forked from cfmrp/mtool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
analyzer.py
328 lines (275 loc) · 11.1 KB
/
analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# GraphaLogue Analyzer
# Marco Kuhlmann <[email protected]>
import itertools
import statistics
import sys
from graph import Graph
from treewidth import quickbb
class DepthFirstSearch(object):
def __init__(self, graph, undirected=False):
self._graph = graph
self._undirected = undirected
self._enter = dict()
self._leave = dict()
self.n_runs = 0
def compute_timestamps(node, timestamp):
self._enter[node] = next(timestamp)
for edge in self._graph.find_node(node).outgoing_edges:
if not edge.tgt in self._enter:
compute_timestamps(edge.tgt, timestamp)
if self._undirected:
for edge in self._graph.find_node(node).incoming_edges:
if not edge.src in self._enter:
compute_timestamps(edge.src, timestamp)
self._leave[node] = next(timestamp)
timestamp = itertools.count()
for node in self._graph.nodes:
if not node.id in self._enter:
compute_timestamps(node.id, timestamp)
self.n_runs += 1
def is_back_edge(self, edge):
return \
self._enter[edge.tgt] < self._enter[edge.src] and \
self._leave[edge.src] < self._leave[edge.tgt]
class InspectedGraph(object):
def __init__(self, graph):
self.graph = graph
self.n_nodes = len(graph.nodes)
self.dfs = DepthFirstSearch(graph)
self.undirected_dfs = DepthFirstSearch(graph, undirected=True)
def n_root_nodes(self):
return sum(1 for node in self.graph.nodes if node.is_root())
def n_leaf_nodes(self):
return sum(1 for node in self.graph.nodes if node.is_leaf())
def n_top_nodes(self):
return sum(1 for node in self.graph.nodes if node.is_top())
def n_singleton_nodes(self):
return sum(1 for node in self.graph.nodes if node.is_singleton())
def n_loops(self):
return sum(1 for edge in self.graph.edges if edge.is_loop())
def n_components(self):
return self.undirected_dfs.n_runs - self.n_singleton_nodes()
def is_cyclic(self):
for edge in self.graph.edges:
if edge.is_loop() or self.dfs.is_back_edge(edge):
return True
return False
def is_forest(self):
if self.is_cyclic():
return False
else:
for node in self.graph.nodes:
if len(node.incoming_edges) > 1:
return False
return True
def is_tree(self):
return self.is_forest() and self.n_components() == 1
def treewidth(self):
n_nodes = len(self.graph.nodes) - self.n_singleton_nodes()
if n_nodes <= 1:
return 1
else:
undirected_graph = {}
for node in self.graph.nodes:
if not node.is_singleton():
undirected_graph[node.id] = set()
for edge in self.graph.edges:
if not edge.is_loop():
undirected_graph[edge.src].add(edge.tgt)
undirected_graph[edge.tgt].add(edge.src)
decomposition = quickbb(undirected_graph)
return max(1, max(len(u)-1 for u in decomposition))
def _crossing_pairs(self):
def endpoints(edge):
return (min(edge.src, edge.tgt), max(edge.src, edge.tgt))
for edge1 in self.graph.edges:
min1, max1 = endpoints(edge1)
for edge2 in self.graph.edges:
min2, max2 = endpoints(edge2)
if min1 < min2 and min2 < max1 and max1 < max2:
yield (min1, max1), (min2, max2)
def _crossing_edges(self):
crossing_edges = set()
for edge1, edge2 in self._crossing_pairs():
crossing_edges.add(edge1)
crossing_edges.add(edge2)
return crossing_edges
def is_noncrossing(self):
for _, _ in self._crossing_pairs():
return False
return True
def is_page2(self):
crossing_graph = {u: set() for u in self._crossing_edges()}
for edge1, edge2 in self._crossing_pairs():
crossing_graph[edge1].add(edge2)
crossing_graph[edge2].add(edge1)
# Tests whether the specified undirected graph is 2-colorable.
colors = {}
def inner(node, color1, color2):
colors[node] = color1
for neighbour in crossing_graph[node]:
if neighbour in colors:
if colors[neighbour] == color1:
return False
else:
inner(neighbour, color2, color1)
return True
for node in crossing_graph:
if node not in colors:
if not inner(node, 0, 1):
return False
return True
def density(self):
n_nodes = len(self.graph.nodes) - self.n_singleton_nodes()
if n_nodes <= 1:
return 1
else:
n_edges = 0
for edge in self.graph.edges:
if edge.src != edge.tgt:
n_edges += 1
return n_edges / (n_nodes - 1)
PROPERTY_COUNTER = itertools.count(1)
def report(msg, val):
print("(%02d)\t%s\t%s" % (next(PROPERTY_COUNTER), msg, val))
def analyze(graphs, ids=None):
ordered = False
n_graphs = 0
n_graphs_noncrossing = 0
n_graphs_has_top_node = 0
n_graphs_multirooted = 0
n_nodes = 0
n_nodes_with_reentrancies = 0
n_singletons = 0
n_top_nodes = 0
n_edges = 0
n_loops = 0
labels = set()
non_functional_labels = set()
n_cyclic = 0
n_connected = 0
n_forests = 0
n_trees = 0
n_graphs_page2 = 0
acc_treewidth = 0
n_roots_nontop = 0
acc_density = 0.0
max_treewidth = 0
acc_edge_length = 0
n_treewidth_one = 0
treewidths = []
for graph in graphs:
if ids and not graph.id in ids:
continue
n_graphs += 1
n_nodes += len(graph.nodes)
n_edges += len(graph.edges)
inspected_graph = InspectedGraph(graph)
treewidth = inspected_graph.treewidth()
n_trees += inspected_graph.is_tree()
acc_density += inspected_graph.density()
has_reentrancies = False
has_top_node = False
n_loops += inspected_graph.n_loops()
for edge in graph.edges:
labels.add(edge.lab)
for node in graph.nodes:
n_top_nodes += node.is_top
if node.is_top:
has_top_node = True
n_singletons += node.is_singleton()
if len(node.incoming_edges) > 1:
n_nodes_with_reentrancies += 1
has_reentrancies = True
outgoing_labels = set()
for edge in node.outgoing_edges:
if edge.lab in outgoing_labels:
non_functional_labels.add(edge.lab)
else:
outgoing_labels.add(edge.lab)
if not node.is_singleton() and node.is_root() and not node.is_top:
n_roots_nontop += 1
n_cyclic += inspected_graph.is_cyclic()
n_connected += inspected_graph.n_components() == 1
n_forests += inspected_graph.is_forest()
acc_treewidth += treewidth
max_treewidth = max(max_treewidth, treewidth)
n_treewidth_one += treewidth == 1
treewidths.append(treewidth)
if graph.flavor == 0:
ordered = True
n_graphs_noncrossing += inspected_graph.is_noncrossing()
n_graphs_page2 += inspected_graph.is_page2()
acc_edge_length += sum(edge.length() for edge in graph.edges)
else:
if ordered:
print(
"analyzer.py: cannot mix graphs of different flavors in one file; exit.", file=sys.stderr)
sys.exit(1)
n_graphs_has_top_node += has_top_node
n_graphs_multirooted += inspected_graph.n_root_nodes() > 1
n_nonsingletons = n_nodes - n_singletons
report("number of graphs", "%d" % n_graphs)
report("number of nodes", "%d" % n_nodes)
report("number of edge labels", "%d" % len(labels))
# report("\\percentnode\\ singleton", "%.2f" % (100 * n_singletons / n_nodes))
# report("\\percentnode\\ non-singleton", "%.2f" % (100 * n_nonsingletons / n_nodes))
report("\\percentgraph\\ trees", "%.2f" % (100 * n_trees / n_graphs))
report("\\percentgraph\\ treewidth one", "%.2f" %
(100 * n_treewidth_one / n_graphs))
report("average treewidth", "%.3f" % (acc_treewidth / n_graphs))
# report("median treewidth", "%d" % statistics.median(treewidths))
report("maximal treewidth", "%d" % max_treewidth)
# report("edge density", "%.3f" % (n_edges / n_nonsingletons))
report("average edge density", "%.3f" % (acc_density / n_graphs))
report("\\percentnode\\ reentrant", "%.2f" %
(100 * n_nodes_with_reentrancies / n_nonsingletons))
# report("labels", " ".join(sorted(labels)))
# report("functional labels", " ".join(sorted(labels - non_functional_labels)))
# report("non-functional labels", " ".join(sorted(non_functional_labels)))
# report("\\percentgraph\\ forests", "%.2f" % (100 * n_forests / n_graphs))
# report("number of top nodes", "%d" % n_top_nodes)
report("\\percentgraph\\ cyclic", "%.2f" % (100 * n_cyclic / n_graphs))
# report("number of self-loops", "%d" % n_loops)
report("\\percentgraph\\ not connected", "%.2f" %
(100 * (n_graphs - n_connected) / n_graphs))
# report("\\percentgraph\\ without top", "%.2f" % (100 * (n_graphs - n_graphs_has_top_node) / n_graphs))
# report("average top nodes per graph", "%.3f" % (n_top_nodes / n_graphs))
report("\\percentgraph\\ multi-rooted", "%.2f" %
(100 * n_graphs_multirooted / n_graphs))
report("percentage of non-top roots", "%.2f" %
(100 * n_roots_nontop / n_nonsingletons))
if ordered:
report("average edge length", "%.3f" % (acc_edge_length / n_edges))
report("\\percentgraph\\ noncrossing", "%.2f" %
(100 * n_graphs_noncrossing / n_graphs))
report("\\percentgraph\\ pagenumber two", "%.2f" %
(100 * n_graphs_page2 / n_graphs))
else:
report("average edge length", "--")
report("\\percentgraph\\ noncrossing", "--")
report("\\percentgraph\\ pagenumber two", "--")
def read_ids(file_name):
ids = set()
with open(file_name) as fp:
for line in fp:
ids.add(line.rstrip())
return ids
def read_tokens(file_name):
with open(file_name) as fp:
for line in fp:
yield line.split()
def analyze_cmd(read_function, ordered=False):
import sys
ids = None
tokens = None
for arg in sys.argv[2:]:
x, y = tuple(arg.split(':'))
if x == 'ids':
print("Reading whitelisted IDs from %s" % y, file=sys.stderr)
ids = read_ids(y)
if x == 'tokens':
print("Reading tokens from %s" % y, file=sys.stderr)
tokens = read_tokens(y)
with open(sys.argv[1]) as fp:
analyze(read_function(fp), ordered=ordered, ids=ids, tokens=tokens)