-
Notifications
You must be signed in to change notification settings - Fork 131
/
main_srresnet.py
166 lines (131 loc) · 6.25 KB
/
main_srresnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import argparse, os
import torch
import math, random
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from srresnet import _NetG
from dataset import DatasetFromHdf5
from torchvision import models
import torch.utils.model_zoo as model_zoo
# Training settings
parser = argparse.ArgumentParser(description="PyTorch SRResNet")
parser.add_argument("--batchSize", type=int, default=16, help="training batch size")
parser.add_argument("--nEpochs", type=int, default=500, help="number of epochs to train for")
parser.add_argument("--lr", type=float, default=1e-4, help="Learning Rate. Default=1e-4")
parser.add_argument("--step", type=int, default=200, help="Sets the learning rate to the initial LR decayed by momentum every n epochs, Default: n=500")
parser.add_argument("--cuda", action="store_true", help="Use cuda?")
parser.add_argument("--resume", default="", type=str, help="Path to checkpoint (default: none)")
parser.add_argument("--start-epoch", default=1, type=int, help="Manual epoch number (useful on restarts)")
parser.add_argument("--threads", type=int, default=0, help="Number of threads for data loader to use, Default: 1")
parser.add_argument("--pretrained", default="", type=str, help="path to pretrained model (default: none)")
parser.add_argument("--vgg_loss", action="store_true", help="Use content loss?")
parser.add_argument("--gpus", default="0", type=str, help="gpu ids (default: 0)")
def main():
global opt, model, netContent
opt = parser.parse_args()
print(opt)
cuda = opt.cuda
if cuda:
print("=> use gpu id: '{}'".format(opt.gpus))
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpus
if not torch.cuda.is_available():
raise Exception("No GPU found or Wrong gpu id, please run without --cuda")
opt.seed = random.randint(1, 10000)
print("Random Seed: ", opt.seed)
torch.manual_seed(opt.seed)
if cuda:
torch.cuda.manual_seed(opt.seed)
cudnn.benchmark = True
print("===> Loading datasets")
train_set = DatasetFromHdf5("/path/to/your/hdf5/data/like/rgb_srresnet_x4.h5")
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, \
batch_size=opt.batchSize, shuffle=True)
if opt.vgg_loss:
print('===> Loading VGG model')
netVGG = models.vgg19()
netVGG.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/vgg19-dcbb9e9d.pth'))
class _content_model(nn.Module):
def __init__(self):
super(_content_model, self).__init__()
self.feature = nn.Sequential(*list(netVGG.features.children())[:-1])
def forward(self, x):
out = self.feature(x)
return out
netContent = _content_model()
print("===> Building model")
model = _NetG()
criterion = nn.MSELoss(size_average=False)
print("===> Setting GPU")
if cuda:
model = model.cuda()
criterion = criterion.cuda()
if opt.vgg_loss:
netContent = netContent.cuda()
# optionally resume from a checkpoint
if opt.resume:
if os.path.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
opt.start_epoch = checkpoint["epoch"] + 1
model.load_state_dict(checkpoint["model"].state_dict())
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
# optionally copy weights from a checkpoint
if opt.pretrained:
if os.path.isfile(opt.pretrained):
print("=> loading model '{}'".format(opt.pretrained))
weights = torch.load(opt.pretrained)
model.load_state_dict(weights['model'].state_dict())
else:
print("=> no model found at '{}'".format(opt.pretrained))
print("===> Setting Optimizer")
optimizer = optim.Adam(model.parameters(), lr=opt.lr)
print("===> Training")
for epoch in range(opt.start_epoch, opt.nEpochs + 1):
train(training_data_loader, optimizer, model, criterion, epoch)
save_checkpoint(model, epoch)
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10"""
lr = opt.lr * (0.1 ** (epoch // opt.step))
return lr
def train(training_data_loader, optimizer, model, criterion, epoch):
lr = adjust_learning_rate(optimizer, epoch-1)
for param_group in optimizer.param_groups:
param_group["lr"] = lr
print("Epoch={}, lr={}".format(epoch, optimizer.param_groups[0]["lr"]))
model.train()
for iteration, batch in enumerate(training_data_loader, 1):
input, target = Variable(batch[0]), Variable(batch[1], requires_grad=False)
if opt.cuda:
input = input.cuda()
target = target.cuda()
output = model(input)
loss = criterion(output, target)
if opt.vgg_loss:
content_input = netContent(output)
content_target = netContent(target)
content_target = content_target.detach()
content_loss = criterion(content_input, content_target)
optimizer.zero_grad()
if opt.vgg_loss:
netContent.zero_grad()
content_loss.backward(retain_graph=True)
loss.backward()
optimizer.step()
if iteration%100 == 0:
if opt.vgg_loss:
print("===> Epoch[{}]({}/{}): Loss: {:.5} Content_loss {:.5}".format(epoch, iteration, len(training_data_loader), loss.data[0], content_loss.data[0]))
else:
print("===> Epoch[{}]({}/{}): Loss: {:.5}".format(epoch, iteration, len(training_data_loader), loss.data[0]))
def save_checkpoint(model, epoch):
model_out_path = "checkpoint/" + "model_epoch_{}.pth".format(epoch)
state = {"epoch": epoch ,"model": model}
if not os.path.exists("checkpoint/"):
os.makedirs("checkpoint/")
torch.save(state, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
if __name__ == "__main__":
main()