-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_tft_causal.py
178 lines (149 loc) · 5.6 KB
/
train_tft_causal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gc
import logging
import os
import hydra
import pytorch_lightning as pl
import torch
from hydra.core.hydra_config import HydraConfig
from omegaconf import DictConfig, OmegaConf
from omegaconf.errors import MissingMandatoryValue
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from torch.utils.data import DataLoader
from src.data.mimic_iii.causal_dataset import MIMIC3TFTDatasetCollectionCausal
from src.data.mimic_iii.tft_dataset import MIMIC3TFTRealDataset
from src.models.utils import set_seed
from src.rdd.utils import from_fully_qualified_import
IS_CDF = False
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def train_m0(
args: DictConfig,
dataset_collection: MIMIC3TFTDatasetCollectionCausal,
splitted_directory: list[str],
seed_idx: int,
):
set_seed(args.exp.seed)
model_kwargs = OmegaConf.to_container(args.model.params, resolve=True)
model_kwargs["treatment_module_class"] = from_fully_qualified_import(
args.model.params.treatment_module_class
)
model_class = from_fully_qualified_import(args.model._target_)
model = model_class(**model_kwargs)
trainer = pl.Trainer(
accelerator="gpu",
max_epochs=args.exp.max_epochs,
devices=args.exp.gpus,
callbacks=ModelCheckpoint(
filename="{epoch}-{val_loss:.2f}", monitor="val_loss", mode="min"
),
logger=TensorBoardLogger(
save_dir=os.path.sep.join(splitted_directory[:-1]),
name=splitted_directory[-1],
version=f"m_e_{args.model.name}_{seed_idx}",
),
deterministic=args.exp.deterministic,
)
train_loader_s1 = DataLoader(
dataset_collection.train_f_multi_s1,
shuffle=True,
batch_size=args.dataset.batch_size,
)
val_loader_s1 = DataLoader(
dataset_collection.val_f_multi_s1, shuffle=False, batch_size=512
)
model.using_theta = False
model.train()
trainer.fit(model, train_loader_s1, val_loader_s1)
del model
del trainer
torch.cuda.empty_cache()
gc.collect()
def train_theta(
args: DictConfig,
dataset_collection: MIMIC3TFTDatasetCollectionCausal,
splitted_directory: list[str],
seed_idx: int,
):
set_seed(args.exp.seed)
train_loader_s2 = DataLoader(
dataset_collection.train_f_multi_s2,
shuffle=True,
batch_size=args.dataset.batch_size,
)
val_loader_s2 = DataLoader(
dataset_collection.val_f_multi_s2, shuffle=False, batch_size=512
)
model_kwargs = dict(args.model.params)
model_kwargs["treatment_module_class"] = from_fully_qualified_import(
args.model.params.treatment_module_class
)
model_class = from_fully_qualified_import(args.model._target_)
model = model_class(**model_kwargs)
m_e_model_path = os.path.join(
args.model.destination_directory,
f"m_e_{args.model.name}_{seed_idx}",
"checkpoints",
)
model = model_class.load_from_checkpoint(
os.path.join(m_e_model_path, os.listdir(m_e_model_path)[0])
).to("cuda")
theta_params_dict = OmegaConf.to_container(args.model.theta_params, resolve=True)
for theta_param, theta_param_value in dict(theta_params_dict).items():
setattr(model, theta_param, theta_param_value)
setattr(model.hparams, theta_param, theta_param_value)
model.using_theta = True
model.train()
model.configure_optimizers()
trainer = pl.Trainer(
accelerator="gpu",
max_epochs=args.exp.theta_max_epochs,
devices=args.exp.gpus,
callbacks=ModelCheckpoint(
filename="{epoch}-{val_loss:.2f}", monitor="val_loss", mode="min"
),
logger=TensorBoardLogger(
save_dir=os.path.sep.join(splitted_directory[:-1]),
name=splitted_directory[-1],
version=f"theta_{args.model.name}_{seed_idx}",
),
deterministic=args.exp.deterministic,
)
trainer.fit(model, train_loader_s2, val_loader_s2)
@hydra.main(config_name="config.yaml", config_path="./config/", version_base="1.3.2")
def main(args: DictConfig):
OmegaConf.set_struct(args, False)
OmegaConf.register_new_resolver("sum", lambda *args: sum(list(args)), replace=True)
OmegaConf.register_new_resolver("len", len, replace=True)
logger.info("\n" + OmegaConf.to_yaml(args, resolve=True))
set_seed(args.exp.seed)
splitted_directory = args.model.destination_directory.split(os.path.sep)
try:
seed_idx = HydraConfig.get().job.num
except MissingMandatoryValue:
seed_idx = 0
dataset_collection = MIMIC3TFTDatasetCollectionCausal(
args.dataset.path,
min_seq_length=args.dataset.min_seq_length,
max_seq_length=args.dataset.max_seq_length,
seed=args.exp.seed,
max_number=args.dataset.max_number,
split=args.dataset.split,
projection_horizon=args.dataset.projection_horizon,
autoregressive=args.dataset.autoregressive,
outcome_list=args.dataset.outcome_list,
vitals=args.dataset.vital_list,
treatment_list=args.dataset.treatment_list,
static_list=args.dataset.static_list,
dataset_class=MIMIC3TFTRealDataset,
split_causal={"S1": 0.5},
)
dataset_collection.process_data_multi_val()
dataset_collection.process_data_multi_train()
logger.info("Training m0/e0")
train_m0(args, dataset_collection, splitted_directory, seed_idx)
logger.info("Training theta")
train_theta(args, dataset_collection, splitted_directory, seed_idx)
gc.collect()
if __name__ == "__main__":
main()