-
Notifications
You must be signed in to change notification settings - Fork 0
/
drf.py
235 lines (184 loc) · 7.68 KB
/
drf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import collections
import os
import sys
import ntpath
from collections import deque
class Task:
def __init__(self, user_id, task_id, arrival_time, burst_time, task_resources):
self.resources = task_resources
self.user_id = user_id
self.task_id = task_id
self.arrival_time = arrival_time
self.burst_time= burst_time
self.runtime = 0
self.waiting_time = 0
@property
def remaining_time(self):
return self.burst_time - self.runtime
def wait(self, time):
self.waiting_time += time
def residual_time(self, time):
if self.remaining_time > time:
self.runtime += time
return 0
else:
res_time = time-self.remaining_time
self.runtime = self.burst_time
return res_time
@property
def is_completed(self):
return self.burst_time <= self.runtime
@property
def turnaround_time(self):
return self.runtime + self.waiting_time
@property
def completion_time(self):
return self.arrival_time + self.turnaround_time
class DRF:
def __init__(self, num_resources, total_capacity):
self.time_elapsed = 0
self.waiting_queue = []
self.running_queue = []
self.num_resources = num_resources
self.total_capacities = total_capacity
self.consumed_resources = [0]*num_resources
self.users_to_share = collections.defaultdict(int)
self.users_to_resources = collections.defaultdict(lambda: [0] * num_resources)
def enqueue_task(self, task):
self.waiting_queue.append(task)
def is_resources_available(self):
for i in range(self.num_resources):
if self.consumed_resources[i] >= self.total_capacities[i]:
return False
return True
def find_minimum_share_task(self):
if len(self.waiting_queue)==0:
return None
min_task_idx = 0
m = float('inf')
for i,task in enumerate(self.waiting_queue):
if self.users_to_share[task.user_id] < m:
m = self.users_to_share[task.user_id]
min_task_idx = i
return min_task_idx
def is_allocate_task(self, task):
for i in range(len(task.resources)):
if task.resources[i] + self.consumed_resources[i] > self.total_capacities[i]:
return False
return True
def update_consumption(self, task):
for i in range(len(task.resources)):
self.consumed_resources[i] += task.resources[i]
def update_users_resources(self, task):
for i in range(len(task.resources)):
#print(i, task.resources, task.user_id,self.users_to_resources[task.user_id])
self.users_to_resources[task.user_id][i] += task.resources[i]
def update_user_dom_share(self, user_id):
user_alloc_resources = self.users_to_resources[user_id]
dom_share = 0
for i in range(len(user_alloc_resources)):
share = user_alloc_resources[i]/self.total_capacities[i]
dom_share = max(dom_share, share)
self.users_to_share[user_id] = dom_share
def decrease_consumed_resources(self, task):
for i in range(len(task.resources)):
self.consumed_resources[i] -= task.resources[i]
def decrease_users_resources(self, task):
for i in range(len(task.resources)):
self.users_to_resources[task.user_id][i] -= task.resources[i]
def advance_tasks(self, time):
self.time_elapsed += time
while time > 0:
if len(self.running_queue)==0 and len(self.waiting_queue) == 0:
break
while self.is_resources_available():
min_task_idx = self.find_minimum_share_task()
if min_task_idx is None:
break
task = self.waiting_queue[min_task_idx]
if self.is_allocate_task(task):
self.update_consumption(task)
self.update_users_resources(task)
self.update_user_dom_share(task.user_id)
self.waiting_queue.pop(min_task_idx)
self.running_queue.append(task)
else:
break
max_runtime = 0
for i,task in enumerate(self.running_queue):
res_time = task.residual_time(time)
if task.is_completed:
self.running_queue.pop(i)
self.decrease_consumed_resources(task)
self.decrease_users_resources(task)
self.update_user_dom_share(task.user_id)
max_runtime = max(max_runtime, time - res_time)
for task in self.waiting_queue:
task.wait(max_runtime)
time -= max_runtime
def scheduler_policy_name(self):
return self.__class__.__name__
class Simulator:
def simulate(self, tasks_list, sched_policy):
for task in tasks_list:
time = max(0, task.arrival_time-sched_policy.time_elapsed)
sched_policy.advance_tasks(time)
sched_policy.enqueue_task(task)
time = 0
for task in sched_policy.waiting_queue:
time += task.remaining_time
for task in sched_policy.running_queue:
time += task.remaining_time
sched_policy.advance_tasks(time)
self.write_output(tasks_list, sched_policy)
def write_output(self, tasks_list, sched_policy):
output_list = sorted(tasks_list, key=lambda tasks : tasks.user_id)
file = open("tasks_stat_"+ filename + "_"+sched_policy.scheduler_policy_name(), 'w')
for task in output_list:
file.write(str(task.user_id)+ " " + str(task.completion_time) + " " +str(task.waiting_time) + " " +str(task.turnaround_time))
file.write('\n')
file.close()
users_to_waiting_time = collections.defaultdict(int)
for task in tasks_list:
users_to_waiting_time[task.user_id] += task.waiting_time
file = open("users_stat_"+ filename + "_"+sched_policy.scheduler_policy_name(), 'w')
for user, wait_time in users_to_waiting_time.items():
file.write(str(user) + " " + str(wait_time))
file.write('\n')
file.close()
def extract_filename(path):
head, tail = ntpath.split(path)
return tail or ntpath.basename(head)
if __name__ == '__main__':
file = sys.argv[1]
filename = extract_filename(file).split('.')[0]
scheduler_algo_to_run = 'DRF'
if len(sys.argv) > 2:
scheduler_algo_to_run = sys.argv[2]
total_capacity = []
number_of_resources = 0
with open(file) as f:
process_entries = f.readlines()
tasks_list = []
for i,line in enumerate(process_entries):
if i==0:
resource_arr = line.split()
total_capacity = [float(x) for x in resource_arr]
number_of_resources = len(total_capacity)
else:
line_arr = line.split()
user_id = int(line_arr[0])
task_id = int(line_arr[1])
arrival_time = float(line_arr[2])
burst_time = float(line_arr[3])
resources_required = [float(x) for x in line_arr[4:]]
tasks_list.append(Task(user_id, task_id, arrival_time, burst_time, resources_required))
#print('a', type(arrival_time))
# print('id', user_id)
# print('b',burst_time)
if scheduler_algo_to_run == 'DRF':
sched_policy = DRF(number_of_resources, total_capacity)
else:
raise ValueError("Valid algorithm : DRF")
sim = Simulator()
sim.simulate(tasks_list, sched_policy)