Skip to content

Latest commit

 

History

History
20 lines (15 loc) · 634 Bytes

README.md

File metadata and controls

20 lines (15 loc) · 634 Bytes

Repository for ''Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale''

Code structure:

  • Model:
    • nexusqn_model.py
    • mlp.py
    • embedding.py
  • Config:
    • traffic:
      • default
      • nexusqn_pems08.yaml

main file: run_traffic_benchmark.py

The appendix can be found at urban_forecast_appendix.pdf

More information can be found in our preprint.

Acknowledgement

Our code is built upon the TorchSpatiotemporal repository (https://github.com/TorchSpatiotemporal/tsl).