSuBk1ii2PmFeVhbjAnXKB297kTG+/x6t/g4S9CKAgFRqhac+JPDK6dZKDN02JuNKcs4iMylTSmiI+hV+GVv8DHX5j/9Q03wpRLFqk/9DAUlcbazJRQta4KBBjYOUDrla0J2aery4WlOQH501NuePxr0HQh/OwsOP+z8vnVqWKUSnbgFAPYclygrist4tHXhpKy71FRntFYrgrUKgnA0mzBdcwl/1KxEl67N/kHjSN/GsjuiA8ASwM2/QRIch+4dFn8faZwKIw4LGI0eFUHdQRzPbi6ofYsTLUmnIeiN4RMjE4ghWZiQnwjcrxHBjxDpBNBEChuqCYckuS+fwxRPfPhH+hiymPI7gGoRGCskmdPT44n7NymA1WgziIOD3sJhaWMzp+eiyAIbF5exqOvDzEdCqPTJt6w/8SBEdoqjFSWKGuKv0YjyIUS0yFQOybQCPJDkpKQqjdQVzfIsSeOsfq9q9PdnNPi7nXPRmIsmZGDsOMncOghWPs+uPk5KKmZf90CA7ReKv+A/CXWvUMWrO/7GHiHZKfrhhth2cXx/TFzsLXbYurgLYSnz8Oyy5fFv6OJMXjw32H4NXjvX6HqTLljan9Z/nnpVzC4DzQ6WaiuPvO4aF1Sl5YOZ2lLacoiPlw9cgRF1FEq4TD86zNw8VeheIFBxPM/C5MuOe7j+gfkwYEMpcBYQNmKsoQ5qCVJYrxrnKZLmuLf2Yu/gpYt8PZfyU62rd+AF2+Fi78GZ7xDzglVUclgnKKftsrM/fynglqLHqcvgM8/TXGCs7hHvaqDWiVxWJot9Dwju0wp75AzqCUpuX0i7yDEUAjNa5cdsFkvYJnrKZlyAXI8WCIE6knnJFJIoqjAo2ZQR7DMcVDXmTi29VjUu/AOzlxz1UY13mMOtrYyPF4TNldfwkTU6ZE+fB4Dtdk+ABUvggC2VrlQYt3GdLcmZtSnlSxitkBilkR8gBzz4ZmaZl+fK+H7HvMF2Nk9xmUrlVkRd0WVkQN2D+Fw4qbALIVup49qs54CXWJdtOmm8Iw3UN88RNfWzM27lSQJd6976Q7q3hfgz9fCnW8GazN8ah9c/u3Ti9PzobfAiqvgyu/DLS/CLS/BijfDfTfDcz9L2BQsa5sVx0EHUoKu51AwhNfuxVQX5/3wyFb45XlyZe2PPgM162Qhr7RZdp1f+g14/33whWNw05Nw1gcBAfb8AX69Bf6nSc74fuYH0L8LQtPx/3FLoLS1lLEjY0gJnCJ3OiKu/qgjKPbcCQiw9gMLrycIsOW/oHIV3HUdBJNXtyARVG+oZnDnYELO/YRjgqAviLnJHN+OJl2yGH3hF+TfK1bKgy1X/x+88Au4fTMcfSrO1qqoJA9JknD4Ajkf8VFrkc0BA67E51CPev0U5uVuEUqVxGJuNuPuc8tRE0Wl8uCyqze5B43VQT0046DO4BmUS8Jcj6FQNickqlBi5NwUasdVgTqCuWH2WjbVmgh4A0y5o+ubegZk3eYEB7UK1jYrY6PFhEa7E7ZPyTWA12vI/s93Iihrg9FD6W5FXKgCdRZxwO7BUKCjzpI9ztbzW21oNQJPHRpJ+L6fPDhCWIItHcoUqDuqTUwEQvQmqZr76eh2+GhUUP50BKH+bBqahzi29VhKRL1Y8Lv9BMTAwgJ1OAyHHobfXA73fVR2Qn/6FXjD5xMzEm2sgDXXwoe3ytEM998C0/64d2trtxGcCM522OJFtIsgxVFMMuCT3b3//BS87Zfwxu9C3gJF6gQBzHWymH/xV+C998DnDsnRFRs/IudWP/Bv8D/Nssj6wi+Pu4mSgLXVit/jZ2I0+fcHV48r+vxpcVTOQr7qR0tz7gqCvG5xGfzthpQJ/bFQvaEa34gPT1/817KrywWApSnOz+6Lt0Lr5WA9aUZB0wXywMp5n5av9z+8DeyvxHcsFZUkIPqnCUyHsRXntru31iJ/DyUjh3rU66fMmLtFKFUSi6XZAtLxOhVUrEx+DrV3ML6Ij2wXsMz1FIRHEDTC8fMeJxF3eV7IoQrUESyN4JId1JVr5NiTJ/7jiaieH090UA+rAvUM1jYrbreJiaOJE1EF0c7ktAWdOvg646DO7hxqVaDOIvbbPbRXGtFosqdjWaLP46x6C9sOjSZ834+9PkSlqZBVNcosONBRJf9dqY756HZO0Kik/OkIlaswFbvwj47iPJya4nLR4u6V3RCnuILFETkf+f5PwE/WwFPfgbM/Ap/YDRs+vLCwGivmOrjhUfB7ZYe2GN8gk61djnhIVA51pKJ2TBnUfS/BrefLRUtu3gHNm2NviLES2q+UBe6PPw//tkuOUxjZD3ddCz9YDn+7Efb8Hsa7Yz/OSZS2yNM6U1Eo0d3jjl6gfuyrcOZ1UHnG0rfRaOFtv5ILydx/izwYk4HUbJBnKAzsHIh7X+NdcoGpuBzUk+NyvMeFn5//dUGAM94uz45ou1KOUrn3ptnpqyoqmYBTlAv25rqDOmJC6RtLgoNa9FNmyO0BAJXEEamdcLxQYgoEao89pkJ+XrsXvVWPNj/LZ4eaG9B4+jBWG3F3J85BrdVOown5oCjKiEGlYq6f7SMtu2wZ50T0LD4AAH+KSURBVH7+XHb9YhfPfPOZJe/CO+gFAQwVhpmID1WgBrC12XC5TAQGjiZsn7rACNN5aoQKALY2VaBWSQ3hsMQBuzer4j0iXNhWxuuDHkY8iZu2PRkI8cyRUbZ0VCjWCdJaYUCrEWajXVLBuC+AezKoSAc12jy8Rc3U1NhjyhJLBRGB2lytg0OPwCNfhl+cCz9bLxefqThDdu5+9BlZBNUmeaQ4vxjedacs4N5+cVzOy0iudqJyqCPu1agiPqYD8MR/wd3vkaM73v4r0JsT0p5ZDOWw6p3wlp/JzvYPPy4XoDy2DX59Kfx4tey07j1N0cAlUtoqC9TJzqEOiAEmxyajK5DY9Qz07IALvxT9AXX5cM3vZefKI19KmgM9HirWVKDJ0yQkhzohDurnfyELz6XNC6+ny4eNN8En90BpE9x2ITzyH3IGe4RwSJ5dMDEm59GPd8PoYfmz378LurdD5xMwuDdjBxBUshOnT56pY81xAdVmyKdAp0mKg3rE41fzp1USxqkC9RlyLY9k4h2KyeXrG/Jlf/40zAqn5kZzwhzU4pCIweCTo+7UWhUy5nq58PxMP+fS713KmuvXsO3r29h1664l7cI76MVQYUCj06gRH3MobS3F7TYhORNnkshnjHCRMmfUR41tedYL1KoPPkvoH59E9E9nTYHEuVzUVs73Hz3EtsOjXLO+LiH73N7pYCoYVmz+NEBhnpZlZcUcSKGDusvpA1CmQA2IthW0rhrn2OPH2HhLBhUPmPZD/06K99/FDTc8QfVTt0LtWbIw/JafykX7ki1Gnw6NBi76Dyhrhz+8Fa76MXS8JerdGCoNFJgK0uegHjkAf/+I7Lz52A45yiQVWBrhrEY463pZbB05AMeegnuul4Xsi78GedEXeTU3mhG0AmNHkitQRx6AluygnvbDvz4Lb/yeXJAzFvKL4D1/gd9dJc8WuPgrse0nSegKdFSsrkiIQD3eNU6RrYj8WF2jE2Ow83a4KYp86QKj/JlefyM8/V340UpAgOkpkMKgKwRdwfEfbcHMsnz5X20+eAbkY7dcIhdmXHYxFKvOK5XYcUQc1MW57aAWBIFai57+8eQ4qDc1q59TlcRgrDKiLdDOEag74Jn/Sd4Bw2E5KiEGgdpr92Z/vAeAqQZ8I5gbiunZnphizaJdpLTSjxBD8UnFkqeXDSziEJiqEQSBN9/+ZiYcEzz48QcpKiui4x0dC+5CHBTleA+Qr9vG85Pf7iygwFhAMK8S7dT+hO1TrxuXPxsqsgHFMyjX84nh+TITUAXqLGG/XRZjVmShQL2iykiFqYCnDyVOoH58/xDGAh1nNym7o91RZeLFruQKUHPpiQjUNmUK1O6Sdprb/8m2X3YTng7Lo9rpxOeA+z4Gvc+DbTkBTwM7nj2f9/7ip1CQYTErZ7xd/tK7+70welDOvI5i9oIgCNjabQkTqD19HgpMBRSYFnGDhcPwwv/B9h/BJV+HdR9IboX5hRAE+QGuogNWXwv/+rTsYn3br6D6zKh2pc3TYm40J12gjrj6l1y487mfgrUF2t8U34ELS+B9f4ffXiEL1ps+LoulGUL1hmpe+/Nrcd9HXF0uzI3m2Bvy/P/JRU1Lm6Lf1lgh535v+SYgyeKzRrf0z8d4D3Ruhdf/Dg9+Vs69a7lUFqxr1smRLSoqSyQS8WHLcQc1QF1pEX0JdlD7p0O4JoKqg1olYQgaAUuTBdcxl7zA2ioXlgtOJid6zjcq9w100Q9iiXYR63IFPDNqdWCopLwhyKt3exLyLCMOiZTVTsuRdSrHicR8zETKaPO0vOued/GHLX/g7+/5O/pH9DRddPq+l3fQe7xOjhrxcQLaikYKSUz8qxQOUaz3oi2rTcj+sh5tnnztjh2TnzezEHUeR5awf9CDRoC2yuybniQIAhcuL+OZI6NMh+KfEhwKSzxxYISL2svJT7fAmGQ6qk3Y3VOM+QIpOV6XYwKNAHWlSehYZgAeUxvWoi78nikGdyXGeRAX3c/KrsXPvAYfeYq9XW9hLLQaIdPE6QjVa+WCa4cfkQvZBaJ7gE60QL1ovIdflPOzDz4IH35CdjFnSiRQsVWOsrjg3+VM4Ke/H3VhQGurNekRH5Eq8UuK+Bg7JsdNXJkgB5WhDD5wv/z+fa8Rfr0FHv0K7L9fzqFMI82XNuP3+Ond3hvXflzdrtjzpyfGYNdv4ILPxdUGCgyyq1qbF93nw9IAG26E6+6Czx+VB4CCk/DPT8L3W+R7xL674s6vV8kNnKIc8VGa4w5qICkO6sgAgCpQqyQSS7PluINaly8PUI8eTM7BvIMQg8tXkiQ5xqJKAQ5qAEsDZVUTSCFpthBfPIhDIqUVfrVA4smYG+QBlznkFeVx3T+vo7S1lLuvvhv73tP3Rb2DXgzVM9ecGvFxAkVNjeRpJ5GifI6cD799gKmpAgxVpQlomUKwLQdH4opQphplq3sKYr/dw7IyA4V52elIuqitHO/UNHt6XXHva0/vOE5fgC0dyo33iBBxzKcq5qPb4aParKdAl53X2WIE880IxjLKyp2ZkUPtPCo7DfVyjp+71710p2q6MFbCBx+SnZa/faM8jWiJWNuseAe8+L3+uJvh7nMvHu/R/5I8APDBB2NzmCYbQYDV18iZ4j3b4Y7LwHFkyZuXtpbiPOKMqqp4tLh6XGh0msUf7CQJHvo8nPcpeeQ+UZTUwoe3wueOwCVfkz8re/8EvzwHfnSGLIK+cCsM7IZQMPr9h0NykUHvUFSbtVzegrZAy8F/xP4gLoUl3D3u2AXq534GHVfLQnG60eVD84Vw2TflYqEfexaaLoRDD8oZ+rdfDL7MLE6rkhk4fQFMhTrFGw+WQq2lCNdEEO9UDPe00zA6872rFklUSSTmZjPjx8aP90OSWSjRYwdj9AUSp8anCAVCyoj4ADDXYy6Rnwtd3a64dyfaRcyWSVWgPhlLg1wP5ST0pXre98j7KDQX8qcr/jSvUSQUDOEb8WGqmeOgVgXqWWxt5bjdRia7l/7Mczomu4/i9RqUMwCVCGzLo3qezDTUiI8s4YDdy1kNcRRRSjPntdrQaQS2HRphY1N8I1yPvT5EnlZgc5vyq7XOFajPa7El/XjdTh9NCo33iKBpOJszzp3g2NZjvOGrb0hvY5xHoeGc2V/dvW4aLswAsWkx8grh7bfJsRm3XwLv/gPUrl90M1u7fA07DzupPiv6h4y5ePo8VK1bpDM9dkx+WMr0qIGSGnjffbIb9jeXweYvwYabFi1WU9paSsAbwDfik6uEJwF3jxtTnQmNdhHRaP8/wD0A59ySlHZQYJCLTTbNfGYlSf789L0oD0Ts+b1c0K9qDdRtAFMt+N0w5QG/5/T/Bicg3whBH/r1P1lyc/IN+TRf2syh+w9x+Y8uj6lYr3fQSygQiq1Aos8Ju38LH302+m1TQUmtPGPhrOvlgYPfXQX2fXJmdY4jCIIW2AUMSJJ0lSAIvwMuBNwzq3xQkqR9gnxR/QS4EpiYWb4nHW1OBQ7Rr8Z7zFBnkWdR9Y9PsqIqLyH7nBWoVQe1SgKxNFvwe/xMjk1SZC2C8g4YTly27AnE6KD22mWXsSKKJAKY6zEEnUABrh4XDcT33CAOiRhNoipQn4y5Hvp2zvuSqdbE+x97P3ecfwd/vPyP3LDjhhMGQMQhEUDOoA5MQCgABdkX05osrG1W3HtMhA4coGj5mrj2FRjsxuMxKGcAKhGUtcGRx9PdiphRbQpZgGsiwIBrko7q7L2xmQrzWNdg4alD8eUNSZLEY/uHOWeZDWNhYjrtmYzNUECFqYD9g8l3UEuSRJfDp9gCibPUbWTZSid9z/URSFF0ymlxdsrTIYHwdBjPgCfzHdQRBAEu+Cy86X/hz9fAK/csuklEoI435mPaPy07ExaL+BjrgtLmuI6VMjQa2HgT3Pg4vPpXuSClu3/BTUpb5MG+ZMZ8LMnVP+WBR/5DzjPWpui+LAhga4G174U3/wQ+/hz8+wG48POQVyxPMQ74ZMd15SpouxI2flR2+L7zt/Dhx+GzB+BrTvhyL7RcStHEQFRNaH9rO65uF8OvDMf0J4x3ydOiY3JQP/dTWPk2MCemrkNS0ebJ97lFrucc4lPAgZOWfV6SpDNnfvbNLHsj0Drz8xHgl6lrYupxigGssRYLVRi1FjlmLZExHyOqQK2SBCzN8gDr8UKJZ8Dwa8k5WIwOatEui4WKcViaGyhEjs6KxLDFSnAiiN/jp6jQo2ZQn4x5fgd1BFu7jfc8+B7EIZE/XvFHptxTs695B2YGRaqNx+M9MiViMAOwLrfOOKgPx72v4EgvXq9BOQNQicDWCo74z226UAXqLGD/TLxDRxYWSJzLRW3lHLB7GJpzA4+WIyMiPc4JLsuBeI8IHVWm2WsgmYxPBPFOTdNgzdD840RRt5EyYxfhYJjeZ+PLj42bOQK11+5FCknZI1BHaL8Srv8nPPR5CqYWFp4tyywIWiFugdrTL38eFo34GDuWPQJ1BFsLfOgR2Sn8qwvh5btlt/A8WFvlgj/JLJTo7nEvnj/91HdkZ+yc2QBpobAEll0Mm78IV/0QLv2GPIiy4cOw+l2w/DKo3yQXDSmphULTcZe6pQn9ZHS51svfvBwEOHR/bDlvri7XzKGjdFCLo7D7d3J+ebZQUqsK1IAgCLXAm4BfL2H1q4HfSzIvAGZBEBRrcXP6/FiLVfEU5grUiSuUGHFQqy51lURyqkC9UhaokxE95rXHJKIq0UGt8fRRXFEcd8RHxOlbqHHNFgNUmeE0ER9zqT27lmv+fg2jr49y99V3Mz0l15KJZIMbq40zBRKVP+s7GsyNZjxeM6GR7rj3JbkHZQe1UgagEoFtuawxhOOv/ZYO1IiPLODAzBfriiwXqDe3lfG9Rw7y9OER3r0htozSx/fLTrVcyJ+OsKLKxLNHHPinQ0nNhu5y+AAUH/FBeQd5IQeGkgBHHz9KyxUt6WnHxJg89X2m0+LpmxFds02gBvmBpH4TRu/CeVe6Ah2WJgvOQ/Fl0UbO1dIc1BmYPb0YWh284XPQugXu+xgc/Bdc9eNTVjM3mtHoNDiPJCfbNxQM4R30UtKwwDU5uA9euxdueTEpbUgZpc3o+56IahNDhYG6c+o4+I+DXPj/Loz6kONd4yCw8Pmdj+d+AqveKYu+2YK5Drq3p7sVmcCPgS8AJysl3xYE4f8BTwBfkiTJD9QAfXPW6Z9ZdsJIiiAIH0F2WFNRUcG2bduS0vBkYx/3UZM/lfD2i6KYdedEkiTytfDCK4dpCi4skCyVlw/5MeTBc9ufScj+ImTj+VWJn8j7HpoMAbBn6x4cFQ6QJM4LBNj52D8IFCQ2mnJ1z+v0h5Yx5t0W1XZ9O+Tb6N4je9ENZof0sdDnqmBqlHXDR9CUXk7Xvq64Pn/u12QHtnZ6hGdf7iSkS28B6lSxlPuWEA5ygXuQZ598AmmhqMACWP6F5Rz8zkF+ddmv6Ph6B4NPy/V5Xul6BceRPVT6tbyWQ/fJpZzfCaGUwOjRuL8/qkeOIk6U8vye52OK21Mq5wh69jz2N/yFsWWfp/O7fdG7tCAIdwBXASOSJJ0xZ/m/AbcAIeBBSZK+MLP8y8CNM8s/KUnSo8loeC6xf9BDmbEg66fltVcaqTQVsu3QaMwC9WOvD7GmzkyFqTDBrctcOqpNTIcljgyLnFGTPPGyxykL1I1KF6g1WoSaszjz0iBHtnalrx1jx8C6bHbKl7tX7iRmpUANUL0O47HFnaS2dlvCHNSm2gUE6nBYziS2ZKFAHaFqDdz0FDz1bbj1fHSrf3DCyxqdBnOjmfHO8aQc3tPvQQpLpxdQwyH412fg0q9DUZZXzy5tQj8ZXaFEgLar29j6xa0xFTh1dbkwVhvRFUTxwCyOwJ4/wM3PRdnSNKM6qBEEIdKX3i0IwuY5L30ZGALygduALwL/tdT9SpJ028x2rF+/Xtq8efPCG2QgobCE+OhDrFrexObNyxO6723btpGN56Rx39NIxcVs3rx4fYelcFffLqoDPjZvjn4wbSGy9fyqxMfc931v+V7MmI9fBz1ncm5LCSzbnNiDvj5F6XmXQ+UZi687h0cfeJS+oj4uufKSrBGwFvxchUOw8+M0rq5iYI8jrs/ffud+9ue/hFYrcMElV+ZMDMWS71v7Krlw7TKwNC683mZ4oewFHv3Mo4j3iFSUVnBMd4wtV29B2NMPBSty6j65lPP71G+exqR7lfY4z8vwQ18mVNDORRddFNd+FEfvKs5ZVgqtm2PaPJ3f7UuJ+PgdcMXcBYIgXIQ89XCNJEkrgR/MLO8ArgVWzmzzi5liMCpxsN/uyfp4DwBBkAsbbj/iIBiKfsrBkHuKl/vdORXvAcejXZId89Ht8KERjhfnUTR1Z9O6ZpzhV4YRh8X0tGFOvAccF6gXdQVnKtVrMXkWrxhsbbfiPOwkHMM9IIK7b0bMXyjiw2uXIxwKsnzKV16hnJtcugyjt/OUl0tbS5PmoI5ck6eN+LDvg4AIa96TlOOnlNLmqCM+QM6hBjh4/8Got3V1uaKP99jxE1j9brmwZjZRUgfuvsXXUzbnAW8RBKEbuBu4WBCEP0qSZJ+J8fADvwU2zqw/AMwNGa+dWaY4xnwBJAlsagb1LLWWooRmUI96/VlvdFHJTCzNFlzHXMcXVKyE4dcTfyCPPaYYCtEuYqgyZI04vSgaLZiqKW8I4u5xI4Vjj1MRh0SMRhEMlTkjTkeFpQFcS4uD3PTpTZz3pfPYc9sedt+6W77mNMJMxEdsLlYlk1+7jKICJ+Hp+GIoChhDKlbz00/Btjxrc6gXFaglSXoGODng8mbguzOdaSRJGplZfjVwtyRJfkmSuoBOjne0VWIgMB2mc8Sb1QUS57K5rQyvf5rdPdE7/h4/IMd75JpA3WAtRp+n5UCSBeou5wQ1Fj35uhyIpq/bSIVZnjbb9WSaXNTzCNSF5kIKsvUBsmYdRu/RRfOubO02Qv5QXIVdPH0e9KV68ooWKMiXjfnTC1F5Bgbx1Gu1tLWUsSNjSEnIe4y8R6d1Bo8egqozj+c4ZzMldRT4x2A6usKp1uVWbO22mHKox7vGMTeal76Bdxj2/QnO/0zUx0o7phrwDGZtHl4ikCTpy5Ik1UqS1Ihs5nhSkqT3RXKlBVk9eSsQqTD2APABQWYT4JYkSZHzr50+OR9ZzaA+Tq1Fn9gMatFPmZo/rZIELM2W4xnUkByBOuCDkF8ufBwl4pCIoTLLzQonY66nrGqCUCAUl9FGHBIxmX0IZjV/el7MDTC+9JilS75zCWfecCZTrik5fxpAHAZDbmkXS8GwvA2jwcf40dG49qPXjSNkm2kjFdiWgyO2GjnpJtanyuXABYIgvCgIwtOCIGyYWX66vDyVGOkcEQmGpKzPn45wXosNnUZg26Hob0aP7x+myVZMS7nCOhmLoNUItFcZ2T+YXIG6x+mj0arweI8ItevJ976OvjSfY1uPpacNzqNyxMcMsUQEZBTFNqZ1xbIwvAC2NhsAjkOxx3x4+jyLO83Hu7I73uNkKldR7Os+ZXFpSykBMYBv2JfwQ7p6XMBCAvVBKGtL+HHTgi4ff0FpTC7ftre20b2tm8ko3I6hQAhPvwdzk3npB9rxY1h9LZiysE5eXiEUmuUHNZWT+ZMgCK8CrwI24Fszyx8CjiGbPW4HPp6e5iUfpygPDFlVB/UsdZYiPFPTuCeDce9LkiRGPKqDWiU5mJvNuHvdhIJyHvVsocRE4h2SCyTG4PL12r3KKZAYwVyP2SybCOIplCjaRWzVQQRjFvYrUoG5ftFCiXMRBIE3/+rNnHnDmbS/TZ5hh28EDGqRxJMpbavE5yvC/Vr0MxBn8YtohBD55apD/RRsy8Gx+MzmTCTWSgE6oBTYBGwA7hEEISqrmlKKuiSLSDD59gG5Yyr2HWTbeHba9E+mxSzw4J4uNumXnvc5EZTYcWSCLQ15PP3003G3IduKupglPy/0TfPUU08lZYqaJEkcGZrg3GpdVp2XaJn7vm/QmWnYJHLgXwcwPWVK+dS/s3r2cbjgXLxjcnsGDwySX5af1ed/eVEjrif+yEjF5tOuE3TL97QX//UiA/rYZqsPHBigoLxgwXPVdGwbYU0hPVl8Pudi8PpZ7uk85W8em5QnOD3x1ycoWZXYAY5DLxwiz5LH9hfmL253xsHnGKq8FIdCzvHK/DKObLufMeu6qLabqJtACkk88IMHqNiyNJfM5MAkSDDsH17SZz7fP8aGXX9g54afEsjS871OU0LnUw/gKUneoEa2fLdLkrQN2Dbz/4tPs46EXOtF8ThE2UGtRnwcp9aiB6B/fIISfXz3dq9/Gv90mHJj7tRvUUkdlmYLUljC3eumdFkplK0ARyeEpuWiz4nAMwjG2Fy+ol1k2WXLFl8xmzA3YJgcA/S4e9zUnVO36CbzIQ6JNFcGwJhFRZdTiaUBjm2LahONTsPVv7n6+AI14mNerG1WHC4TE50HgdhqIwRHe/F4DBiUNgCVCMra5JmuWUis3xr9wN9nOs8vCYIQRnZ9LDkvTwlFXZJJJJj8mX/upzCvh3dfeRFajTKyoQ4JR/nvhw/StvZsqkr0S9rmny8PEpL28uEr1rO+Mf5iXNlW1KW/sIen/vEaLWvOpq408RnRTtHP5KNbOXf1cjafryDX6Umc8L67L2KTVuDgQ35W167G2mpNXUMkCXYMc9aWd4HeDMBLYy/RfFlzVl2XJ3O09+90mKboWORv2GvdS8l0Scx/60vjSzhXI3fAiotpWhXbMTKO4CZCe7/E5vPPAd1xF9xY3RivfvFV6g31rN28NqGH7Pt2H9pW7enP88ufwnbRO8HWMv/rWcbA4VpW1xrg7M1RbSe9QeLIN4+gOaxh87eXtu2xrcd4iZfY9MZNNG5uXHyDh78I6z/AuZe/Paq2ZRQjHaxbZoMzNiftENn23a4iM+ugViM+ZqmdqQfSPz7Jyur4BOpRrzwAoDqoVZKBpVmO3Rg/Ni4L1PlFcla0sxPK2xNzEK89ptlDwYkgfo8fQ5XCZt+aGyi0HwAaZ2e7xYI4JGLZMBlTtndOEGXEx7z4RtSIj3koshYhTlkIDsY+k9nfewyv14BxrSpQn4KhAkIBmBjLukL2sUZ8/AO4CEAQhOXIlccdyHl51wqCUCAIQhPQCryUgHbmLAfsHtoqTYoRpwE2t8mjiE9HEfPx2P5hrMX5rK2PPntMCUQyyJOVQ93tlOMBmmw5UCAxQt1GKq1y4Ytjj6c45sM7JHfgZ8TpgBhgcmxy4aJ/WYDX2AKDexZdz9Zuw3kwtsJ+wYkgk2OTi0d8KC2DOq+QqcJKOVZjDuYGMxqdhrEjJ5eKiJ8FY2eCk/J1vFhl8yxiUl8lR8NEiaARWP6W5XQ+0sn01PSSthnvkvM6lxTx4RmEV/4C53866rZlFCV14O5PdytUMhCnz49WI1CiX6CuQI5RVyobOPrG4s+hVgVqlWQyV6CeJdExH55BiCGGQhyS85mVmEGtFfvRl+rjjvgwGEU5PkXlVKKM+JgXUY34OB3BvEqk8aUVoZwP/2C37KBW2uc7EQhC1sZ8LCpQC4JwF/A80CYIQr8gCDcCdwDNgiC8hlyJ/PqZCuSvA/cA+4FHgFskSQolr/nKRpIk9ts9dCgkfzrC8goDVSWFPHVoZPGVkQtFbjs4wqUrKhQl1EdDe6URQYD9yRKoHfIDUM5kUAPUnU2+ax8lDSWpz6F2dkLpnPzpvkWK0WUJXmMLDL0mT+tcAGubNeYM6tlztZCYL0kw1g2lypoNIBqa5PM7B41Og7nJzFhnYgVqSZKn65Y0nOY8O47IAwCJmr6bAUwVVi6aoX462t/aTkAMLLnoqqvLhUanwVS7hO/3Z38IZ74XDFk+RbSkDlzRZ3yrKB+nGMBanI8mR/t481Giz8NQoKM/imz706EK1CrJxFhtRJuvPUmgPiOxhRK99phcvl67F0CRGdS4eilpKIm56LgUlhCHRYr13pjE/5zAVA0TTpj2x7Z9YAJCQShQlpaTMErq0Pljr/0ccvTj9RqUN0MiUWRpocRFBWpJkq6TJKlKkqS8merjv5EkKSBJ0vskSTpDkqR1kiQ9OWf9b0uStEySpDZJkh5ObvOVzaB7CvdkcNY9qxQEQWBzWzk7Op0EpsOLrv/CMSde/zRbOnJ3ekxRvo4mW3HSCiV2O31ohONTSnMCayvClJsVl5XS9WQX4dDi12LCGDsK1uOxCO5eZQjUIV0RlNTA6IEF17O12/AN+6IqKhfB0yd/BhZ0UPscsnAaQ7X3TEY0NMLQq6cst7ZaE+6g9o34mJ6aPr1APXpIOQUSZ5jUV8UsUDdd3ES+IZ+D9y+t2Iury0VJfQka7SLdMHc/vPpXOO/TMbUroyipVR3UKvPiEANYDap4OhdBEKi16BMrUKvnWCUJaLQazI1mXMdcxxdWrEysQO0ZjMnlK9pnHNRKE7CMlTA5TmlTccwC9YRTrp+h17pUgfp0aLRgqol9cD0S75HiOkfZgq6yieL8Mfye2AYAJPegHPGhtAGoRGFrBUf21bCLNeJDJQUcmBEjleagBtjcVobon2Z3z/ii6z6+fxh9npbzW20paFnmsqLKxIGh5AjUXQ4ftZYi8nU5dEvQaKB2A+0bvPjdfuy7Yx/BjRpnJ1jnOKgVIlADUL0OBvcuuIqtXf4sOw9FH/OxJAe10uI9ZhANTfNOmS1tLcV5xIlcFiIxRB54zA3m+VcYPQhlCcqWzBAm9ZXg6oVw9BO/dAU6Wt7YwuEHDiOFF38fxrvGlxbv8ewP4azrlTE9VBWoVU6D0+dXCyTOgyxQxx/xMeL1k6cVMBepESoqycHSbDnJQd0BI/sTdwCvPaYiiYqN+NBooaSGysYArm5XTP0/WbyXyJOcasTHQlgawNUd27ZqvMeCFDYtp6TEE/OsWs3EEB6vkaKyHDLYRUNZG4yqArVKAtlv9yAIcryD0jivxUaeVmDbIjEfkiTx+P5h3rDcRmGeNkWty0w6qkz0jU3ingwmfN89zgkabTkU7xGhbiNV5fKoeEpjPpwnOqg9fR4EjYCxWgGf9eq1MLBwDnVEoHYcjL5D4umXB2mMNQucKyUL1EOvyhEmcyhtKSXoC+Ib9iXsWLODJqd1UB9UnIM6rC2QXfeewZi2b7u6DXFIZOCleWtDn4Cry7W4QO1zwmv3wrmfjKk9GYe5HtyxZw2qKJdIxIfKidRaiugfn4x78HHU66fMUICguvhUkoS52XyiQG1uhMlxmHQl5gCe2Iokeu1eBK1AcZkCn3HM9diqJuTaLM7oZ1qIQyJ6/RSSVg95+iQ0UCGY62MvlCiOQHGWx7MlEdPKlZSUeHDG8DwIoAuOMK0rW3w2Yq5iW646qFUSy/5BD43WYooLlJPxGcFQoGNDYynbFimU+OqAmyHPFJd1qCO7kaiXgwnOoZYkiW6Hj0ZrDo4+1m0k37GXyjMrUyxQn+qgNtYY0SjBwV6zbtFCiZYmC5o8TUwj5p4+D8XlxegWui+Od4FFWfnTAMF8M+gKwHOiAFraKldndh6JrfDkfESqwp/W1T96SHEOakAe2IihUCJA65WtaHQaDv5j4ZiPgC+Ab8SHudG88A5HXofyDihWyOwhvUXOYpxKzkwglezFKfrViI95qLXoEf3TcRsTRkW/mj+tklQszRamXFPHo9s0GihfkRgXdTgM4nBsRRLtIoYKA4IS8+3N9VjM8vdppM8WDeKQiNEoIhnUeI8FMTfIs+tiwac6qBfC0lZDMJiH+/DRmLYvYIxwsaoRnRZLozz7JDiV7pZEhQLUEOVyYEh5BRLnsrmtjEPDXgZdpx/1fez1YbQagYvb1dHHyLVwIMECtdMXwOufzq0CiRFqzoKhV2m+tJa+HX0EJxLvTj+FcEgeiZ/j8HX3uheOrMgmKlfJ04kW+DLU6DSUtpTiPBi9oOrp8yycPw2KdVADcuGhk3Kora1WgITmULt73OQb8yk0F5764rQf3H0nFPpUDJammHOo9RY9DRc2cOj+hQuSuLpdM4daJCPdceSEgaysRxDkmA/P4g5zldxhMhDCFwhhVSM+TiFSFyTeHOpRrypQqyQXS7P8febqch1fmKgc6gkHFJrkAfooEe2i8vKnI5gbMOjlfl+kXxENXrsXk0lEY1YF6gWxNIIrDge1IXdraC2GrkCHOFmKv+dI9BuHpinUedGWRh/9kzNo8+QBlrHYBgDShSpQZyiT0xI9zglWKDj0/aI2WXReyEX9+P5hNjRasKhTPyk3FmAtzmd/ggXqHqccC9CUixEfBUYobab97AChQIieZ2PsgESDqxcM5SdMp3P3upWRPw3y32VrmTcreS62dhuDuweZckU3quvuW4KYr2SBuvIMGDrx3JbUl6DRaRjrTKxAbW4wzz8l3HlUnvKoU+B9ubQJxmJzUAO0v7Udx0HHgrMDIg/wi0Z8ODvlAidKoqQu9mJDKorE6ZOLI9mKVQH1ZOpK5X5C31h8OdSqQK2SbCIC9QkxH+UJEqg9gzHlT4PsElZc/nQEcwOFghyVGUuhRHFIxFw2hcZck+iWKQs14iOp+DXlhB0xnF9xmImpIooqlGvmTAhly+VZr1mEKlBnKH3eMHA81kGJtJQbqDHrT5tD3eP0cWjYyxY13gOQK7p3VJsSLlB3OeQHn5zMoAao20BVWR/afG1qYj6cR09wRUphSXYF1yvos169btEc6jXXr0G0i/z67F8zemDhqJ+5qA7qVTB8ooNao9NgabYk1EHt6nEtnD9tW56wY2UUpbE7qAHa3iLnci/koh7vkh/gl+agVppAXSu771VUZnCKAQDVQT0PiXBQh8ISYz45g1pFJVlEvs9OLJSYIIHaG1v+tLypV8EO6nq0vgHyjfkxOah9Qz6slYGYolNyClurHP0Wi0itRnwsSqioGo1vYEkFxucSdg/gdhVjVLCZMyHYlsvPE1mEKlBnKL2eGYG6SiGuynkQBIEL28rY0ekgMB0+5fXH9w8DcFmHOjUmQkeVicNDIsHQqecrVrodPrQagVpLjhbIqDsb3fBu6s6to2tr7M7JJePsPKFAom/URygQUo6DGpaUQ91+dTsfePIDTLmm+PXZv+bQA4uP7vo9fvwe/8IC9eS4nHOrlNzek6lcdYqDGuQc6kRmUC/o6nccVmb+NMgDG3E4qEvqS6haV7VgDrWr24VOr6O4YpFBQecR5TmozXWqQK1yAhEHtZpBfSol+jyMhTr6x2N3UDtFP2EJ1UGtklQKTAUU2YpOEqg75AzqcJzPLJ7BmETU8HQY34hPuQKWuR7B1Yu5wRyTg9pr92K2ToJRNYItiN4C53wCHvlS9NuqER+LorE1Yip24Twc3TOMv78br8eg3AGoRGFrA4fqoFZJAL3eMJaiPCpMyu5QXtRWji8QYlf3qc6/x14fpr3SSF1pDhbvOw0rqkwEQmGOjfoSts8up49ai568XK2AW7cR+nfSvKWZoX1D+BJ4budl7OgJ2b3uXrlTqSiBegkOaoCGCxq4addNWJdbufvqu3n6v55ecATd3TdzrhaK+Bjrkl2w80VTKAFri+wm8osnLC5tKWWscwxJis6BMB9+r5+p8amFHdRKFagtTbJTJo7z2HZ1G/0v9CMOifO+7upyYW48TXxKhGk/eOxy9qGSKKkDd3+6W6GSQTgiDmo1ym1e6ixF9MXhoB7xygMAZcZ56gmoqCQQS7PlRIFab4FCc+z5vRG8djBFH/HhG/WBhHIjPgwV4PdgbSqKuUiiyeRTHdRL4dx/k12oBx+Kbjs14mNRrOvXYC4VeeDDDxCex7B4OoL2brxeg3I/34nC1iobi7KIHFWkMp8+T5iOatPCD7AK4NxlVvK1GrYdPnGKv1P0s6tnjMtWqqO6c4lEvuy3Rz9Sfjp6nL7cLJAYwdIE035az5Md5F1PJtlFfZKDelagVkqRRJArt7v7we9ddNWSuhI+9OyHWP3+1Wz7+jbuecc9+GceqE/G0yfH2yzooFZyvAeAVidP1xrZf8Li0tZSgr7gaUXRaIg4ccwN5vlXGD0EZW1xHycj0ZtBmw++pcfOnEz7W9tBgkP/nN+x4OpyLR7vMdYlx2Fo82JuR0ZSUqsK1ConoEZ8LEytRR+Xg3pUjAjUyja8qKSfUwRqkGM+TuqvRI3HHpOIKtrl/pBiHZYaDZTUUtEUiCniQxwSKdZ7VYF6KegK4E0/gEe+CIEo7se+UTXiYxGKW9up65Do29HHk197csnbTTv68HgMyp0hkShsy+V+dwIMTKlCFagzkOlQmD4xTEeVgjJpT0NxgY6NTaU8dfDEHOonDo4QltR4j5NpthWTr9OwfzAxOdSSJNHtmKDRmsMudUGAurMpt/RQUFKQ/BxqZ+cJGdSKdFBr8+SHksF9S1o9T5/HW+98K5f/+HIO/fMQv9n0m3njKpbuoFawQA0zhRJPzKG2tloBEpJDHXHizOugDk3LgwBKi56YS5wxH+WryjE3mU+bQz3eNb6EAokKjPcAtUiiyik4RT9F+VqK8nXpbkpGUmspon98MubZMaMzA77lqkCtkmTMzXLUxAkuyIqO+HOovYMxOai9dtkkoWgBy1xPWdUEfrefo48dXfJmwckgfrcfvW485nzvnKN5M9RuhGd/sLT1Az4IT0OB8vWcuChtQq8d412fHuS57z3LkYeXmJfsHpQd1EodgEoUBQb4/NGsmlmsCtQZSJfDx3RY2QUS57K5rYwjI+IJDpHH9w9TXVLIyhw5B0tFp9XQVmHkgH1xZ+pScIgBRP907hZIjFC3Ac3ATpoubuLY48cSEpMwL8Ep8A6DuWF2kbvXTV5xHoUWhU2/rV67aA71XARBYNOnNvG+R9+HOCxy+4bbT+mkePo8CBoBY/UCDxvjXbIrXslUrobhE3OoS1tLARKSQx0ZNJnXQT3eJbtt8hScWR9noURBEGi7uo1jW48RmHGHRpgcn8Tv9i8uUDuOnDDTQjGYqkEclgc6VFQApy+guqcXoNaiZyIQYswXWHzleYgI1DY141slyViaLYSnw3j655hoKs44pb8SNR57TDnJindQA5jraVyrobSllD9e/kfu+8B9S4oqFIdEBCFMHh41giIaLv827P4djC4hMiES75FFwmBaKCyBm56iffUAH/3E33j207868R5yGjSTw3g8asTHktBo092CqFAF6gxkv13+UK7IAQc1yAI1wLZD8pTqyUCIZ4+MsqWjQvERJ7HQUWViv92TEBG1xyl3YlSB+mzof4nmS5tx97gZPzq++DaxMN4tFwnTHneKeXo9lNSXKO9ar1kHg3uj3qz5kmZu2nkT5kYzf37Tn9n+3e2z17qnz4OhyoBGt8BXl9IjPkB+4DvJQV1SV4ImT8NYZ/wOanePG02eZv5On5LzpyOUNstCfBy0v7WdkD9E56OdJyx3dbkAMDeaF96Bs1OZDmptHhSXyZmiKiqAQ/RjLVbF09MRqcPSH2MO9ajXj7FAhz4/ux5QVbIPS7McXXViocSViXFQG6N3UEcizwwVChawzA0UCSPc/OrNXPDVC3jt7tf4v/b/Y+9v9y74nCgOiRgMPkJ55hOeSVQWwVgJb/gCPPTvi0cmqPEeS6e0Cc0H/0nRFR/n2qv/yNH/+DBh/9SCm+RNjzIlWcnTKywKT0UVqDOR/YMedAIsK1PwF+oclpUZqLXoZwXqZ4+MMhUMq/nTp6Gj2sSYL8CwZ/6c3mjocswI1LmcQQ2y23fkAM2b5Q5w0mI+TsqfBjm2QlHxHhGWWChxPixNFm7YcQMrr1nJE19+gnuvvZeAL4Cn34OpdpGBu5wQqFfCyAEIH59Gq9FpsDRbEhLx4e5xU1JXgqCZZ9Bk9CCULY/7GBmNJT4HNUD9efXoS/Uc+seJMR/jXeMzh1gkg9rZCVYFCtQgD9K51ZgPFRmnGMCmOqhPS61Fnq0Sj0Ct5k+rpILI99oJArW1BdwD0eX2ziUwIc8+LCqNelOv3UuhpRBdoYIFWHM9uHrRFeq4+JsX87F9H8O2wsYDNzzAnRfdieOQY97NRLuI0ehDKlaftaNmw4dhchxeu3fh9dQCidEhCBivvIXulX+iKHiEiW9vgIHd868rSRQIY2BQ42mUiCpQZyD77R5qjBrytLnx9giCwOa2Mp476sA/HeKx/cOYCuVsapVTiUS/HLDHn0Pd7fSh1QizD0A5S54eytopLe7BVGdKrUDdq1CB2toid+B8sUVO5Bfn84673sGl37uU1//6Onecewej+0cXzp/2izDlUX7BF70Z9KWnuHytrdaEZVDPmz8N8rTGXHBQxylQa3Qalr95OYcfPEwoGJpdPuugztWID1ALJaqcgNOnOqgX4rhAHZvApwrUKqnCVGtCo9OcKFBr8+TvstGDse3UOxPvEcMsQ9EuKjt/GuTIQFfv7K9lHWV86JkPcdVtVzH88jC3rr6Vbf+5jWn/ibFa4pCI0SgilETvTM95tDp404/gsa/ClPv064nDYFAF6mjpuP4SDhv/k0f+fgbTv3uXfJ5PHuCachEOCxSUWdPTSJWkkhsKaBYhSRIH7B7qjbn11mxeXs5EIMQLx8Z44sAwF7eX54xAHy3tlXJna39CBOoJ6ix69VwD1G1E6JNjPrqe7CIcCi++TbScVCBxemoa37APU50C43w0GqhaE1PMRwRBEDjvC+fx3ofei7vXjXfQu/C5Gu8CS4N8bKVTueqUmA9Li4WxzrG443/cve7586dhxkHdFtf+M57SpriKJEZou7qNqfEpep89/vA43jVOQUkB+oUGBSfG5MI6Sn2wKalVHdQqgNzndYpqBvVCGAvzMBfl0RerQC2qArVKatDoNJQ0lJwoUEN8MR9ee0wFEmEmxkLp+bSWEwVqAEEjcNZNZ3HLgVtY8fYVPP2Np7l1za10P909u47X7sVk8qG11qS4wQqhbgO0XgZPfef06/hGlduPSzJX/OSNjGrewK23foDgcC/ceh50bz++gseO6DMq//Odo+TAU3x28chrQzjEACusuZUVd26LlXythh8+fpjxiSBbOtQpR6fDWJhHfWkR+wcTIFA7fDTkerxHhLqN0L+T5i3NTI1PMbR3KPHHcB6F0uMCdaQIhCId1DCTQx1bzMdcWq5o4aadN7H8zctpf+sC7t2xLuXHe0SoPDWH2tpqJTgRnC0MFAuhQEgeCKifZyAgHJrJRlZ4xEdxGYQCMOmKazfLLluGrlDHwfuPO8dcXa7F4z0i7mml5dJHKKkDlypQKw3vVDDqbdyTQabDEla1gN+C1Fr0asSHSlZgabYkVqD22GOeFSfaRWUXSAS5vxLwyTMIT8JQaeAdd72D9z78XkKBEHduvpP7b7yfybFJxCGR0ko/QokqUMfMpd+A1/4O9pfnf12N+IiZPH0e7/rru/CM5/PH2y4ifOk34d6b4F+fhSkPkmcQ93ix8j/fOYoqUGcQ06Ew33/sEK3lBjZV5ZZAXZSv4+zmUl7uc5Gv1XBhm1pUYCEihRLjQZIkuh0+mnK9QGKE2o3Q9yJNFzUCScqhHjt6wrR9d688NUyxAnUcOdQnU9pSynUPXEfDGxpOv1Iu5E9HqDgDhl87YVFpqxyL5DwSW6wKzAyaSMzvoHb1QpEVChQ+ZVYQ5BzqOAsl5hfn07ylmUP/ODTrand1uxaP93AeUWaBxAgldWrEh8L44eOHedNPtzM1J85mKTjEAICaQb0IteaimATqicA0on9aFahVUsZpBeqTBtSXjHcwJge1JEl47V7lC1iCsGhdh5YrWvj4ax/n3C+cy8t3vszP239O95PdWGxTcnyKSmwUlcIl/08WTcPzzLpVIz7iwtZm46pfXUXv9l6e+qMePv48hIPwy3MJ770Ht6tY+RE+OYoqUGcQ9+7p59ioj89f3oZGqc6pBdjcJt/Ez22xYihQcEGLBLCiykS304fvpEyxaBgV/fgCIRqtRQlsWRZTUguaPAz5DipWV3Ds8QQL1FMe8HtPcIK4+xQuUEcc1HFGTiyZsWNyPEMuUHkGDJ0kULfIAnU8OdSuHhfA/BnUo4eUH+8RoTT+QokA7W9tx93rZvjlYSRJWqJAreACiaAWSVQgm5pL6R2b4Bfbjka1nVOUiz2rGdQLU1eqp29sAvdkdC51h1ceAChTHeoqKcLSbGHSOcmUe+r4wrqz5QHfuVP0l0qMDuop1xQhfyg3BKyZQokLkVeUx5bvbeEjuz+CpUkeRDCV+JRfsyXZnPle0Ghh7+9PfU2N+Iib1e9dzbqb1rH9v7fT+bQD3vIzuPrn0PMc4+Mlyh+AylFUgTpDmAqG+PHWI6ytN7OloyLdzUkLl7SXo9UIvGmV+mW5GB3VJiQJDg55Y95Hj1POM2xUHdQygiBnivW9RNOlTfRu7yU4Ef2U5dMyNhPvMZOPHJwMsvc3e9EV6jDVKjCDGmSnZDgEnsHUHG/smOx8zQXMjXJxlonjYnRJfQnafC1jnbEL1O4eedBkXgf16EHlF0iMUNqckBzq5VctBwEO/uMgvmEf05PTS4z4WLbwOtlMpEhiqgauVJLOuctsXH1mNbduO0qXw7fk7Zw+WUBVM6gX5i1rapgOS3zrX/uj2m7EK4uEqoNaJVVYmuXvt0hBYAAKDPDG78E/Pw3T/uh26B0EU/TPheKQHHmRExm15lNzqE9H5ZpKbnjuBt72x7dhq51WHdTxotHAm34IT34LfI4TX1MjPhLCFT+5gvJV5dz3/vvwDHigeTN9Z93H9u0bc+PznYOoAnWG8Pvnu7G7p/jiFe0IOeieBlkofeYLF/HOs2rT3ZSMp6NaFjTjifmIPEQ2qhnUx6k7G/rlQomhQIjeHUvr8C0J51GwyvEToWCIv13zN3q39/KWO96CTqkzBgQBqtcmJId6SYx3507Eh0Yzk+t43EWt0WqwNFviclBHYmfmHTQZPaT8/OkICSqUWFxeTP159Ry6/xDjXfK05yU5qJUc8VFYAoIGplzpbolKAvnKlSso0Gn4+gOvL7lQ66yDWhWoF2RVbQkfu7CZv+7u58mDw0vebtQrn99yY2GymqaicgIRgfqUmI8Vb5b7D8/+MLodeuxgjD7iI1KLIyccluZ6uf+7RDRaDavfu5q84GhM51blJCrPgFXXwNavn7hcHFEd1AkgkkcdnAxy73X3Ep4O4x3+/+3dd3wc1b3//9dH1UW2imVbtiwX4d4AY2xDwJheQjAtJJSQQsIvvTfS801yb24aNySEG5PCJeGGFAIJJaElpiTYgA3GBRvLvVuWLFtyUT2/P2ZlZFl1tUer2Xk/Hw898M7Ojg6fMzt79Nkzn3OUpqb0aNwhEUFKUPcBB47Uc+c/N7Bg0lDmlQ5JdnOSqjivf2QT9N0xMrcfuf0zeb0HCerN+w6RkWaMyu+fwJaFXKwO9Zizx5CWmZbYOtQVQf1p1+T4y3v/whuPvMFld17GjOtnJO539EXFiatD3aH6o0G9t9wS/7+rr2inzEdPalBXbakipyiHjH5tfGkSuRnUiXn/T1o4id2v7mbz4s0AHc+gbmqMfdGSwjOoQQslpqBhg/vx6Ysm8uwb5fx9VdcWGd5XU4cZFAxQgrozHz9/ApOGD+K2P6/kQBfv7iqPfQGgGdTSW9pNUANc9j14cRGUv9H1A1bvimuWb/Wu4A7TSCSwulDi4wT1R6D+cFBHWXpuwReh7B+wdUnwuO4QuMbUX7OllxyrR/3cVv759X9G6wuoCFKCug+4+9mNHDhSz+cujkhtT+kxM2PKiEG8srWqyzOVWttScZiSggFkpOsycMyImVCxkazMOkrOKGHNH9cEtxMlQkUZruAk/vbxv7HyvpWc953zOP1Dpyfm2H3ZyFmw8xX/v6dqS5D0Sk/R2ehtaWehxMqyyrivCwe2HGi7/rRzQemJoRGZQZ2ARRKbTVoYfLa/dOdLQDv1vZtVbYGBQyErxdcGaC7zISnlXfPGMHXEYL758JourZFRcaiW/AFZGod0QXZGOj+87mT21dTxzUdWd+k15dW1pBkUDNQXANI7+uX1o19+v7YT1Lmj4JwvwCOfbHtRudaamqB6d1x1ko+V+IhCAitvDOxaAdte6lpcIYhrTlFwp6P0XL/BcPF3ggUTGxveLO+h+CbMsXrU//E8q+5fRXp2Ov3ydHdQKtKIMMn2HjzKL5/fxBUnj2TayBRdKE28uGzGCF7fdZBn3iiP6/Wb9h1ijBZIPF5GdjArdccy5n91Pof2HuLu2Xez7d8JmOlXUcbyBw/y0p0vccZnz+Cs287q+THDoDiWoPZdbzZKCyQ2K5oJu1cet6lgQgENRxqo3hlfffoDWw60XX/64A7IGgj9O6mfnCoGF8OR/VB3uMeHGjJhCEOnDqV6RzUDhw0kq6NkUexOi5SnBHVKykhP41tXTmf3waPc8fT6TvevqKljiJKnXTa9OJePnDuePy/fwVNrOi/1UV5dy5CcbNLTlCSR3pNfmt92ghpgzgeC2buv/rbzAx3eF8xAzex+EqpmVw0Z/TLIHhyBuwdGnAwz3wF//Rj8cBL85aOw9rGOxy/Vu+Kq7S0dmHZVUNLjxZ/HFkgcmuwWpZzmetQ7X9pJTlGO7rpPUUpQJ9lP/lFGfWMTn74wIrPSJGHeefpoSgr6872/r6OpqXvJP+ccmysOqf50W0rmHKtD/f4l7ydzYCb3LLiH5b/oQZkK52jYuY6nf7CFU285lQu/d2F0PlRzhkFWTsLKJbSrclN06k83GzYlmNXc+Obt3kMmBGWi4qlD7ZocB7a1M4O6fC0MjdBdPmlp3a7r2JFJVwax67T+9L710UhQ55XAgQTW+Jc+47Qx+bxjdgm/fH4Tb+zp+Iuyipo61Z/upo+eO54pIwZz24MrqTpc1+G+5dW1DM2JQIJO+pQOE9Rp6fC2H8NT34SaTibYHNwJg+OrkVyzq4acERFJYKVnwHlfho8sgVseh2FTYeld8IOJ8H/vgGX3BDOmW4qzdIp0wAwu+wE8+wPY+SrkDE92i1JOcz3qzIGZDC5uY60cSQlKUCfRlopD/O7FrVw/ZzRjC5UolO7JykjjMxdOYs2ugzyycle3XlteU8vhukbG6bw70ag5sO1FAIZNH8YHXvoA484bx8MfeJhHP/wojXWN3T7kyl8upv5IA2MvO5XLf355NAbMLRWf6r/MR+XG6CWoswYEM1H3vVnPsWB8UE+wsqz7CepDew/RWNtI7ui2EtTrolN/ulkC61BPXhjErsP60wAV61N7gcRmuSWaQZ3CvnDpZHL6ZfCVh1Z1WG5o36Fghq90XVZGGj94+0z2H6rjG3/tuNTH3upa1Z+WXpdfmk/V5iqaGtspNzFiJpxyPTx+W8cHqt4VV3mP4KXV0ag/3VpBKZzxYXj3w/CplTDj7bDpWbhzLiw6F575frB2ycH4YysdKBwPp98CT/+/oFybJFzhpEJufupmLvnxJcluinjSaYLazH5lZnvNbFWLbd8wsx1m9mrs57IWz91mZmVmts7MLvbV8FTwoyffIDM9jY+dF4HZUuLFFSePZHLRIH74xDrq2xsItmHzvuC2L5X4aEPJHNj+Zh23/vn9ueHRG3jLF97Cy3e9zL3n30vNnpouH+71B1/n5W/dT03DCK6+7xrSolhrc2QvLJQYxQQ1nLBQ4uCSwaRnpce1UGLVliqgnRrJUZtBDcH5lKA61CNnj2TM/DGMu6CTMjRRmUGtRRJTWsHALL5wyWRe3FTJQ6/uaHe/ipo6ClXio9umjczlY+dN4KFXd3a4IGV5dS3DlKCWXpZfmk9TfRPVOzq4g2LBbbBtKZQ91f4+PShDUbO7hpyiCNSf7kj/fJhxLVz7K/hcGVzwDThcAfffAE99I+7Z6dKJsz8TLD6ZMyzZLUlZo+aNYuRsnb+pqiuZknuAtr6iuN05d0rs5zEAM5sKvBOYFnvNz8wsPVGNTSWrdx7gL6/u5H1njWXYYBV4l/ikpRlfuGQyWyoOc/9LXf9jf/O+QwCaQd2WQUVBzbuKsmOb0tLTuOC7F3DN765h57KdLDptETteav+P7mYbn9rIA+98gJNmQ8HcOWRkR2gBv5aKZ8HOXkhQ50esBjVA0QzY82Yd6rT0NPJPyo+rxMeBLQcA2q5BXb4uegnq/HEJm0FtacZ7nnkPs26Z1fGOFWURmUGtGtSp7h2zSzilJI/vPLqWA0fqT3i+rqGJA0fqNYM6Th8+9ySmjRzMVx5aSeWhE0t9NDU59tVoBrX0vvzS4E6hdst8QLCmxVt/FCwq116t5IO7YFDPSnxITHomlJ4Dl34XPrECPvg8nPaeZLcqNWX2hxv/CLNuTnZLREKp0wS1c+5ZoKt/6S4E7nfO1TrnNgFlwJwetC9lff/xdeT2z+TW+ScluykScgsmDWXO2ALueHo9h+sauvSaTRWHyEgzivP6e25dSJXMhe0vnrB5+junc8u/byEtI41fn/1rVty7ot1DbF+6nfuvvJ8hk4ZwxnuHkj48wnXmR5wCu14LVrb2obE+WMQvf4yf4/dlw2ecuFDi+IK4Sny0O4PaudgMapX48Kq2Bo5UweBRvfc7k2VQERyphIbaZLdEPElLM7595XQqD9XyoyfWnfD8/lj9ZNWgjk9meho/vO5kDhyp5+ttlPqoOlJPQ5NTglp6XZcS1AATLoTi0+CZ/2r7+eqdcc2grj9Sz9Gqo0pQt8cMhk2Gfm3cLSeJMXRSsI6JiHRbT+41/6iZvRYrAdJcVLEYaDmNc3tsm7SwZGMFi9eV85FzTyK3f2aymyMhZ2Z8/pJJlFfX8ut/be7Sa7ZUHGJ0wQAyolhuoitGzQluPWxD0SlF3PryrZScWcJD736Iv3/y7zTWH1+Xeu+qvdx36X3kFOVw0+M3kXloCwyJYPmJZv3zgoTUvhOTFAlxYBvkFEFGBP8Qby7x0aLOa8GEIEHturl46oGtB8genE2/3FZ39dTshbQMGFiYiBaHR8G4YPHN3lJRFiTF0yJwXU5LD64JBzu/E0XCa3pxLu+aN4bfLNnCqh0HjntuX03w5cSQgRG8bifI5KLBfOL8CTy8YiePtVqLpLw6iK8S1NLbBpcMxtKt8wQ1wCXfhVd+c1ypsmPinEF9aE9wl2gka1CLiIRcvPeb3wV8C3Cx//4QeF93DmBmtwK3AgwfPpzFixfH2ZRwcc7x7SVHyc82xtZvZfHitssy1NTURCYmyZCK8T1laDo/fXodY+q3kZPV8SJ8KzcfIb+fpVwMOtPVfs+pTmfK2sW8NLj9fUd/eTT1Q+pZ+uOlrHt2HVO/PpXM3EyO7DzCqx9/FdJgwrcmsGzdMmZvXcHaAedSs6/z3x1mHcV3SkYx+//xO3aPuCDhvze/cjmjLY8VKX4+txlf53hLXS0vPfEgddnBAokVroKGIw088cATZA/tenJi4/KNZBRmnPA78va/xtjMIl6NWHytqZ6zD+zguX88iUvz/2XysD3PUuhyWZPicW52ihvE5mceoSp/ZsKOmYqf7WH36Ysm8ejK3XzloVX8+UNnkpYWjE8qaoIZ1IWaQd0jHzznJB5fvYevPrSKueMKjpVMOZagVgkV6WXpmenkjs7tWoJ60HA476vw8CfglieCLy+bxVmDunpXUPs68jWoRURCKK4EtXNuT/O/zexu4JHYwx1ASYtdR8W2tXWMRcAigNmzZ7sFCxbE05TQeWL1bjYcWMZ3r57BRXPav/Vj8eLFRCUmyZCK8R0xuZpLfvwsKxuKuO2iKe3u55yj4h+Pc8HMEhYsmNaLLUy+Lvd741mw8mssmHtKMPu3Heeefy4r7l3Bw7c+zOpPrOby/7mcx776GOkunfc8+x6GTRsWLLb4/F5mX3QdZKf2YLnD+GavYXjFeib7eN+9uB4yZ6Xce7q1duO7dRZnlg6GCcFzGxs2sv729UwsnMi4BV2vy722Zi3FU4tP/B1L34DMudGM72vFnHNyKQzphXJc/3wBCs9kWIrH+ZjK6ZwyrhBOWZCwQ6biZ3vY5fbP5Mtvncynfr+C37+8jetjY9+KQ7EZ1Eqg9khGrNTH5Xc8z9f+spo7bwzq3O+tPgpoBrUkR35pftcS1ACz3g0r7oeXfwVzPvDm9oM745pBXbMrWMhcJT5ERMInrvtIzazl15lXAc335fwVeKeZZZvZOGACcGIh14hqbHJ8//F1lA4dyLWnRaDGpPSqSUWDuOrUYu7592Z2HTjS7n7l1bUcrmvUAokdSc+AkafCjpc73fXkm0/mfc+/D9fouO/S+6jZU8ONf7sxSE5DcAt7/7yUT053qngW7PC0UGLlpqA0QlQVzYDdrx17WDAhmEndlTrUrsmxc9lOnv/u81Ssrzix/jREs/50s96sQ12xPhoLJDbLLYGqri/uK+F15SnFzB1XwH/9fe2xBf2aZ1CrBnXPTRw+iE9eOIFHV+7ikdd2Am/OoNZC7JIM3UpQp6XB234Mi/8zSEoD1B+B+sMwoKDbv7t5BrVKfIiIhE+nCWoz+x3wAjDJzLab2S3A98xspZm9BpwLfArAObca+AOwBvg78BHnXGM7h46cB1/Zwfq9NXzuokmq/StefOqCiTgHdzy9vt19Nu0LarONGaIEdYdGnQ7buvb92sjZI/nAyx/g1FtO5YZHb6B4TovS+5UboECLoVI0E8rX+VkUrXJjtBPUw6fDnjfrN+aW5JKenU7l+rYT1FWbq1h29zL+eN0f+f6w73P37Lt5+ranKTipgGnvaOOuivJ1wYIvUdSbdagrymBIlBLUo4L68ZLyzIxvXTmdmqMNfO/vawHYV1NHVnoag7LjrTYoLd16diknl+Tx1YdWUV5dS3l1Lf0z0xmYld75i0USLL80n8Plh6mt7uKYb9hkmP0++Nvng8cHdwbrFFjHJQvbUrO7BkszBgwd0O3XiohIcnU6KnTOXd/G5l92sP93gO/0pFGp6Gh9I7c/+QYzR+VyyfSiZDdHUlRJwQBunDeae1/YwvvPLuWkoSfO2t1cESSoxylB3bFx8+Hpb8K5X+rS7jnDc7jiF1ec+ERFWe+UB+jrsgYEcdizKli1PZGinqAumg7P337soaUZ+aX5xxLUR6uOsukfm9jw5AY2PbXp2MzqQSMHMfHyiZReUErpBaXt12ssXwuFUU1Q99IMauegYkO0rhV5JbDmL8luhfSSicMHcctZ4/j5sxt5++wSKmpqGZKThcWRgJITZaSn8cO3z+SyO57nKw+tJDsjnaGDshVfSYr80nwAqjZVMXzm8K696OzPwl1nwtrHoN/guMp7QFDiY+CwgaRpMpiISOho2kIvuW/pVnZUHeF7187UYFG8+si54/nDS9v44RPr+NmNJyYCN1ccJjPdGJmn2z47NPbs4PbzniY/KzbAkPGJa1eYjTw1KPORyAR1UxNUbYH8sYk7ZtgUToKqrcEtsZn9ARgyYQhbn9/KL+b9gp0v7cQ1ObJyshi7YCxzPjaH0gtKKZxS2Pnn0aEKaKwPZjJFUUEpbHrO/++p3hX0XQc171NObolmUEfMx8+fwF9X7OSrD62icFC2ynsk2Phhg/jMhRP5z7+tJSc7g0lFKnEgydGcoN6/cX/XE9SZ/eDy2+GhD8P8z8a1QCIECWrVnxYRCSd9tdgLqo/Wc+c/yzh7QiFvGV+Y7OZIiivMyeb9Z5fy2MrdrNhWdcLzm/cdoiR/gMrMdCY9A6ZeAasf7NlxKsqUoG5WPAt2vpLYY1bvhH55kBXhOwIysoJzbO+aY5uK5xVzZP8RLM04+ytn897n3svnKz/P9Q9fz9yPz2Xo1KFd+7J0X6y8R1S/WM0fB/t7ocTHvvXRKu8BsRIf24PZ4xIJA7Mz+OrlU1mz6yDPry9nyEAt4Jdo7z+7lFNH51FT28BQLUApSdIyQd0tpecEdzD+41txz6Cu3lWt+tMiIiGlDFUvuPu5TVQequNzF0f0Fmnpde8/exwFA7P4/uPrTnhu075DjNUCiV0z7WpYlYgEdYRu2+/ISA8LJUa9vEezoumw+8061Gd98Sy+dOhL3PLvWzj3m+cy+qzRpGfGUYu0fG10609DMDN//xZo8rycRsV6KIzYF1lZAyFzABzal+yW9CozSzezV8zskdjjcWa21MzKzOz3ZpYV254de1wWe35sUhueIJdOL2L+xKE0OS2Q6EN6mvGDt59MdkYao/L7J7s5ElH98vuRnZvd/QQ1wEXfDr64jHcG9e4aBhbp7xwRkTBSgtqzfTW1/OK5jbx1xghmjspLdnMkIgb1y+Sj547n+bJ9PL/+zT/+nXNsqTjMWNWf7poxZ8Kh8mB2Yzwa6+HAjmiXn2hp2NSgHEdtTeKOqQR1oNVCiWZGRiIWHytfB0Mn9/w4YZU1AAYUBAs2+VSxIXozqCGqCyV+Ani9xeP/Am53zo0H9gO3xLbfAuyPbb89tl/omRnfvGIaWRlpjMpTAtWHk4bm8PdPzufjF0TwmiJ9glmwFkZcCeqBQ+CmB2DG27v90qbGJg7tOaQZ1CIiIaUEtWe/en4TtQ1NfPqiicluikTMjfNGU5zXn+89vhYXu4V6b3UtR+obGVuola27JC0dpi6EVX+O7/X7twQzQDJ0my0QlKIYNgV2rUjcMSs3QsHYxB0vrIpmHDeDOmHK10Y7QQ29s1DivvXRLAWUWxKU+YgIMxsFvBX4ReyxAecBf4rt8r/AlbF/L4w9Jvb8+ZYii5iMKxzIk5+az/93ju4u8mVc4UAG98tMdjMkwuJOUENQEi6OtS8Olx/GNTnVoBYRCSklqD175o1y5owt4KSh+qCU3pWdkc6nLpzIa9sP8LdVu4GgvAegGdTdMf1qWB1nglr1p080chbsTGCZj8pNmkENQYJ6z6rE1/MtXxftEh/QO3WoK9ZDYQRnO+ZFbqHE/wY+DzTFHg8BqpxzDbHH24Hi2L+LgW0AsecPxPZPCWOGDGRgIu7yEJE+Kb80n6pNVbim3ltnoGZ3cIdeTpH+7hYRCSONDD06cKSeNbsO8onzI/hHp/QJV51azKJnN/CDx9dx0dThbI4lqMepBnXXjZoDtdWwZw0Mn9q911aUQYFmiB2neBasfzJxx1OCOjCgALJyghIqiSopc6QKjh4MyjBEWcE4vzOoG2rh4K5olgJqXigxAszscmCvc26ZmS1I4HFvBW4FGD58OIsXL07UoVNCTU2NYuKR4htNXen38oZyGusaeeKBJ8ge2jt3ElYsrQBg/a717F28t1d+pw96X/ml+Pql+IZfMvtQCWqPXtpUiXMwrzRlJrxIyKSnGZ+7eDIfuPdl/rRsO5srDpOZboxU3ceuS0uDaVcFs6i7m6Cu3ABDp/hpV1iNnAXPJKiUqnNB4jB/XGKOF3bNCyUmKtG57w0YOhFSo6pA/ArGweqH/B2/cmMwkzg9grfj546CbUuT3Yre8hbgCjO7DOgHDAZ+DOSZWUZslvQoYEds/x1ACbDdzDKAXKCi9UGdc4uARQCzZ892CxYs8P3/ESqLFy9GMfFH8Y2mrvT7hroNrL99PZOHT2bM/DG90q5XNr7CKlYx/63zyR+X3yu/0we9r/xSfP1SfMMvmX2oEh8eLd1UQVZGGqeU5CW7KRJhF0wZxmlj8vnvp9azdvdBSgoGkJ4W8YRTd027GlY/2P3yCRVlMEQzqI9TOAEOVcDhyp4fq2ZvUN+7f17Pj5UKmst8JIrqTwcKSoOZ+r5UlEVzgUSA3NFQFY0SH86525xzo5xzY4F3Av9wzt0I/BO4Nrbbu4G/xP7919hjYs//w7lE1/AREfEjvzRIEMddhzoO1buqAZX4EBEJKyWoPVqysZJTS/Lol5me7KZIhJkZX7hkMrsPHmXxunLGqf509xXPgsZ62L2ye6+r2KAa1K2lpcOIk2HnKz0/1n6V9zjO8OndP0c7ovrTgfxYiQ9fucF966P7RVaESnx04AvAp82sjKDG9C9j238JDIlt/zTwxSS1T0Sk23JH52Jp1qsJ6prdNWTnZpPZP4J3JImIpAAlqD05eLSe1TsPqLyH9AlzxhVw7qShAIxV/enuM3uzzEdX1R2GwxWq39uW4lMTs1Bi5UYlqFsqmuEhQa0Z1PTPC2bqHyr3c/yKsmgukAgwcGhQ47/ucLJb0qucc4udc5fH/r3ROTfHOTfeOfd251xtbPvR2OPxsec9FkIXEUms9Kx0BpcM7t0E9a4aBo0Y1Gu/T0REEksJak9e3lxJk4O5pQXJbooIAJ+7eDIZacaUEYOT3ZRwmn41rPpz12dRVm4MagGn6Q6KE4ycBTsSMINaCerjFZTCoX3BwoaJoBnUbyoo9bdQ4r710S3xkZYGucVwcEfn+4qISKjkl+b3eoI6Z4TKe4iIhJUS1J4s2VhJVnoas0aHd4EGSS1TRw7m+S+cx1WnFie7KeFUNBPSMro+87eiTOU92jMykTOotUDiMWnpMGwK7Fnd82PV1gQzhvN6Z2GjPq9gnL861BXrozuDGmJlPqJRh1pEJEp6PUG9u0b1p0VEQkwJak+WbqzgFNWflj6mKLefFkiMl9mbs6i7Qgskti9/LDTUwsFdPTtOpWpQn6AoQXWo970RfMGiOwACvmZQH66Epqag1EVURWihRBGRKMkvzefQnkPUHarz/rucc1TvqtYMahGREFOC2oPqo/Ws3HGAeSrvIZJapl0Fqx8KEkqd0QKJ7TNLzCxqlfg40fDpsCcBCWqV9zhe/rhgUc5Ea14g0SL8xaEWShQRSUn5pcGdxFWbqrz/rtqDtTQcaVANahGREFOC2oOXN++nyaEFEkVSzbCpkDUQtr/U+b6VG6BAM6jbVTwLdvQgQX24ElwTDNB19jhFM2D3qp4fp3ytFkhsydcM6qiX9wAlqEVEUlRzgro3ynzU7KoB0AxqEZEQU4LagyWbKshMN05V/WmR1NJc5mN1F8p8qAZ1x8adA68/3LXZ6G2p3BSUConyzNO2DJ8WJJcbG3p2nH1vaAZ1S74S1FFeILFZXolqUIuIpKBeTVDvjiWoVYNaRCS0lKD2YMnGSk4pyaN/lmp3iqScaVfHynw0tr/P4UpoqIOcYb3WrNAZexZk58Drf43v9ftVf7pN2YMgZ3gwg78nNIP6eAMLobEejiT4j+yKMiiM+BdZuUpQi4ikov5D+pM1KKtXEtTVu6oBVOJDRCTElKBOsJraBlbtOMDccbrtXCQlDZ0YJKu2vtD+PpUbVVe2M2Yw//Pw7A/Aue6/XvWn29fThRLrj8DBnVAwLnFtCjuzIB6VCa5DXVGmGdSDi4PzLd67KUREpE8yM/JL81XiQ0REukQJ6gR7eXMljU1O9adFUtm0q2BVB2U+KjYECWrp2MSLwYA3/t791ypB3b7hM2BPD+pQV5QFiwKmZyauTakg0QslNjXC/s06jzP7Qb88qNmT7JaIiEiC9VqCencN6dnp9Mvr5/13iYiIH0pQJ9iSjZVkphuzxuQluyki4sv0q4PSFO3V+VX96a4xg/mfg2e+1/1Z1JUbNcO3PT1dKLF8XXCngBwv0XWoq7bAwKGQNSBxxwwrLZQoIpKS8kvzqdpUhWuK4265bqjZVUNOUQ6muxdFREJLCeoEW7qpgpmj8hiQlZHspoiILwWlwW3pW55v+3klqLtu8tuCkhIbnu7e6ypVg7pdRdN7NoNa9afbVjAOKjcn7nj7dJ04Jq8EDmxNditERCTBCqcU0nC0gb2r9nr9PdW7qlV/WkQk5JSgTqBDtQ28tv0A80oLkt0UEfFt+tXtl/moKFOJj65KS4P5n4Vnvt/1WdS11cFPTpHftoVVbgnUH4ZD++J7fflaGDopsW1KBYmeQV2xHgojXn+6WW6JZlCLiKSgSW+bhKUZq/+42uvvqdlVo/rTIiIhF/kEtYtnca52LNuyn8YmpwUSRaJg2lWw9hForD9+u3Ox8hNKUHfZtKvgUDlsbmdGemuVm4LZrGmR/whrm1lQhzrehRLL12kGdVvyxyU4Qa0FEo9RiQ8RkZQ0cNhAxp47ljV/WJPQv7tbq9kdlPgQEZHwivRf91/7yyq+/FAPboNuZcnGCjLSjNPG5CfsmCLSR+WNDmZUbnzm+O01eyCjH/TPS0qzQiktHc7+DDz7va7tX7kxSBZK++It89FQB1VbVXqiLYOL4WgV1B1KzPH2rdedFs1yS6BqW7JbISIiHky7bhoVb1Sw5zU/i+E21DZwpPKIZlCLiIRcpwlqM/uVme01sxP+0jWzz5iZM7PC2GMzszvMrMzMXjOzWT4anShNzvGnZdvZf6guIcdbsrGCmaNyGZit+tMikTDtaljdqsyH6k/HZ+Z1sH8zbF3a+b77N2mBxM4UzYCyp4KEc3dUbgxms2Zk+2lXmKWlQd6Y4DxNhIoylfhophnUIiIpa/JVk7F0Y/Uf/JT5qNldA6Aa1CIiIdeVGdT3AJe03mhmJcBFQMtVbS4FJsR+bgXu6nkT/blp3hjqGpr447Kez9o5XBfUn55bqvIeIpEx7UpY+yg01L65TQnq+KRnwlmfgme/3/m+lRu1QGJnpi6EzIHwq4u6V5ZCCyR2rGBcUGKmp2qr4UgVDB7V82OlgrzRcEAzqEVEUtHAoQMZd+44b2U+mhPUmkEtIhJunSaonXPPApVtPHU78Hmg5afMQuBeF1gC5JnZiIS01IPJRYOZM7aA3y7ZSlNTzz4sl23ZT0OTY54S1CLRMXgkDJsKG/7x5raKMhii5GlcTrkR9q6BHcs73q9ykxLUnckeBO+8D06+Hn5xIax6oGuvK18HhRP9ti3MErVQYvNCqqqjHuifD411QeJeRERSztTrplJZVsnuV3cn/Nhbnw/myw2ZqL/DRUTCLK5aFGa2ENjhnFthZi2fKgZaToHZHtu2q41j3Eowy5rhw4ezePHieJrSY7NyG/ifzbX89IGnmTk0/tIcD7xRR5rB4a2rWLzTOn9BJ2pqapIWkyhQfKPJR7+PzJ5O7tN38fqu/gBMX/ciu4sWsC+C51ci4ls87DLyHvwiq6d/qd195u1aw6tv7OXotp79rrCJL76TyJnyJaY++mWq/vV7ysbfQlN6++U7pq5+loohp7NH52+bivc1MGDrv1hfP7NHv2vYnmcpbMplTQTj3J7TMwtY/dSDHB44Ou5j6LNdRKRvmnLVFB790KOs+eMaRpyauPlrzjmWL1pOyZklDJmgBLWISJh1OyNrZgOALxGU94ibc24RsAhg9uzZbsGCBT05XNzObGjiTxue5rXDuXx8welxH+enr/+bmaMcl17wloS0a/HixSQrJlGg+EaTl36vngI/PZ3hb5kLmf1h1ecpnL8Qhk9L7O8JgYTEt34u/PhkFkwuDBb6O+H5I/BcDfMuugbSo1XvP/74LoAL386ARz7FyHXfgGt/DcPaKeOx5ksMm38lU0aeEnc7w6pL8V3fAC/8hOKenuf/fAEKz2CYPofetG0ScyYUwcQFcR9Cn+0iIn3TgMIBlJ5fyuo/rOa875xHq0lucdvy7BYq3qjgrC+dlZDjiYhI8sRzb+lJwDhghZltBkYBy82sCNgBlLTYd1RsW5+VlZHGO08fzdNr97Kt8nBcxzhS18iK7VUq7yESRYOGw4iZsP5JaGoMFlBT+Yn4ZfaHMz4Kz/2g7ef3b4G8ksglp3us32C45hcw70Nwz2Ww/DfQug5kYwNUblCJj44UjEtQiY/1WiCxtdxRqkMtIpLCpl43lf0b9rP7lcSV+Vi+aDnZudlMe3v0JoaIiKSabieonXMrnXPDnHNjnXNjCcp4zHLO7Qb+CtxsgXnAAefcCeU9+prr547GgN+9uLXTfduyfOt+6hsdc0sLEtswEQmH6VfD6j9D1VbIGRYkWSV+s98Hm56D8jdOfE4LJMbPDGbdDO95FF64E/586/E1f6u2QM5wyBqQvDb2dbklUL0bGup6dpx962GIEtTHyS2BA9uT3QoREfFk8pWTsXRj9R9WJ+R4hysOs+ZPa5j5rplkDshMyDFFRCR5Ok1Qm9nvgBeASWa23cxu6WD3x4CNQBlwN/DhhLTSs+K8/pw/ZTi/f2kbtQ2N3X79ko0VpKcZs8fke2idiPR5UxZC2dOwe6WSp4mQnQPzPgjP/fDE5yo3Qv643m9TKhk2BT7wj+CLlJ+fA7tWBNvL18LQdkp/SCAjCwaNCL6MipdzULEBCscnrl2pIK9EM6hFRFLYgCEDKL0gKPPhWt/FFYcV966gsa6R0249LQGtExGRZOs0Qe2cu945N8I5l+mcG+Wc+2Wr58c65/bF/u2ccx9xzp3knJvhnHvZV8MT7V3zxlBxqI6/r+r+LUdLN1YyfeRgBvXTN7cikTRwCIyaHcxKHaKkU0LMuRXKnjyxnML+TfoSIBGyBsAVd8C5X4LfXA1LF8He12Goynt0qqA0OA/jVb0LsgZCv9zEtSkV5I7SDGoRkRQ37bppVG2qYteynt1k3bw44qh5oxg+Y3iCWiciIskUTw3qlHTW+ELGDhnAb17Y0q3XHalr5NVtqj8tEnnTroZtS5SgTpR+uXD6++H524/frhIfiTXjWrjlCXj1t/DcjzSDuisKSntWh3rfel0n2qIEtYhIypt85WTSMtJY/ceelfnY+vxW9q3dx6xbZyWoZSIikmxKUMekpRk3zRvDy1v2s2bnwS6/7pWt+6lrbFKCWiTqplwOaZlKPCXS3A/C6w9DVYvb/pWgTrwhJ8EtT8LZn4aTzkt2a/q+gnFQ2YMZ1BXrVd6jLYOLg/rejQ3JbomIiHjSv6A/pReWsuYPa3pU5mP5ouVkD85m2nVaHFFEJFUoQd3CtaeNIjsjjd8u7fos6iWbKkkzmD1W9adFIq1/Plz6X1ByerJbkjoGFMCsd8O//jt43FgPB3dC3uikNislZWTD/M/C4JHJbknf1+MZ1GVaILEt6ZkwcGhQAkVERFLWtOumUbW5ip0v74zr9Ucqj7D6j6uZcdMMsgZmJbh1IiKSLEpQt5A3IIsrTh7JQ6/s4ODR+i69ZsnGCqYX56r+tIjA6bcEiWpJnDM+Civ/BAd3BQvTDSoKFqoTSZb8cT1LUFesh0IlqNukhRJFRFLepIWTSMtMY/Uf4ivz8dpvX6OxVosjioikGiWoW3nXGWM4XNfIg8t3dLrv0fqg/vTccQW90DIRkQjKGQqn3AD//klQVkHlPSTZ8scGX5Y0Ncb3+grNoG6X6lCLiKS8/vn9OenCk+Iq8+GcY9miZRTPKabo5CJPLRQRkWRQgrqVmaPyOHlULr9ZsqXTD8xXtlZR16D60yIiXp35cXj1Pti2VAlqSb6sAUH5mYOdf5F9goba4G6A/DGJb1cqyB2lGdQiIhEw9bqpHNh6gB0vdu+zdPsL2ylfXa7FEUVEUpAS1G24ad4YyvbWsGRjZYf7LdlYEas/rRnUIiLeDB4BM64NZlHnj0t2a0RidajjWCixcmNQxiJdZcHalFty/KKoIiKSkiYvnBxXmY9li5aRNSiL6e+Y7qllIiKSLEpQt+FtJ48kt38mv13S8WKJSzdVMHXkYHL76w9NERGv3vIJaKrXDGrpG+KtQ71vvcp7dCS3RCU+REQioF9eP8ZfPJ41f+x6mY8j+4+w+vermXHjDLJytB6JiEiqUYK6Df0y07lu9igeX72bPQePtrnP0fpGlm+tYt44lfcQEfEubzRc+2sYNz/ZLRGBgnGwP44Z1BXroXB84tuTKlSDWkQkMqZeN5WD2w6yY2nXynysvG8lDUcbtDiiiEiKUoK6HTfOHUNDk+P+F9u+1XTFtqD+9FzVnxYR6R1Tr4B+g5PdCpFgJv+WF+BIVfdeV7FBM6g7klcS1KDu5qJZIiISPpOumER6VnqXynw0L4444rQRjDh1RC+0TkREepsS1O0YWziQ+ROH8n8vbqG+semE55dsrMQM5qj+tIiISLRMuAiGToSfnBbURq9v+26rE+xbD0M0g7pd/XLB0uBoVbJbIiIinvXL7cdJF58UlPlo6viLyR1Ld7B35V7NnhYRSWFKUHfgXfPGsOdgLU+/vueE55ZsrGDqiMHkDlD9aRERkUjJzoGFd8J7HglmUv/kNHjlPmhq7Ph1FeuhUDOoO6Q61CIikTHtumkc3H6Q7Us6vu4vW7SMzIGZTL9eiyOKiKQqJag7cN7kYRTn9ec3rRZLrG1oZPnW/cxV/WkREZHoGjYFrv8/uPaX8Mpv4K63wLq/tV2i4lAFNDXBwKG9384wyR0FVW2XVxMRkdQy6YpJpGd3XObj6IGjrLp/FTNumEH2oOxebJ2IiPQmJag7kJ5m3DB3NP8qq6Bsb82x7Su2HaC2oYl5pSrvISIiEnmj58F7/wYXfB2e+ib8+lLYuvT4fZoXSDRLThvDQgsliohERvbgbMZfMr7DMh8r71tJwxEtjigikuqUoO7EdbNLyEw37lv65izqpRsrgvrT45SgFhEREYLE86RL4UP/glk3wwO3wO9ugL1rg+cryrRAYlfklcCBrcluhYiI9JJp102jemc121448e4Z5xzLfr6MolOLGHGaFkcUEUllSlB3YuigbC6dPoI/LdvO4boGAJZsqmBy0WDyBmQluXUiIiLSp6Slwyk3wEdfhjFnwD1vhb98BDb/K5hBLR1TDWoRkUiZ+LaJ7Zb52PnSTva8tofTbj0N0x1IIiIpTQnqLnjXGWOoPtrAX1/dSV1DE8u27Fd5DxEREWlfZj8482PwsWWQMxxWPwhDpyS7VX2fSnyIiERK9qBsJlw6oc0yH8sWLSNzQCYzbpiRpNaJiEhvUYK6C2aPyWdy0SDufWELK7ZXcbS+SQskioiISOf658H5X4PPrYdJlyW7NX1fbklKLpJoZv3M7EUzW2Fmq83sm7Ht95jZJjN7NfZzSmy7mdkdZlZmZq+Z2ayk/g+IiHg09bqp1OyqYeu/3izxVHuwllW/W8X066eTPViLI4qIpDolqLvAzLhp3hjW7DrI/yzeAMBc1Z8WERGRrsoeBGkadnVqUBEcroCG2mS3JNFqgfOccycDpwCXmNm82HOfc86dEvt5NbbtUmBC7OdW4K5ebq+ISK+ZePlEMvplHFfmY+XvVlJ/uF6LI4qIRIT+UuqiK08tJic7g6fX7mVy0SDyB6r+tIiIiEhCpaXDoBFwcGeyW5JQLlATe5gZ+3EdvGQhcG/sdUuAPDPTCmEikpKyB2Uz4bIJvP6n12lqbAJg+aLlDD95OCNPH5nk1omISG9QgrqLcrIzuHpWMQDzSlXeQ0RERMSLvBI4kJJlPtLN7FVgL/Ckc25p7KnvxMp43G5mzfexFwMtg7A9tk1EJCVNvW4qNbtr2PavbexctpNdy3dpcUQRkQjJSHYDwuTmM8byh5e3ccGU4cluioiIiEhqStGFEp1zjcApZpYHPGhm04HbgN1AFrAI+ALw/7p6TDO7laAECMOHD2fx4sUJbnW41dTUKCYeKb7R5KvfGwc3kpadxhO3P4FrcKRlp3Fg9IHInWN6X/ml+Pql+IZfMvtQCepuGD8sh9e+fjFZGZp4LiIiIuJFii6U2Mw5V2Vm/wQucc79ILa51sx+DXw29ngHUNLiZaNi21ofaxFBYpvZs2e7BQsWeGt3GC1evBjFxB/FN5p89nvF5RVsfW4r9YfrmXnDTC64/AIvv6cv0/vKL8XXL8U3/JLZh8q0dpOS0yIiIiIe5Y5KuRIfZjY0NnMaM+sPXAisba4rbcE97FcCq2Iv+StwswXmAQecc7t6veEiIr1o2nXTOLT3EHU1dVocUUQkYjrNtprZr8xsr5mtarHtW7Faea+a2RNmNjK23czsDjMriz0/y2fjRURERCTF5JakYomPEcA/zew14CWCGtSPAPeZ2UpgJVAIfDu2/2PARqAMuBv4cO83WUSkd0146wQy+mcwbMYwiueq7L6ISJR0pcTHPcBPgXtbbPu+c+6rAGb2ceBrwAeBS4EJsZ+5wF2x/4qIiIiIdK54Fiz4YrJbkVDOudeAU9vYfl47+zvgI77bJSLSl2QNzOKa313DoJGDtDiiiEjEdJqgds49a2ZjW2072OLhQMDF/r0QuDc2qF5iZnlmNkK3JIqIiIhIlwwogNHzkt0KERFJgskLJye7CSIikgRxL5JoZt8BbgYOAOfGNhcDLYsGbo9tU4JaRERERERERERERI4Td4LaOfdl4MtmdhvwUeDr3Xm9md0K3AowfPhwFi9eHG9TUlJNTY1i4pHiG03qd78UX78UX78U3/BTH4qIiIiIhFPcCeoW7iNYyOXrwA6gpMVzo2LbTuCcWwQsApg9e7ZbsGBBApqSOhYvXoxi4o/iG03qd78UX78UX78U3/BTH4qIiIiIhFNaPC8yswktHi4E1sb+/VfgZgvMAw6o/rSIiIiIiIiIiIiItKXTGdRm9jtgAVBoZtsJZkpfZmaTgCZgC/DB2O6PAZcBZcBh4L0e2iwiIiIiIiIiIiIiKaDTBLVz7vo2Nv+ynX0d8JGeNkpEREREREREREREUl9cJT5ERERERERERERERHpKCWoRERERERERERERSQolqEVEREREREREREQkKZSgFhEREREREREREZGkUIJaRERERERERERERJLCnHPJbgNmVg5sSXY7+phCYF+yG5HCFN9oUr/7pfj6pfj6pfiGX6L6cIxzbmgCjtOrNJ5uk97Xfim+0aR+90vx9Uvx9UvxDb+kjaf7RIJaTmRmLzvnZie7HalK8Y0m9btfiq9fiq9fim/4qQ+lNZ0Tfim+0aR+90vx9Uvx9UvxDb9k9qFKfIiIiIiIiIiIiIhIUihBLSIiIiIiIiIiIiJJoQR137Uo2Q1IcYpvNKnf/VJ8/VJ8/VJ8w099KK3pnPBL8Y0m9btfiq9fiq9fim/4Ja0PVYNaRERERERERERERJJCM6hFREREREREREREJCmUoBYRERERERERERGRpFCCWiROZmbJboNIqtH7SsJM56+ISPfouimSeHpfSZjp/I0uJahTjJnNM7NLkt2OVGVmhWaWC+Ccc2am91AEmFlmstuQyszsJDObDcfeVxqUJJCZnWNmNyW7HanKzEaaWQno/A0rXeOlNY2n/dJ4Opp0rfVL42m/NJ72S+Pp8EvENV6DgRRiZhcDdwH7Wm3XmzsBzOxS4DHgbjP7E4Bzrim5rRLfzOxC4AtmNi7ZbUlFZvZW4GHg+2a2BDQoSaTY58LtwKZW2xXfBDCzywg+F35hZv8Enb9ho2u8tKbxtF8aT0eTrrV+aTztl8bTfmk8HX6JusYrQZ0izGwBcB/wPufcy2Y2oPkNrTd3z5nZuQQfSl8GPgDkmNkXk9sq8c3M5hJ8WJ4GXKNBdWKZ2TTg28BNzrlzgb1mVgrBdSupjUsBZjYfeAB4t3PuX2Y2yMxyQPFNhFh8fwR81Dl3MVBrZj8BxTcsdI2X1jSe9kvj6WjStdYvjaf90njaL42nwy+R13glqFNAbLBcCGwEMmMXzHuBe83sQTPrp0F1fCyQDUwFbnPOPemcOwD8EhiU3NZJL3DAzcB/A8XAdS0vuHpP9VgN8ApQbmZDgLcA3zGzv8cG24pxzxwFdgPjzKw/8Hvgf83sMTObAopvvMwsAxgOfMU593xs81eB9OS1SuKga7wco/G0PxpPR56utX5pPO2XxtOeaDydMhJ2jVeCOgXEvln6G8E3p/8JbAb+BXwFaAIebLGfdIML1AJ/Al5s8ebaDcxLXsukNzjnXgQecs49AzxC8AH6Ts38SJhDBNeo/yC4Zn3XOXc9sIZghpWuWz0QO3/fSfDZsBd4lGDwsA74cWwfxTcOzrkGgs/d51tsPgzMNrMsUK3NMNA1XlrSeNofjaejTdda7zSe9kjjaX80nk4NibzGZyS6cdJ7zGyMc24LgHPukJk9DfQHhjjnfhbb5x3AA2Y22Dl3MInNDR0zewvBoHkd8IpzbkeLp48AObH93g+Mds59rfdbKYlmZhcBFwOvA8udc8sBnHNPW7CIz6XAhWY2BigAPpS0xoZQLL4XAWuBZ4CPAGMJEgB/AXDOfdrMnjCzCc659clqaxiZ2SRgj3OuCiB2i/qtwOnOuTtju30qNutjpHNuZ7LaGkax2/8vALYBzznn1sS2pxN8LqQ75+rM7H3AdDP7jP5o6Vt0jZfWNJ72S+PpaNK11i+Np/3SeNovjafDz9c1XjOoQ8rMrgA2mdlXm7c55w4BDwE/b7HrDcAQgmn30kVmdjlBHEcBC4FbzKxfixkfG4EVZvZ24FaCGSESchbUwPopsB0YBvwpdi4A4Jx7EvgF8C6Cb87vTkY7w6pFfHcQfLP6OHCRc24dUAacZmaFZnZV7Pn9SWtsCMXO1deBL5pZYfN259wSgrg373c9wW3sR3q9kSEWi+8dQB0wDvismQ0FcM41Esy2XBFLsnwQ+F8NpvsWXeOlNY2n/dJ4Opp0rfVL42m/NJ72S+Pp8PN5jdcM6hAys2HANQQLjFxrZg3Ouf8EiN0+R+xbixuBzwPvcM5VJ6u9YWNmE4BvECyQ86KZnQ98Efipc+5o827A+4GzgGucc68npbGSaGOBh51ztwOY2UrgN2Z2k3Pu0dg+k4BZBN+gr0lOM0NrLMfH9zWC2p5XEtwu922Ca9sYgoVe9iWpnaFjZrkEMxG+BJwKfMzM7nDOVcCxxb3SCZIsXwSuc87pD5YuMrPRwCeADzrn/m1mkwnO14FAeWy3fsA7gPnA5c65tUlprHRkLLrGS4zG035pPB1pY9G11qexaDzthcbTfmk8nTLG4ukarxnU4VQO/Dw2iH4n8C4zu63VPoMJZiu83Tm3urcbGHKbCAq8vwbBbQoEtb1ObrFPLfAH4EoNplNKOcEtKAA45x4m+ObvR2Z2SmzzOmC2BtNxaSu+7wYWEdShfA/wWWChc25lMhoYVi622JRz7rvA54DZBIPqoS12y4z9XKPPhW7bAdxFsAgRscFyPXB28w7OucPAz4C3ajDdZ+kaLy1pPO2XxtPRpWutXxpPe6LxtHcaT6cGb9d402z5cDEza32LQ2yGwl+A3zrn/sPMLiBYFGG3c64pGe0MKzNLaxkzM0t3zjWa2Z+BXzvnHjazOQTxbWgxA0RSgAWLMTwFrHHOfbDF9m/Gtv0+aY1LAR3E91vAKsU3cWIzFO4CXnbOfT12m+dq59wbSW5a6LT+3G3xuXAnQXx/bWbnEXwu7HPBgi/SB+kaL800nvZL4+lo07XWL42ne4/G04mj8XTq8HmN1wzqkGljMJ3hgkUPFgLXmNnjBDV9MjWY7r42Ytb8HtkG7DKztwH/BQzSYDq1xP6YqiMo9j/fzH7eokZif2Ba8loXfp3ENxvFN2FinwtbCRajmGRmTxGs4q5vpOPQ+nOX4JZ0gK0EnwtvBb4DZGkw3XfpGi8taTztl8bT0aVrrV8aT/cejacTS+Pp1OD7Gq8a1CHTPCOh+Ruo5jevc269mT1CsILvAhdbjVy6p4341seeqiAo7l4HvN85tyt5rRQfYv2e7Zw7YmazgAeAe8zMAXMIarlJnBRf/9r4XNhqZqsJar2d47SCe4+0ji/Brem/AHYS1FjdmrzWSUdifadrkByj8bRfGk9Hl661fim+/mk87ZfG0+HVG+NpJaj7OAsWFJlDsJrpv2IXyCznXJ2ZzQZOds790szGA5OB851zq5LY5FDpQnxPdc7dTVCDcCow1Tm3IXktlkQws7HAHufckRbbzDlXa2bnABOAK4AzgSLgOxqMdJ3i61cH8XVmdiZwtnPuv8ysCBgJXOBUI6/LuhDf+S6oTVhPUIPwBudcWXJaK20xs7OB04E9wD+dcztjt5LqGhRRGk/7pfF0NGm855fi65fG035pPB1+yRhPq8RHH2ZBDZ6fEbxhTwWeMLMZscHe2cAvCQaCABuADzjnViSlsSHUzfh+GZihwXT4mdkVwEbgQ2Y2qHl77MNyFvAjoNw51+ice84590cN9rpO8fWrC/H9CbAqtm038Gnn3KvJaGsYdSe+BLMA52kw3beY2eXATwkGymcAXzazHBfUOdQ1KII0nvZL4+lo0njPL8XXL42n/dJ4OvySNZ7WIol9mJl9Gshzzn0t9vhjwFeBc4ARwEAXLDKS7pxrTGJTQ6kb8c10b96aKCFmZkOA7wH7gCnAkwSL9dTEnr8cOOSc+2fzN7zJa234KL5+dTO+xy1QJZ3rZnz1udAHmdlJwD0Ef0i+FBtAfx74iHOuQtegaNJ42i+Np6NH4z2/FF+/NJ72S+Pp8EvmeFolPvqgFp28DRjTvN059xML6o//H3CJc25PbF8Nprshjvjqopk6DgJ3Oedejt1y+j3AmdlvnHMHnHOPwLFFMbQ4Q/cpvn4pvn51J776XOib9gL/AywDcM4tN7PBBLcePtyiD5WIjACNp/3SeDrSNB7xS/H1S/H1S+Pp8EvaeFolPvqgFt9APAucZ2a3wbGB4E+AZ4DZrfaVLlJ8oyv2Ibg89u+XgS8AVwM3A5jZpWY2QoOR+Ci+fim+fim+4eecqwZ+74IFXJonYZQDDQBmdpaZFSoRGQ0a7/ml+EaXPi/9Unz9Unz9UnzDL5njaSWo+5DYm/WO5sfOuT3AQuBjZnZbi8FdBnBSMtoYZopvNLXud8Bi29Occy8RfGheaGZ/Bu4E+iehmaGl+Pql+Pql+IZfG33oWv13N1BpZlcC/wlk92LzJAk03vNL8Y0mfV76pfj6pfj6pfiGX18ZT6sGdR9hwUqmfwJ2Amudcze1eK409ty/CQZ784GrnXNrk9HWMFJ8o6m9fm++HaX59lQz+xFwE3Cec25VB4eUFhRfvxRfvxTf8OugD4/VjDSzbwLXAoeB96oPU5vGe34pvtGkz0u/FF+/FF+/FN/w60vjac2g7jsGAt8A3gJkm9n/NT/hnNsIXAI8DLwGXKXBXrcpvtHUZr/HPizTYx+WxUAxcJE+LLtN8fVL8fVL8Q2/9vqwycwyY/vUAUOA69WHkaDxnl+KbzTp89IvxdcvxdcvxTf8+sx4WjOo+xAzG+ycO2hmBQRFyRudc9e3fC65LQw3xTeaOun3AudcpZkNdM4dSm5Lw0nx9Uvx9UvxDb9O+rAfwaA73zlXlsx2Su/ReM8vxTea9Hnpl+Lrl+Lrl+Ibfn1lPK0EdR9lZoXAXUAFsASYCPw/59zRpDYsRSi+0dRGv08Cvu6cq0tqw1KE4uuX4uuX4ht+bfThFOBLTosiRpbGe34pvtGkz0u/FF+/FF+/FN/wS+Z4WgnqJGqux9PJPuuAYcA5zrnXeqdlqUHxjSb1u1+Kr1+Kr1+Kb/ipD6U1nRN+Kb7RpH73S/H1S/H1S/ENv77ah6pBnQRmVmBmA1qeEGaWEfvvCDMbFPv3lUAmcJbe1F2n+EaT+t0vxdcvxdcvxTf81IfSms4JvxTfaFK/+6X4+qX4+qX4hl9f70MlqHuZmS0E/hf4rZm9y8xmAzjnGszsXOBOoDC2ex1wqXNudXJaGz6KbzSp3/1SfP1SfP1SfMNPfSit6ZzwS/GNJvW7X4qvX4qvX4pv+IWhD1XioxeZ2UTgAeAdBB3/NmAU8DOC2i7PAd93zj2QtEaGmOIbTep3vxRfvxRfvxTf8FMfSms6J/xSfKNJ/e6X4uuX4uuX4ht+YenDjGT+8ggqBLY759YAmFk+8GHgOqAcWOic22NmBtBZTRg5geIbTep3vxRfvxRfvxTf8FMfSms6J/xSfKNJ/e6X4uuX4uuX4ht+oehDlfjoXauAg2b2ldjjU4E3gKPAWOfcHghOBr2p46L4RpP63S/F1y/F1y/FN/zUh9Kazgm/FN9oUr/7pfj6pfj6pfiGXyj6UCU+PDOzUUC1c+6ABcXHzwU+QvDlgHPOLTSz64FLgPfoDd09im80qd/9Unz9Unz9UnzDT30oremc8EvxjSb1u1+Kr1+Kr1+Kb/iFsQ9V4sMjC1a+/C6wyMx+45wrB540s6eBYQRT6QEGAVV94YQIE8U3mtTvfim+fim+fim+4ac+lNZ0Tvil+EaT+t0vxdcvxdcvxTf8wtqHmkHtiZkNBe4HtgLbgb3A/bETo+V+nwTeC9zknFvZ2+0MK8U3mtTvfim+fim+fim+4ac+lNZ0Tvil+EaT+t0vxdcvxdcvxTf8wtyHqkHtzwHgk8AHgVeB8cA7zWwYgFlQfBxIB27sKydEiCi+0aR+90vx9Uvx9UvxDT/1obSmc8IvxTea1O9+Kb5+Kb5+Kb7hF9o+1AzqBDOz0cBuIMM5d7jF9muAc4D1zrmfmNks59zyZLUzrBTfaFK/+6X4+qX4+qX4hp/6UFrTOeGX4htN6ne/FF+/FF+/FN/wS4U+1AzqBDKztwKPAT8Ffm1mk5ufc849ADwDDDWzh4BnzKw4KQ0NKcU3mtTvfim+fim+fim+4ac+lNZ0Tvil+EaT+t0vxdcvxdcvxTf8UqYPnXP66eEPYEAJsBJYAAwHPgvsAqa12ve3wGZgRrLbHZYfxTeaP+p3xTfMP4qv4qsf9aF+dE70pR/FN5o/6nfFN8w/iq/iq59o9WEG0mPOOWdmO4EXgPXAXufcD8ysHnjCzM51zr1hZiOAWcCVrg/VeenrFN9oUr/7pfj6pfj6pfiGn/pQWtM54ZfiG03qd78UX78UX78U3/BLtT5UDeoeMrPxQD6wEfgZsMw5970Wz38emAp8yDl3xMxynHM1yWlt+Ci+0aR+90vx9Uvx9UvxDT/1obSmc8IvxTea1O9+Kb5+Kb5+Kb7hl4p9qBnUPWBmlwP/AewnmFJ/H3CHmaU75/4zttsfgNuAowB9/YToSxTfaFK/+6X4+qX4+qX4hp/6UFrTOeGX4htN6ne/FF+/FF+/FN/wS9U+VII6TmZ2JvB94Abn3CtmtgiYA5wJLDGzdOB+4CzgNCCP4OSRLlB8o0n97pfi65fi65fiG37qQ2lN54Rfim80qd/9Unz9Unz9UnzDL5X7UCU+4hQ7KSY65+6JPR4K3OOce6uZlQJfIfimYi7wnr5c56UvUnyjSf3ul+Lrl+Lrl+IbfupDaU3nhF+KbzSp3/1SfP1SfP1SfMMvlftQCeo4xb6VGOicOxj79wjgYeAy59wuMxsD7IjtcyCZbQ0jxTea1O9+Kb5+Kb5+Kb7hpz6U1nRO+KX4RpP63S/F1y/F1y/FN/xSuQ/Tkt2AsHLONTrnDsYeGlAFVMZOiJuALwGZYTsh+grFN5rU734pvn4pvn4pvuGnPpTWdE74pfhGk/rdL8XXL8XXL8U3/FK5DzWDOoHM7B5gF3ARIZtKHwaKbzSp3/1SfP1SfP1SfMNPfSit6ZzwS/GNJvW7X4qvX4qvX4pv+KVKHypBnQBmZkAm8Hrsv+c759Ynt1WpQ/GNJvW7X4qvX4qvX4pv+KkPpTWdE34pvtGkfvdL8fVL8fVL8Q2/VOtDJagTyMzeA7zknFud7LakIsU3mtTvfim+fim+fim+4ac+lNZ0Tvil+EaT+t0vxdcvxdcvxTf8UqUPlaBOIDMzp4B6o/hGk/rdL8XXL8XXL8U3/NSH0prOCb8U32hSv/ul+Pql+Pql+IZfqvShEtQiIiIiIiIiIiIikhRpyW6AiIiIiIiIiIiIiESTEtQiIiIiIiIiIiIikhRKUIuIiIiIiIiIiIhIUihBLSIiIiIiIiIiIiJJoQS1iIiIiIiIiIiIiCSFEtQiIiIiIiIiIiIikhT/PzwNwraxKJVhAAAAAElFTkSuQmCC\n",
"text/plain": [
"