reduce feature dimension with PCA, obtaining shorter feature meanwhile keep strong accuracy.
# train
python train.py --config_file ./base_config.yaml
# infer
python infer.py --config_file ./base_config.yaml --model_path /path/to/model.pth
Settings (on a MacBook Pro (Retina, 13-inch, Mid 2014))
- GPU: TITAN XP (memory 12194MB)
- CPU: 2.6 GHz Dual-Core Intel Core i5
- Memory: 8 GB 1600 MHz DDR3
DukeMTMC-reID
DukeMTMC -ReID (gallery size: 17661) | light-reid | performance | time(on a TITAN XP) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
light model | light feature | light search | reduction | CNN | feature dim | metric | R1 | mAP | inference per batch(64) | search per query | |
1 | - | - | - | none | ResNet50 | 2048 | cosine | 0.870 | 0.772 | 78.6ms | 237.1ms |
2 | - | - | - | pca-128 | ResNet50 | 128 | cosine | 0.863 | 0.752 | 78.6ms | 20.7ms |
Market-1501
- comming soon
MSMT17
- comming soon