-
Notifications
You must be signed in to change notification settings - Fork 9
/
main_finetune.py
433 lines (365 loc) · 15.5 KB
/
main_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import argparse
import math
import os
import time
from typing import Iterable, Optional
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.nn as nn
from timm.data import Mixup, create_transform
from timm.data.constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.loss import LabelSmoothingCrossEntropy, SoftTargetCrossEntropy
from timm.optim import create_optimizer
from timm.scheduler import create_scheduler
from timm.utils import NativeScaler, ModelEma, accuracy
from torchvision import datasets, transforms
from torch.nn.parallel import DistributedDataParallel as DDP
from config.finetune.vit_base_finetune import vit_base_finetune
from config.finetune.vit_small_finetune import vit_small_finetune
from config.finetune.vit_tiny_finetune import vit_tiny_finetune
from module.vits import ViT
from utils import misc
from utils.logger import Logger, console_logger
from utils.misc import AverageMeter
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.dataset == 'cifar100':
dataset = datasets.CIFAR100(
args.data_root, train=is_train, transform=transform)
nb_classes = 100
elif args.dataset == 'cifar10':
dataset = datasets.CIFAR10(
args.data_root, train=is_train, transform=transform)
nb_classes = 10
elif args.dataset == 'imagenet1k':
dataset = datasets.ImageFolder(
root=os.path.join(args.data_root, 'train' if is_train else 'val'), transform=transform)
nb_classes = 1000
return dataset, nb_classes
def build_transform(is_train, args):
resize_im = args.input_size > 32
if is_train:
transform = create_transform(
input_size=args.input_size,
is_training=True,
color_jitter=args.color_jitter,
auto_augment=args.aa,
interpolation=args.train_interpolation,
re_prob=args.reprob,
re_mode=args.remode,
re_count=args.recount,
)
if not resize_im:
transform.transforms[0] = transforms.RandomCrop(
args.input_size, padding=4)
return transform
t = []
if resize_im:
size = int((256 / 224) * args.input_size)
t.append(
transforms.Resize(size, interpolation=3),
)
t.append(transforms.CenterCrop(args.input_size))
t.append(transforms.ToTensor())
t.append(transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD))
return transforms.Compose(t)
def adjust_learning_rate(optimizer, init_lr, epoch, args):
"""Decay the learning rate based on schedule"""
cur_lr = init_lr * 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
for param_group in optimizer.param_groups:
param_group['lr'] = cur_lr
def get_model_from_frame(checkpoint, args):
encoder = args.encoder
state_dict = checkpoint['state_dict']
encoder = ('module.' if 'module' in list(
state_dict.keys())[0] else '') + encoder
for k in list(state_dict.keys()):
if k.startswith(encoder) and not k.startswith(encoder + '.head'):
state_dict[k[len(encoder + "."):]] = state_dict[k]
del state_dict[k]
return state_dict
def train_one_epoch(model: torch.nn.Module, criterion,
train_loader: Iterable, optimizer: torch.optim.Optimizer,
epoch: int, loss_scaler, loggers, args, max_norm: float = 0,
model_ema: Optional[ModelEma] = None, mixup_fn: Optional[Mixup] = None
):
model.train()
logger_tb, logger_console = loggers
data_time = AverageMeter('Data', ':6.3f')
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
num_iter = len(train_loader)
niter_global = epoch * num_iter
end = time.time()
for i, (samples, targets) in enumerate(train_loader):
samples = samples.to(args.rank, non_blocking=True)
targets = targets.to(args.rank, non_blocking=True)
data_time.update(time.time() - end)
if mixup_fn is not None:
samples, targets = mixup_fn(samples, targets)
with torch.cuda.amp.autocast():
outputs = model(samples)
loss = criterion(outputs, targets)
losses.update(loss.item(), samples.size(0))
batch_time.update(time.time() - end)
end = time.time()
optimizer.zero_grad()
is_second_order = hasattr(
optimizer, 'is_second_order') and optimizer.is_second_order
loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
torch.cuda.synchronize()
if model_ema is not None:
model_ema.update(model)
niter_global += 1
if args.rank == 0:
logger_tb.add_scalar('Finetune/Iter/loss',
losses.val, niter_global)
if (i + 1) % args.print_freq == 0 and logger_console is not None and args.rank == 0:
lr = optimizer.param_groups[0]['lr']
logger_console.info(f'Epoch [{epoch}][{i + 1}/{num_iter}] - '
f'data_time: {data_time.avg:.3f}, '
f'batch_time: {batch_time.avg:.3f}, '
f'lr: {lr:.5f}, '
f'loss: {losses.val:.3f}({losses.avg:.3f})')
if args.distributed:
losses.synchronize_between_processes()
return losses.avg
@torch.no_grad()
def evaluate(data_loader, model, args):
accs = AverageMeter('Acc@1', ':6.2f')
model.eval()
for i, (images, target) in enumerate(data_loader):
images = images.to(args.rank, non_blocking=True)
target = target.to(args.rank, non_blocking=True, dtype=torch.long)
with torch.cuda.amp.autocast():
output = model(images)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
batch_size = images.shape[0]
accs.update(acc1.item(), batch_size)
if args.distributed:
accs.synchronize_between_processes()
return accs.avg
def main_ddp(args):
if args.distributed:
ngpus_per_node = args.ngpus_per_node
args.world_size = args.world_size * ngpus_per_node
mp.spawn(main, args=(args,), nprocs=args.world_size)
else:
main(args.rank, args)
def main(rank, args):
args.rank = rank
if args.distributed:
dist.init_process_group(
backend="nccl",
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank,
)
misc.fix_random_seeds(args.seed)
cudnn.benchmark = True
if not args.evaluate:
if args.rank == 0:
for k, v in sorted(vars(args).items()):
print(k, '=', v)
name = str(args.arch) + "_" + str(args.dataset) + \
"_epochs_" + str(args.epochs) + "_lr_" + str(args.lr)
logger_tb = Logger(args.output_dir, name)
logger_console = console_logger(logger_tb.log_dir, 'console_eval')
dst_dir = os.path.join(logger_tb.log_dir, 'code/')
else:
logger_tb, logger_console = None, None
if args.rank == 0:
path_save = os.path.join(args.output_dir, logger_tb.log_name)
dataset_train, num_class = build_dataset(is_train=True, args=args)
dataset_val, _ = build_dataset(is_train=False, args=args)
if args.distributed:
num_tasks = args.world_size
global_rank = args.rank
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
args.num_workers = int((args.num_workers + 1) / args.world_size)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
mixup_fn = None
mixup_active = args.mixup > 0 or args.cutmix > 0. or args.cutmix_minmax is not None
if mixup_active:
mixup_fn = Mixup(
mixup_alpha=args.mixup, cutmix_alpha=args.cutmix, cutmix_minmax=args.cutmix_minmax,
prob=args.mixup_prob, switch_prob=args.mixup_switch_prob, mode=args.mixup_mode,
label_smoothing=args.smoothing, num_classes=num_class)
if args.arch == 'vit-tiny':
model = ViT(patch_size=args.patch_size, img_size=args.input_size,
embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, drop_path_rate=args.drop_path)
elif args.arch == 'vit-small':
model = ViT(patch_size=args.patch_size, img_size=args.input_size,
embed_dim=384, depth=12, num_heads=12, mlp_ratio=4, drop_path_rate=args.drop_path)
elif args.arch == 'vit-base':
model = ViT(patch_size=args.patch_size, img_size=args.input_size,
embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, drop_path_rate=args.drop_path)
if args.pretrained_weights:
if os.path.isfile(args.pretrained_weights):
print("=> loading checkpoint '{}'".format(args.pretrained_weights))
checkpoint = torch.load(
args.pretrained_weights, map_location=torch.device(args.rank))
state_dict = get_model_from_frame(checkpoint, args)
args.start_epoch = 0
msg = model.load_state_dict(state_dict, strict=False)
assert set(msg.missing_keys) == {"head.weight", "head.bias"}
print("=> loaded pre-trained model '{}'".format(args.pretrained_weights))
else:
print("=> no checkpoint found at '{}'".format(
args.pretrained_weights))
model.head = nn.Linear(model.head.in_features, num_class)
model.cuda(args.rank)
model_ema = None
if args.model_ema:
model_ema = ModelEma(
model,
decay=args.model_ema_decay,
device='cpu' if args.model_ema_force_cpu else '',
resume='')
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[args.rank])
torch.cuda.set_device(args.rank)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
args.batch_size = int(args.batch_size / args.world_size)
model_without_ddp = model.module
if args.distributed:
args.lr = args.lr * args.batch_size * args.world_size / 256
else:
args.lr = args.lr * args.batch_size / 256
optimizer = create_optimizer(args, model_without_ddp)
loss_scaler = NativeScaler()
lr_scheduler, _ = create_scheduler(args, optimizer)
if args.mixup > 0.:
criterion = SoftTargetCrossEntropy()
elif args.smoothing:
criterion = LabelSmoothingCrossEntropy(smoothing=args.smoothing)
else:
criterion = torch.nn.CrossEntropyLoss()
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_memory,
prefetch_factor=args.prefetch_factor,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=int(1.5 * args.batch_size),
num_workers=args.num_workers,
pin_memory=args.pin_memory,
prefetch_factor=args.prefetch_factor,
drop_last=False
)
acc_best = 0.0
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
if args.gpu is not None:
acc_best = acc_best.to(args.gpu)
if isinstance(model, DDP):
model.module.load_state_dict(checkpoint['state_dict'])
else:
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
loss_scaler.load_state_dict(checkpoint['scaler'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.evaluate:
if os.path.isfile(args.evaluate):
print("=> loading checkpoint '{}'".format(args.evaluate))
model = torch.load(
args.evaluate, map_location=torch.device(args.rank))
print("=> loaded pre-trained model '{}'".format(args.evaluate))
else:
print("=> no checkpoint found at '{}'".format(args.evaluate))
acc = evaluate(data_loader_val, model, args)
print('Acc :' + str(acc))
return
print(f"Start training for {args.epochs} epochs")
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
loss = train_one_epoch(
model, criterion, data_loader_train,
optimizer, epoch, loss_scaler, (logger_tb, logger_console), args,
args.clip_grad, model_ema, mixup_fn
)
if args.rank == 0:
logger_tb.add_scalar('Finetune/Epoch/loss', loss, epoch)
state_dict = model.module.state_dict() if isinstance(model, DDP) else model.state_dict()
if epoch % args.save_freq == 0 and args.rank == 0:
torch.save(
{
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': state_dict,
'acc_best': acc_best,
'optimizer': optimizer.state_dict(),
'scaler': loss_scaler.state_dict(),
},
f'{path_save}/{epoch:0>4d}.pth'
)
lr_scheduler.step(epoch)
acc = evaluate(data_loader_val, model, args)
if args.rank == 0:
logger_tb.add_scalar('Finetune/Epoch/Accuracy', acc, epoch)
logger_console.info(
f'Epoch: {epoch}, '
f'Accuracy: {acc}'
)
if acc > acc_best:
acc_best = acc
epoch_best = epoch
if args.rank == 0:
torch.save(
model_without_ddp,
f'{path_save}/best.pth'
)
if args.rank == 0:
logger_console.info(
f'Epoch: {epoch_best}, '
f'Best Accuracy: {acc_best}'
)
if args.rank == 0:
dst_dir = os.path.join(logger_tb.log_dir, str(acc_best) + '.acc')
with open(dst_dir, 'w') as f:
pass
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--arch", type=str, default='vit-small',
choices=['vit-tiny', 'vit-small', 'vit-base'])
parser.add_argument("--pretrained-weights", type=str,
default='')
parser.add_argument("--evaluate", type=str, default=None)
return parser
if __name__ == '__main__':
parser = parse_args()
_args = parser.parse_args()
if _args.arch == 'vit-tiny':
args = vit_tiny_finetune()
elif _args.arch == 'vit-small':
args = vit_small_finetune()
elif _args.arch == 'vit-base':
args = vit_base_finetune()
args.pretrained_weights = _args.pretrained_weights
args.evaluate = _args.evaluate
main_ddp(args)