Skip to content

Latest commit

 

History

History
102 lines (52 loc) · 2.2 KB

README.md

File metadata and controls

102 lines (52 loc) · 2.2 KB

SHEFS - SDM pipeline

author: Vivienne Groner

date: 09.03.2022

source: my_path

DATA PRE-PROCESSING, SDM RUN ON CLUSTER, POST-PROCESSING

  1. prepare GBIF occurence records (download, clean, rarify, create background and pseudoabsences, extract environmental data)

     01_SA_prep_occurrence_2021.R (loop over list of species in folders, my_path/04_occurrence_records/GBIF_raw)
    
  2. create sh and R jobs for cluster

     02_job_maker.R
    
     SA_dummy.R
    
     SA_dummy.sh
    
     03_make_batch_files.R
    
  3. run SDM on cluster (present (1979-2013) and RCP45, RCP85 for 5 GCMs)

    the following data need to be on cluster:

  • species specific R and sh file
  • batch files
  • SA_functions_CBER.R
  • my_path/02_environmental_data/CHELSA/
  • my_path/02_environmental_data/CHELSA_future/
  • my_path/04_occurrence_records/GBIF_ready/environmental/
  • my_path/04_occurrence_records/GBIF_ready/points/
  1. copy tar.zip files from myriad to RDS

     login myriad -> login xxxxxxx@transfer02
    
  2. untar folders

     04_untar.R
    
     cmd < cmd_call.txt
    
  3. reorder SDM output in new structure (-> I copied core folders to my_path/11_SDM_output/data/)

LAND USE AND INTENSITY

  1. resample land cover data to 1 km resolution (reclassifed to PREDICTS and high level land cover classes in ArcMap)

     05_SA_NLC_2020_resample.R
    
  2. create land use and intensity suitability map

    calculate effect sizes for each group (arthropods, birds, amphibia, reptiles, mammals, gastropods)

     06_PREDICTS_subset.R 
    

    create map for 2020 and 2080 ssp245 and ssp585

     07_create_LCC_scenarios_CropNatUrbWat.R
    

DATA ANALYSIS

	SA_functions_CBER_analysis.R

read SDM output and create dataframe with presence locations

	08_SDM_df_climate_current.R

	08_SDM_df_climate_future.R

and calculate LUI effect:

	08_SDM_df_climate_lui_current.R

	08_SDM_df_climate_lui_future.R

SENSITIVITY TESTS

distribution of AUCs for all species

	code: 09_sensitivity_analysis_AUC.R

sensitivity test of buffer size and density for pseudoabsences

	code: 10_sensitivity_analysis_pseudoabsence.R

output: my_path/04_occurrence_records/buffer_test/

sensitivity test LUI factors

	code: 11_sensitivity_analysis_LUI_factors.R

	output: my_path/02_environmental_data/LUI_sensitivity/