Skip to content

Latest commit

 

History

History
36 lines (22 loc) · 1.32 KB

README.md

File metadata and controls

36 lines (22 loc) · 1.32 KB

BagTrick with PCA reduction

reduce feature dimension with PCA, obtaining shorter feature meanwhile keep strong accuracy.

run

# train
python train.py --config_file ./base_config.yaml
# infer
python infer.py --config_file ./base_config.yaml --model_path /path/to/model.pth

Experimental Results and Trained Models

Settings (on a MacBook Pro (Retina, 13-inch, Mid 2014))

  • GPU: TITAN XP (memory 12194MB)
  • CPU: 2.6 GHz Dual-Core Intel Core i5
  • Memory: 8 GB 1600 MHz DDR3

DukeMTMC-reID

DukeMTMC
-ReID
(gallery size: 17661)
light-reidperformancetime(on a TITAN XP)
light
model
light
feature
light
search
reductionCNNfeature
dim
metricR1mAPinference
per batch(64)
search
per query
1---noneResNet502048cosine0.8700.77278.6ms237.1ms
2---pca-128ResNet50128cosine0.8630.75278.6ms20.7ms

Market-1501

  • comming soon

MSMT17

  • comming soon