Skip to content

Inverse transform of quantiles after differentiation #1342

Open
brsnw250 opened this issue Aug 2, 2023 · 0 comments
Open

Inverse transform of quantiles after differentiation #1342

brsnw250 opened this issue Aug 2, 2023 · 0 comments
Labels
enhancement New feature or request

Comments

@brsnw250
Copy link
Collaborator

brsnw250 commented Aug 2, 2023

🚀 Feature Request

Currently, we treat quantiles in the inverse transforms the same way as the target series. When using differentiation (DifferencingTransform) this might result in very wide and not meaningful intervals.

image

Mainly, this affects cases when the expected value of $\large r_t = y_t - y_{t - 1}$ distributed near 0 or when $\large r_t$ has a large enough variance. So upper and lower quantilies of $\large r_t$ are mainly one signed throughout the time.

Code to reproduce

from etna.datasets.datasets_generation import generate_ar_df
from etna.datasets import TSDataset
from etna.pipeline import Pipeline
from etna.models import SeasonalMovingAverageModel
from etna.transforms import DifferencingTransform
from etna.analysis import plot_forecast


df = generate_ar_df(100, "2020-01-01")
ts = TSDataset(df=TSDataset.to_dataset(df=df), freq="D")

train_ts, test_ts = ts.train_test_split(test_size=20)

pipeline = Pipeline(
    transforms=[DifferencingTransform(in_column="target")],
    model=SeasonalMovingAverageModel(seasonality=1),
    horizon=20
)

pipeline.fit(train_ts)
forecast = pipeline.forecast(prediction_interval=True)

plot_forecast(forecast_ts=forecast, test_ts=test_ts, prediction_intervals=True)

Proposal

Implement interface for separate treatment of quantiles in transforms.
Use $\large Q_{y_t}(p) = y_{t - 1} + Q_{r_t}(p)$ to recompute target quantiles in inverse transform of DifferencingTransform, where $\large Q_x(p)$ is p-quantile of the $x$ random variable.

Test cases

No response

Additional context

Here is a comparison between current and proposed approaches.

import numpy as np
import matplotlib.pyplot as plt


# setting timeline and generating noise
t = np.arange(100)
eps = np.random.normal(0, 1, 100)
eps[0] += 10
level = eps[0]

# generating random walk series
y = np.cumsum(eps)

# differentiating series
r = np.diff(y)

# estimate quantiles for the first difference
r_q_upper = r + np.quantile(r, q=0.975)
r_q_lower = r + np.quantile(r, q=0.025)

# current approach
y_q_upper = np.cumsum(r_q_upper) + level
y_q_lower = np.cumsum(r_q_lower) + level

# proposed approach
int_r = np.roll(np.cumsum(r) + level, 1) # integration
int_r[0] = level
y_q_upper_adj = int_r + r_q_upper
y_q_lower_adj = int_r + r_q_lower

plt.figure(figsize=(6, 12))

plt.subplot(3, 1, 1)
plt.plot(t[1:], r, color="orange", label="first difference")
plt.fill_between(t[1:], r_q_upper, r_q_lower, alpha=0.3, color="orange", label="interval")
plt.legend()

plt.subplot(3, 1, 2)
plt.title("Current approach")
plt.plot(t[1:], y[1:], label="series")
plt.fill_between(t[1:], y_q_upper, y_q_lower, alpha=0.3, label="interval", color="g")
plt.legend()

plt.subplot(3, 1, 3)
plt.title("Proposed approach")
plt.plot(t[1:], y[1:], label="series")
plt.fill_between(t[1:], y_q_upper_adj, y_q_lower_adj, alpha=0.3, label="interval", color="g")
plt.legend()

image

Sign up for free to subscribe to this conversation on GitHub. Already have an account? Sign in.
Labels
enhancement New feature or request
Projects
Status: Backlog
Development

No branches or pull requests

1 participant