-
Notifications
You must be signed in to change notification settings - Fork 0
/
chatbot.py
264 lines (240 loc) · 13.9 KB
/
chatbot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# -*- PERCEPTRON -*-
# -*- A general purpose CHATBOT -*-
# -*- By - Vivek Kumar -*-
#importing the libraries
import numpy as np
import tensorflow as tf
import re
import time
####### DATA PRERPROCESSING ########
# Importing the dataset
dialogs = open('movie_lines.txt', encoding = 'utf-8', errors = 'ignore').read().split('\n')
conversations = open('movie_conversations.txt', encoding = 'utf-8', errors = 'ignore').read().split('\n')
# Create a dictionary that map each dialog and its id
id_to_line = {}
for line in dialogs:
_line = line.split(" +++$+++ ")
if len(_line) == 5:
id_to_line[_line[0]] = _line[4]
# Creating a list of all og the conversations
conversations_ids = []
for conversation in conversations[:-1]:
_conversation = conversation.split(" +++$+++ ")[-1][1:-1].replace("'","").replace(" ","")
conversations_ids.append(_conversation.split(","))
# Getting separately the questions and the answers
questions = []
answers = []
for conversation in conversations_ids:
for i in range(len(conversation) - 1):
questions.append(id_to_line[conversation[i]])
answers.append(id_to_line[conversation[i+1]])
# Doing a first cleaning of the texts
def clean_text(text):
text = text.lower()
text = re.sub(r"i'm", "i am", text)
text = re.sub(r"he's", "he is", text)
text = re.sub(r"she's", "she is", text)
text = re.sub(r"that's", "that is", text)
text = re.sub(r"what's", "what is", text)
text = re.sub(r"where's", "where is", text)
text = re.sub(r"\'ll", " will", text)
text = re.sub(r"\'ve", " have", text)
text = re.sub(r"\'re", " are", text)
text = re.sub(r"\'d", " would", text)
text = re.sub(r"won't", "will not", text)
text = re.sub(r"can't", "cannot", text)
text = re.sub(r"[-()\"#/@;:<>{}+=~|.?,]", "", text)
return text
# Cleaning the questions
clean_questions = []
for question in questions:
clean_questions.append(clean_text(question))
# Cleaning the answers
clean_answers = []
for answer in answers:
clean_answers.append(clean_text(answer))
# Creating a dictionary that maps each word to its number of occurrences
word2count = {}
for question in clean_questions:
for word in question.split():
if word not in word2count:
word2count[word] = 1
else:
word2count[word] += 1
for answer in clean_answers:
for word in answer.split():
if word not in word2count:
word2count[word] = 1
else:
word2count[word] += 1
# Creating two dictionaries that map the questions words and the answers words to a unique integer
threshold = 20
questionswords2int = {}
word_number = 0
for word, count in word2count.items():
if count >= threshold:
questionswords2int[word] = word_number
word_number += 1
answerswords2int = {}
word_number = 0
for word, count in word2count.items():
if count >= threshold:
answerswords2int[word] = word_number
word_number += 1
# Adding the last tokens to these two dictionaries
tokens = ['<PAD>', '<EOS>', '<OUT>', '<SOS>']
for token in tokens:
questionswords2int[token] = len(questionswords2int) + 1
for token in tokens:
answerswords2int[token] = len(answerswords2int) + 1
# Creating the inverse dictionary of the answerswords2int dictionary
answersints2word = {w_i: w for w, w_i in answerswords2int.items()}
# Adding the End Of String token to the end of every answer
for i in range(len(clean_answers)):
clean_answers[i] += ' <EOS>'
# Translating all the questions and the answers into integers
# and Replacing all the words that were filtered out by <OUT>
questions_into_int = []
for question in clean_questions:
ints = []
for word in question.split():
if word not in questionswords2int:
ints.append(questionswords2int['<OUT>'])
else:
ints.append(questionswords2int[word])
questions_into_int.append(ints)
answers_into_int = []
for answer in clean_answers:
ints = []
for word in answer.split():
if word not in answerswords2int:
ints.append(answerswords2int['<OUT>'])
else:
ints.append(answerswords2int[word])
answers_into_int.append(ints)
# Sorting questions and answers by the length of questions
sorted_clean_questions = []
sorted_clean_answers = []
for length in range(1, 25 + 1):
for i in enumerate(questions_into_int):
if len(i[1]) == length:
sorted_clean_questions.append(questions_into_int[i[0]])
sorted_clean_answers.append(answers_into_int[i[0]])
########## BUILDING THE SEQ2SEQ MODEL ##########
# Creating placeholders for the inputs and the targets
def model_inputs():
inputs = tf.placeholder(tf.int32, [None, None], name = 'input')
targets = tf.placeholder(tf.int32, [None, None], name = 'target')
lr = tf.placeholder(tf.float32, name = 'learning_rate')
keep_prob = tf.placeholder(tf.float32, name = 'keep_prob')
return inputs, targets, lr, keep_prob
# Preprocessing the targets
def preprocess_targets(targets, word2int, batch_size):
left_side = tf.fill([batch_size, 1], word2int['<SOS>'])
right_side = tf.strided_slice(targets, [0,0], [batch_size, -1], [1,1])
preprocessed_targets = tf.concat([left_side, right_side], 1)
return preprocessed_targets
# Creating the Encoder RNN
def encoder_rnn(rnn_inputs, rnn_size, num_layers, keep_prob, sequence_length):
lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
lstm_dropout = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_prob = keep_prob)
encoder_cell = tf.contrib.rnn.MultiRNNCell([lstm_dropout] * num_layers)
encoder_output, encoder_state = tf.nn.bidirectional_dynamic_rnn(cell_fw = encoder_cell,
cell_bw = encoder_cell,
sequence_length = sequence_length,
inputs = rnn_inputs,
dtype = tf.float32)
return encoder_state
# Decoding the training set
def decode_training_set(encoder_state, decoder_cell, decoder_embedded_input, sequence_length, decoding_scope, output_function, keep_prob, batch_size):
attention_states = tf.zeros([batch_size, 1, decoder_cell.output_size])
attention_keys, attention_values, attention_score_function, attention_construct_function = tf.contrib.seq2seq.prepare_attention(attention_states, attention_option = "bahdanau", num_units = decoder_cell.output_size)
training_decoder_function = tf.contrib.seq2seq.attention_decoder_fn_train(encoder_state[0],
attention_keys,
attention_values,
attention_score_function,
attention_construct_function,
name = "attn_dec_train")
decoder_output, decoder_final_state, decoder_final_context_state = tf.contrib.seq2seq.dynamic_rnn_decoder(decoder_cell,
training_decoder_function,
decoder_embedded_input,
sequence_length,
scope = decoding_scope)
decoder_output_dropout = tf.nn.dropout(decoder_output, keep_prob)
return output_function(decoder_output_dropout)
# Decoding the test/validation set
def decode_test_set(encoder_state, decoder_cell, decoder_embeddings_matrix, sos_id, eos_id, maximum_length, num_words, decoding_scope, output_function, keep_prob, batch_size):
attention_states = tf.zeros([batch_size, 1, decoder_cell.output_size])
attention_keys, attention_values, attention_score_function, attention_construct_function = tf.contrib.seq2seq.prepare_attention(attention_states, attention_option = "bahdanau", num_units = decoder_cell.output_size)
test_decoder_function = tf.contrib.seq2seq.attention_decoder_fn_inference(output_function,
encoder_state[0],
attention_keys,
attention_values,
attention_score_function,
attention_construct_function,
decoder_embeddings_matrix,
sos_id,
eos_id,
maximum_length,
num_words,
name = "attn_dec_inf")
test_predictions, decoder_final_state, decoder_final_context_state = tf.contrib.seq2seq.dynamic_rnn_decoder(decoder_cell,
test_decoder_function,
scope = decoding_scope)
return test_predictions
# Creating the Decoder RNN
def decoder_rnn(decoder_embedded_input, decoder_embeddings_matrix, encoder_state, num_words, sequence_length, rnn_size, num_layers, word2int, keep_prob, batch_size):
with tf.variable_scope("decoding") as decoding_scope:
lstm = tf.contrib.rnn.BasicLSTMCell(rnn_size)
lstm_dropout = tf.contrib.rnn.DropoutWrapper(lstm, input_keep_prob = keep_prob)
decoder_cell = tf.contrib.rnn.MultiRNNCell([lstm_dropout] * num_layers)
weights = tf.truncated_normal_initializer(stddev = 0.1)
biases = tf.zeros_initializer()
output_function = lambda x: tf.contrib.layers.fully_connected(x,
num_words,
None,
scope = decoding_scope,
weights_initializer = weights,
biases_initializer = biases)
training_predictions = decode_training_set(encoder_state,
decoder_cell,
decoder_embedded_input,
sequence_length,
decoding_scope,
output_function,
keep_prob,
batch_size)
decoding_scope.reuse_variables()
test_predictions = decode_test_set(encoder_state,
decoder_cell,
decoder_embeddings_matrix,
word2int['<SOS>'],
word2int['<EOS>'],
sequence_length - 1,
num_words,
decoding_scope,
output_function,
keep_prob,
batch_size)
return training_predictions, test_predictions
# Building the seq2seq model
def seq2seq_model(inputs, targets, keep_prob, batch_size, sequence_length, answers_num_words, questions_num_words, encoder_embedding_size, decoder_embedding_size, rnn_size, num_layers, questionswords2int):
encoder_embedded_input = tf.contrib.layers.embed_sequence(inputs,
answers_num_words + 1,
encoder_embedding_size,
initializer = tf.random_uniform_initializer(0, 1))
encoder_state = encoder_rnn(encoder_embedded_input, rnn_size, num_layers, keep_prob, sequence_length)
preprocessed_targets = preprocess_targets(targets, questionswords2int, batch_size)
decoder_embeddings_matrix = tf.Variable(tf.random_uniform([questions_num_words + 1, decoder_embedding_size], 0, 1))
decoder_embedded_input = tf.nn.embedding_lookup(decoder_embeddings_matrix, preprocessed_targets)
training_predictions, test_predictions = decoder_rnn(decoder_embedded_input,
decoder_embeddings_matrix,
encoder_state,
questions_num_words,
sequence_length,
rnn_size,
num_layers,
questionswords2int,
keep_prob,
batch_size)
return training_predictions, test_predictions