Skip to content

Latest commit

 

History

History
446 lines (342 loc) · 15.9 KB

Analyzing User Engagement and Churn with Python.md

File metadata and controls

446 lines (342 loc) · 15.9 KB

Analyzing User Engagement and Churn with Python

Slide 1: Understanding User Engagement Patterns

User engagement is crucial for the success of any digital product. It reflects how users interact with your application, website, or service. By analyzing these patterns, we can gain insights into user behavior, preferences, and potential areas for improvement. Let's explore how to measure and analyze user engagement using Python.

import pandas as pd
import matplotlib.pyplot as plt

# Load sample user engagement data
data = pd.read_csv('user_engagement.csv')

# Calculate daily active users (DAU)
dau = data.groupby('date')['user_id'].nunique()

# Plot DAU over time
plt.figure(figsize=(10, 6))
plt.plot(dau.index, dau.values)
plt.title('Daily Active Users')
plt.xlabel('Date')
plt.ylabel('Number of Users')
plt.show()

Slide 2: Key Metrics for User Engagement

To understand user engagement, we need to focus on key metrics. These include Daily Active Users (DAU), Monthly Active Users (MAU), session duration, and frequency of visits. These metrics provide a comprehensive view of how users interact with your product over time.

# Calculate Monthly Active Users (MAU)
data['month'] = pd.to_datetime(data['date']).dt.to_period('M')
mau = data.groupby('month')['user_id'].nunique()

# Calculate average session duration
avg_session_duration = data.groupby('user_id')['session_duration'].mean()

print(f"Average MAU: {mau.mean():.2f}")
print(f"Average session duration: {avg_session_duration.mean():.2f} minutes")

Slide 3: User Segmentation

Segmenting users based on their engagement levels helps in tailoring strategies for different user groups. We can categorize users into segments such as highly engaged, moderately engaged, and at-risk users based on their activity patterns.

# Define engagement levels
def engagement_level(sessions, duration):
    if sessions > 20 and duration > 30:
        return 'High'
    elif sessions > 10 and duration > 15:
        return 'Moderate'
    else:
        return 'Low'

# Apply engagement level function to user data
user_engagement = data.groupby('user_id').agg({
    'session_id': 'count',
    'session_duration': 'mean'
}).reset_index()

user_engagement['engagement_level'] = user_engagement.apply(
    lambda x: engagement_level(x['session_id'], x['session_duration']), axis=1)

# Visualize user segments
segment_counts = user_engagement['engagement_level'].value_counts()
plt.pie(segment_counts, labels=segment_counts.index, autopct='%1.1f%%')
plt.title('User Engagement Segments')
plt.show()

Slide 4: Cohort Analysis

Cohort analysis helps understand how user engagement changes over time for different groups of users. By analyzing cohorts, we can identify trends and patterns in user behavior across various user segments.

# Prepare data for cohort analysis
data['cohort'] = pd.to_datetime(data['first_session_date']).dt.to_period('M')
data['months_since_first_session'] = (
    pd.to_datetime(data['date']).dt.to_period('M') - 
    data['cohort']
).apply(lambda x: x.n)

# Create cohort table
cohort_table = data.groupby(['cohort', 'months_since_first_session'])['user_id'].nunique().unstack()

# Plot cohort heatmap
plt.figure(figsize=(12, 8))
sns.heatmap(cohort_table, annot=True, cmap='YlGnBu')
plt.title('User Retention by Cohort')
plt.xlabel('Months Since First Session')
plt.ylabel('Cohort')
plt.show()

Slide 5: Feature Usage Analysis

Understanding which features are most popular among users can provide valuable insights for product development and improvement. By analyzing feature usage patterns, we can identify areas for enhancement or potential new features to introduce.

# Assuming we have feature usage data
feature_usage = pd.read_csv('feature_usage.csv')

# Calculate feature usage frequency
feature_freq = feature_usage['feature_name'].value_counts()

# Visualize feature usage
plt.figure(figsize=(10, 6))
feature_freq.plot(kind='bar')
plt.title('Feature Usage Frequency')
plt.xlabel('Feature Name')
plt.ylabel('Usage Count')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

Slide 6: User Journey Mapping

Mapping the user journey helps visualize the path users take through your product. This analysis can reveal common patterns, drop-off points, and opportunities for improving the user experience.

import networkx as nx

# Create a directed graph of user journeys
G = nx.DiGraph()

# Add edges based on user paths (simplified example)
user_paths = [
    ('Home', 'Search', 'Product', 'Cart', 'Checkout'),
    ('Home', 'Categories', 'Product', 'Cart'),
    ('Home', 'Search', 'Product', 'Home')
]

for path in user_paths:
    nx.add_path(G, path)

# Visualize the user journey graph
pos = nx.spring_layout(G)
plt.figure(figsize=(12, 8))
nx.draw(G, pos, with_labels=True, node_color='lightblue', 
        node_size=3000, font_size=10, font_weight='bold')
edge_labels = nx.get_edge_attributes(G, 'weight')
nx.draw_networkx_edge_labels(G, pos, edge_labels)
plt.title('User Journey Map')
plt.axis('off')
plt.tight_layout()
plt.show()

Slide 7: Churn Analysis: Defining Churn

Churn refers to the rate at which users stop using your product or service. Defining churn is crucial for accurate analysis. In this example, we'll define a churned user as someone who hasn't been active for the last 30 days.

import datetime

# Define churn threshold (30 days)
churn_threshold = datetime.timedelta(days=30)

# Get the last activity date for each user
last_activity = data.groupby('user_id')['date'].max()

# Calculate days since last activity
current_date = data['date'].max()
days_since_activity = (current_date - last_activity).dt.days

# Identify churned users
churned_users = days_since_activity[days_since_activity > churn_threshold.days]

churn_rate = len(churned_users) / len(last_activity)
print(f"Churn rate: {churn_rate:.2%}")

Slide 8: Churn Prediction Model

Building a churn prediction model can help identify users at risk of churning, allowing for proactive retention strategies. We'll use a simple logistic regression model for this example.

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report

# Prepare features and target variable
X = user_engagement[['session_id', 'session_duration']]
y = (user_engagement['engagement_level'] == 'Low').astype(int)

# Split data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train logistic regression model
model = LogisticRegression()
model.fit(X_train, y_train)

# Make predictions
y_pred = model.predict(X_test)

# Evaluate the model
print("Accuracy:", accuracy_score(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))

Slide 9: Retention Analysis

Retention analysis helps understand how well your product keeps users engaged over time. By analyzing retention rates, we can identify patterns in user behavior and develop strategies to improve long-term engagement.

# Calculate retention rates
def retention_rate(data, cohort_period, retention_period):
    cohort_data = data.groupby(['cohort', 'months_since_first_session'])['user_id'].nunique().reset_index()
    cohort_sizes = cohort_data.groupby('cohort')['user_id'].first()
    retention_data = cohort_data.pivot(index='cohort', columns='months_since_first_session', values='user_id')
    retention_rates = retention_data.divide(cohort_sizes, axis=0)
    return retention_rates[retention_period]

# Calculate 1-month, 3-month, and 6-month retention rates
retention_1m = retention_rate(data, 'cohort', 1)
retention_3m = retention_rate(data, 'cohort', 3)
retention_6m = retention_rate(data, 'cohort', 6)

# Plot retention rates
plt.figure(figsize=(10, 6))
plt.plot(retention_1m.index, retention_1m.values, label='1-month retention')
plt.plot(retention_3m.index, retention_3m.values, label='3-month retention')
plt.plot(retention_6m.index, retention_6m.values, label='6-month retention')
plt.title('User Retention Rates')
plt.xlabel('Cohort')
plt.ylabel('Retention Rate')
plt.legend()
plt.show()

Slide 10: Engagement Funnel Analysis

An engagement funnel helps visualize how users progress through different stages of interaction with your product. By analyzing drop-offs at each stage, we can identify areas for improvement in the user experience.

import plotly.graph_objects as go

# Define funnel stages and sample data
stages = ['App Open', 'Search', 'View Product', 'Add to Cart', 'Purchase']
values = [1000, 800, 600, 400, 200]

# Create funnel chart
fig = go.Figure(go.Funnel(
    y = stages,
    x = values,
    textinfo = "value+percent initial"
))

fig.update_layout(title_text="User Engagement Funnel", width=800, height=500)
fig.show()

Slide 11: A/B Testing for Engagement

A/B testing is a powerful method to compare different versions of your product and measure their impact on user engagement. By systematically testing changes, you can make data-driven decisions to improve user engagement.

import scipy.stats as stats

# Simulate A/B test results
control_group = np.random.normal(10, 2, 1000)  # Control group engagement scores
variant_group = np.random.normal(10.5, 2, 1000)  # Variant group engagement scores

# Perform t-test
t_statistic, p_value = stats.ttest_ind(control_group, variant_group)

print(f"T-statistic: {t_statistic}")
print(f"P-value: {p_value}")

# Visualize results
plt.figure(figsize=(10, 6))
plt.hist(control_group, alpha=0.5, label='Control')
plt.hist(variant_group, alpha=0.5, label='Variant')
plt.title('A/B Test Results: User Engagement Scores')
plt.xlabel('Engagement Score')
plt.ylabel('Frequency')
plt.legend()
plt.show()

Slide 12: Predictive Analytics for User Engagement

Predictive analytics can help forecast future user engagement trends, allowing for proactive decision-making. We'll use a simple time series forecasting model to predict future Daily Active Users (DAU).

from statsmodels.tsa.arima.model import ARIMA

# Prepare time series data
ts_data = dau.reset_index()
ts_data['date'] = pd.to_datetime(ts_data['date'])
ts_data.set_index('date', inplace=True)

# Fit ARIMA model
model = ARIMA(ts_data, order=(1, 1, 1))
results = model.fit()

# Make predictions
forecast = results.forecast(steps=30)

# Plot actual vs predicted DAU
plt.figure(figsize=(12, 6))
plt.plot(ts_data.index, ts_data['user_id'], label='Actual DAU')
plt.plot(forecast.index, forecast, color='red', label='Predicted DAU')
plt.title('Daily Active Users: Actual vs Predicted')
plt.xlabel('Date')
plt.ylabel('Number of Users')
plt.legend()
plt.show()

Slide 13: Real-time Engagement Monitoring

Implementing real-time engagement monitoring allows for immediate insights and quick responses to changes in user behavior. Here's an example of how to set up a simple real-time monitoring system using a data streaming approach.

import random
import time
from collections import deque

# Simulate real-time data stream
def generate_engagement_data():
    return {
        'user_id': random.randint(1, 1000),
        'session_duration': random.randint(1, 60),
        'pages_visited': random.randint(1, 10)
    }

# Real-time monitoring class
class EngagementMonitor:
    def __init__(self, window_size=100):
        self.window_size = window_size
        self.session_durations = deque(maxlen=window_size)
        self.pages_visited = deque(maxlen=window_size)
    
    def update(self, data):
        self.session_durations.append(data['session_duration'])
        self.pages_visited.append(data['pages_visited'])
    
    def get_stats(self):
        return {
            'avg_session_duration': sum(self.session_durations) / len(self.session_durations),
            'avg_pages_visited': sum(self.pages_visited) / len(self.pages_visited)
        }

# Simulate real-time monitoring
monitor = EngagementMonitor()
for _ in range(1000):
    data = generate_engagement_data()
    monitor.update(data)
    if _ % 100 == 0:
        stats = monitor.get_stats()
        print(f"Current stats: {stats}")
    time.sleep(0.01)  # Simulate delay between events

Slide 14: Engagement Optimization Strategies

Based on the insights gained from user engagement analysis, we can implement various strategies to optimize engagement. Here's an example of how to personalize content recommendations based on user behavior.

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

# Simulated user-item interaction matrix
user_item_matrix = np.random.rand(1000, 100)  # 1000 users, 100 items

# Calculate item-item similarity
item_similarity = cosine_similarity(user_item_matrix.T)

# Function to get personalized recommendations
def get_recommendations(user_id, n_recommendations=5):
    user_interactions = user_item_matrix[user_id]
    item_scores = item_similarity.dot(user_interactions)
    item_scores[user_interactions > 0] = 0  # Exclude already interacted items
    top_items = np.argsort(item_scores)[::-1][:n_recommendations]
    return top_items

# Example usage
user_id = 42
recommendations = get_recommendations(user_id)
print(f"Recommended items for user {user_id}: {recommendations}")

# Visualize recommendation scores
plt.figure(figsize=(10, 6))
plt.bar(range(len(item_scores)), item_scores)
plt.title(f'Item Recommendation Scores for User {user_id}')
plt.xlabel('Item ID')
plt.ylabel('Recommendation Score')
plt.show()

Slide 15: Additional Resources

For those interested in diving deeper into user engagement analysis and churn prediction, here are some valuable resources:

  1. "Deep Learning for User Engagement" by Zhai et al. (2019) - ArXiv:1904.10965 URL: https://arxiv.org/abs/1904.10965
  2. "A Survey on Churn Prediction Techniques in Telecom Sector" by Ahmad et al. (2019) - ArXiv:1901.03034 URL: https://arxiv.org/abs/1901.03034
  3. "Machine Learning for User Modeling and Personalization" by Zhang et al. (2021) - ArXiv:2101.04906 URL: https://arxiv.org/abs/2101.04906

These papers provide in-depth insights into advanced techniques for user engagement analysis, churn prediction, and personalization strategies.

Slide 16: Conclusion: Actionable Insights

Throughout this presentation, we've explored various aspects of user engagement analysis and churn prediction. To recap, here are key actionable insights:

  1. Regularly monitor key engagement metrics (DAU, MAU, session duration) to understand user behavior trends.
  2. Implement cohort analysis to identify patterns in user retention over time.
  3. Use segmentation to tailor strategies for different user groups.
  4. Develop and refine churn prediction models to proactively address at-risk users.
  5. Conduct A/B tests to optimize features and user experience.
  6. Leverage predictive analytics for forecasting and resource allocation.
  7. Implement real-time monitoring for quick responses to engagement changes.
  8. Personalize content and recommendations to enhance user engagement.

By applying these insights, you can create a data-driven approach to improving user engagement and reducing churn in your product or service.

# Example of implementing a simple engagement score
def calculate_engagement_score(user_data):
    # Weights for different engagement factors
    weights = {
        'session_count': 0.3,
        'avg_session_duration': 0.3,
        'feature_usage': 0.2,
        'days_since_last_activity': -0.2
    }
    
    score = sum(user_data[key] * weight for key, weight in weights.items())
    return max(0, min(100, score))  # Normalize score between 0 and 100

# Example usage
user_data = {
    'session_count': 10,
    'avg_session_duration': 15,
    'feature_usage': 5,
    'days_since_last_activity': 2
}

engagement_score = calculate_engagement_score(user_data)
print(f"User engagement score: {engagement_score:.2f}")

This concluding slide emphasizes the practical application of the concepts discussed throughout the presentation, providing a clear path forward for improving user engagement strategies.