-
Notifications
You must be signed in to change notification settings - Fork 19
/
util.py
886 lines (769 loc) · 34.3 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
import string
import numpy as np
from skimage.transform import resize
import os.path as osp
import random
import math
from skimage.morphology import disk
from skimage.filters import rank
import pickle
import copy
import PIL.Image as Image
import yaml
import pdb
import time
import md5
debug_mode = False
def cprint(string, style = None):
if not debug_mode and style != bcolors.FAIL and style != bcolors.OKBLUE:
return
if style is None:
print str(string)
else:
print style + str(string) + bcolors.ENDC
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
def read_img(img_path):
cprint('Reading Image ' + img_path, bcolors.OKGREEN)
uint_image = np.array(Image.open(img_path))
if len(uint_image.shape) == 2:
tmp_image = np.zeros(uint_image.shape + (3,), dtype=np.uint8)
tmp_image[:,:,0] = tmp_image[:,:,1] = tmp_image[:,:,2] = uint_image
uint_image = tmp_image
return np.array(uint_image, dtype=np.float32)/255.0
def read_mask(mask_path):
#read mask
m_uint = np.array(Image.open(mask_path))
fg = np.unique(m_uint)
if not (len(m_uint.shape) == 2 and ((len(fg) == 2 and fg[0] == 0 and fg[1] == 255) or (len(fg) == 1 and (fg[0] == 0 or fg[0] == 255)))):
print mask_path, fg, m_uint.shape
raise Exception('Error in reading mask')
return np.array(m_uint, dtype=np.float32) / 255.0
def read_flo_file(file_path):
"""
reads a flo file, it is for little endian architectures,
first slice, i.e. data2D[:,:,0], is horizontal displacements
second slice, i.e. data2D[:,:,1], is vertical displacements
"""
with open(file_path, 'rb') as f:
magic = np.fromfile(f, np.float32, count=1)
if 202021.25 != magic[0]:
cprint('Magic number incorrect. Invalid .flo file: %s' % file_path, bcolors.FAIL)
raise Exception('Magic incorrect: %s !' % file_path)
else:
w = np.fromfile(f, np.int32, count=1)
h = np.fromfile(f, np.int32, count=1)
data = np.fromfile(f, np.float32, count=2*w*h)
data2D = np.reshape(data, (h[0], w[0], 2), order='C')
return data2D
def write_flo_file(file_path, data2D):
"""
writes a flo file, it is for little endian architectures,
first slice, i.e. data2D[:,:,0], is horizontal displacements
second slice, i.e. data2D[:,:,1], is vertical displacements
"""
with open(file_path, 'wb') as f:
magic = np.array(202021.25, dtype='float32')
magic.tofile(f)
h = np.array(data2D.shape[0], dtype='int32')
w = np.array(data2D.shape[1], dtype='int32')
w.tofile(f)
h.tofile(f)
data2D.astype('float32').tofile(f);
def add_noise_to_mask(cmask, r_param = (15, 15), mult_param = (20, 5), threshold = .2):
radius = max(np.random.normal(*r_param), 1)
mult = max(np.random.normal(*mult_param), 2)
selem = disk(radius)
mask2d = np.zeros(cmask.shape + (2,))
mask2d[:, :, 0] = rank.mean((1 - cmask).copy(), selem=selem) / 255.0
mask2d[:, :, 1] = rank.mean(cmask.copy(), selem=selem) / 255.0
exp_fmask = np.exp(mult * mask2d);
max_fmask = exp_fmask[:,:,1] / np.sum(exp_fmask, 2);
max_fmask[max_fmask < threshold] = 0;
return max_fmask
class Timer(object):
def __init__(self):
self.total_time = 0.
self.calls = 0
self.start_time = 0.
self.diff = 0.
self.average_time = 0.
def tic(self):
self.start_time = time.time()
def toc(self, average=True):
self.diff = time.time() - self.start_time
self.total_time += self.diff
self.calls += 1
self.average_time = self.total_time / self.calls
if average:
return self.average_time
else:
return self.diff
def parse_file(input_path, output_path, dictionary):
with open(input_path, 'r') as in_file:
with open(output_path, 'w') as out_file:
data = string.Template(in_file.read())
out_file.write(data.substitute(**dictionary))
def crop(img, bbox, output_shape = None, resize_order = 1, clip = True):
bsize = bbox.size()
if bsize[0] == 0:
raise Exception('Cropping bbox can not be empty.')
img_bbox = BBox(0, img.shape[0], 0, img.shape[1])
intbox = img_bbox.copy()
intbox.intersect(bbox)
output = np.zeros(bsize + img.shape[2:])
output[(intbox.top-bbox.top):(intbox.bottom-bbox.top), (intbox.top-bbox.left):(intbox.bottom-bbox.left)] = img[intbox.top:intbox.bottom, intbox.left:intbox.right]
if output_shape is None or tuple(output_shape) == intbox.size():
return output
return resize(output, output_shape, order = resize_order, mode = 'nearest', clip = clip, preserve_range=True)
def crop_undo(cropped_img, cropping_bbox, img_shape, resize_order = 1):
bsize = cropping_bbox.size()
if bsize != cropped_img.shape[:2]:
cropped_img = resize(cropped_img, bsize, order = resize_order, mode = 'nearest', preserve_range=True)
img = np.zeros(img_shape + cropped_img.shape[2:])
img_bbox = BBox(0, img.shape[0], 0, img.shape[1])
intbox = img_bbox.copy()
intbox.intersect(cropping_bbox)
img[intbox.top:intbox.bottom, intbox.left:intbox.right] = cropped_img[(intbox.top-cropping_bbox.top):(intbox.bottom-cropping_bbox.top), (intbox.top-cropping_bbox.left):(intbox.bottom-cropping_bbox.left)]
return img
def change_coordinates(array, down_scale, offset, order = 0, preserve_range = True):
##in caffe we have label_cordinate = down_scale * 'name'_coordinate + offset
##in python resize we have label_coordinate = down_scale * 'name'_coordinate + (down_scale - 1)/2 - pad
## ==> (down_scale - 1)/2 - pad = offset ==> pad = -offset + (down_scale - 1)/2
pad = int(-offset + (down_scale - 1)/2)
orig_h = array.shape[0]
orig_w = array.shape[1]
new_h = int(np.ceil(float(orig_h + 2 * pad) / down_scale))
new_w = int(np.ceil(float(orig_w + 2 * pad) / down_scale))
#floor or ceil?
if pad > 0:
pad_array = ((0,0),) * (len(array.shape) - 2) + ((pad, int(new_h * down_scale - orig_h - pad)), (pad, int(new_w * down_scale - orig_w - pad)))
new_array = np.pad(array, pad_array, 'constant')
elif pad == 0:
new_array = array
else:
raise Exception
if new_h != orig_h or new_w != orig_w:
return resize(new_array, (new_h,new_w) + array.shape[2:], order = order, preserve_range = preserve_range)
else:
return new_array.copy()
#defaults is a list of (key, val) is val is None key is required field
def check_params(params, **kwargs):
for key, val in kwargs.items():
key_defined = (key in params.keys())
if val is None:
assert key_defined, 'Params must include {}'.format(key)
elif not key_defined:
params[key] = val
def load_netflow_db(annotations_file, split, shuffle = False):
if split == 'training':
split = 1
if split == 'test':
split = 2
annotations = np.loadtxt(annotations_file)
frame_indices = np.arange(len(annotations))
frame_indices = frame_indices[ annotations == split ]
length = len(frame_indices)
data_dir = osp.join(osp.dirname(osp.abspath(annotations_file)), 'data/')
if shuffle:
random.shuffle( frame_indices)
return dict(frame_indices=frame_indices, data_dir=data_dir, length=length)
def read_netflow_instance(netflow_db, instance_id):
data_dir = netflow_db['data_dir']
instance_id = netflow_db['frame_indices'][instance_id]
instance_id = instance_id + 1
img1 = np.array(Image.open(osp.join(data_dir, '%05d_img1.ppm' % instance_id)).astype(np.float32)) / 255.0
img2 = np.array(Image.open(osp.join(data_dir, '%05d_img2.ppm' % instance_id)).astype(np.float32)) / 255.0
flow = read_flo_file( osp.join(data_dir, '%05d_flow.flo' % instance_id))
return img1, img2, flow
#def compute_flow(T1, T2, object_size, img_size, flow = None):
#newx = np.arange(img_size[1])
#newy = np.arange(img_size[0])
#mesh_grid = np.stack(np.meshgrid(newx, newy), axis = 0)
#locs1 = np.array(mesh_grid, dtype='float')
#locs2 = np.array(locs1.copy(), dtype='float')
#if flow is not None:
#locs2 += flow.transpose((2,0,1))
#x,y = T1.transform_points(locs1[0].ravel(), locs1[1].ravel(), locs1[0].shape)
#locs1 = np.concatenate((x,y)).reshape((2,) + img_size)
#x,y = T2.transform_points(locs2[0].ravel(), locs2[1].ravel(), locs2[0].shape)
#locs2 = np.concatenate((x,y)).reshape((2,) + img_size)
#flow_trans = locs2 - locs1
#final_flow = np.zeros((2,) + img_size)
#T1_cp = copy.deepcopy(T1)
#T1_cp.color_adjustment_param = None
#final_flow[0] = T1_cp.transform_img(flow_trans[0], object_size, flow_trans[0].shape, cval=0)
#final_flow[1] = T1_cp.transform_img(flow_trans[1], object_size, flow_trans[1].shape, cval=0)
#return final_flow.transpose((1,2,0))
def compute_flow(T1, T2, object_size, img_size, flow = None):
assert len(img_size) == 2 and len(object_size) == 2
#final_flow(T1(i,j)) = T2( (i,j) + f1(i,j) ) - T1(i,j)
# = (T2(i,j) + T2(f1(i,j)) - T2((0,0))) - T1(i, j)
# = T2(i,j) - T1(i,j) + T2(f1(i,j)) - T2((0,0))
# = A + B - T2((0,0)) where A = T2(i,j) - T1(i,j), B = T2(f1(i,j))
# A(T1(i, j)) = T2(i,j) - T1(i,j) ==> A((m,n)) = T2(T1^-1(m,n)) - (m, n)
# B(T1(i, j)) = T2(f1(i,j)) ==(see *)==> BT1(m,n) = B(T^-1(m,n))
# * Given an image I and transformation T: (IT is the image after applying transformation T)
# IT[k,l] = I[T^-1(k,l)]
# 1) Compute A
newx = np.arange(img_size[1])
newy = np.arange(img_size[0])
mesh_grid = np.stack(np.meshgrid(newx, newy), axis = 0)
locs1 = np.array(mesh_grid, dtype='float')
x,y = T1.itransform_points(locs1[0].ravel(), locs1[1].ravel(), object_size)
x,y = T2.transform_points(x, y, object_size)
locs2 = np.concatenate((x,y)).reshape((2,) + locs1[0].shape)
final_flow = locs2 - locs1
# 2) Compute B - T2((0,0))
if flow is not None:
# B
x,y = T2.transform_points(flow[:,:,0].ravel(), flow[:,:,1].ravel(), object_size)
b_flow = np.concatenate((x,y)).reshape((2,) + img_size)
T1_cp = copy.deepcopy(T1)
T1_cp.color_adjustment_param = None
b_flow[0] = T1_cp.transform_img(b_flow[0], object_size, b_flow[0].shape, cval=0)
b_flow[1] = T1_cp.transform_img(b_flow[1], object_size, b_flow[1].shape, cval=0)
#T2((0,0))
x0, y0 = T2.transform_points(np.array((0,)), np.array((0,)), object_size)
b_flow[0] -= x0[0]
b_flow[1] -= y0[0]
#Add it to the final flow
final_flow += b_flow
return final_flow.transpose((1,2,0))
def sample_trans(base_tran, trans_dist):
if base_tran is None and trans_dist is None:
return None
if base_tran is None:
return trans_dist.sample()
if trans_dist is None:
return base_tran
return base_tran + trans_dist.sample()
#Not Tested:
#def sample_trans(base_tran, *args):
#cur_trans = base_tran
#for tran_dist in args:
#new_trans = None
#if tran_dist is not None:
#new_trans = trans_dist.sample()
#if cur_trans is None:
#cur_trans = new_trans
#elif new_trans is not None:
#cur_trans = cur_trans + tran.sample()
#return cur_trans
#################################### Util classes
#Integer value bbox
#bottom and right are exlusive
class BBox:
def __init__(self, top, bottom, left, right):
self.init(top, bottom, left, right)
def init(self, top, bottom, left, right):
self.top = top
self.bottom = bottom
self.left = left
self.right = right
def intersect(self, bbox):
if self.isempty() or bbox.isempty():
self.init(0,0,0,0)
return
self.top = max(self.top, bbox.top)
self.bottom = min(self.bottom, bbox.bottom)
self.left = max(self.left, bbox.left)
self.right = min(self.right, bbox.right)
def pad(self, rpad, cpad=None):
if self.isempty():
raise Exception('Can not pad empty bbox')
if cpad is None:
cpad = rpad
self.top -= rpad
self.bottom += rpad
self.left -= cpad
self.right += cpad
def scale(self, rscale, cscale=None):
if self.isempty():
return
if cscale is None:
cscale = rscale
rpad = int((rscale - 1) * (self.bottom - self.top) / 2.0)
cpad = int((cscale - 1) * (self.right - self.left) / 2.0)
self.pad(rpad, cpad)
def move(self, rd, cd):
self.top += rd
self.bottom += rd
self.left += cd
self.right += cd
def isempty(self):
return (self.bottom <= self.top) or (self.right <= self.left)
def size(self):
if self.isempty():
return (0,0)
return (self.bottom - self.top, self.right - self.left)
def copy(self):
return copy.copy(self)
@staticmethod
def get_bbox(img):
if img.sum() == 0:
return BBox(0, 0, 0, 0)
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
top, bottom = np.where(rows)[0][[0, -1]]
left, right = np.where(cols)[0][[0, -1]]
return BBox(top, bottom+1, left, right+1)
class Cache:
def __init__(self, max_size = 10):
self.max_size = max_size
self.cache = dict()
self.key_queue = []
def has_key(self, key):
return self.cache.has_key(key)
def __setitem__(self, key, value):
if self.cache.has_key(key):
self.__delitem__(key)
self.cache.__setitem__(key, copy.deepcopy(value))
self.key_queue.append(key)
if len(self.cache) > self.max_size:
self.__delitem__(self.key_queue[0])
def __getitem__(self, key):
assert self.cache.has_key(key)
self.key_queue.remove(key)
self.key_queue.append(key)
return copy.deepcopy(self.cache.__getitem__(key))
def __delitem__(self, key):
self.cache.__delitem__(key)
self.key_queue.remove(key)
class Map(dict):
"""
Example:
m = Map({'first_name': 'Eduardo'}, last_name='Pool', age=24, sports=['Soccer'])
"""
def __init__(self, *args, **kwargs):
super(Map, self).__init__(*args, **kwargs)
for arg in args:
if isinstance(arg, dict):
for k, v in arg.iteritems():
self[k] = v
if kwargs:
for k, v in kwargs.iteritems():
self[k] = v
def __getattr__(self, attr):
return self.get(attr)
def __setattr__(self, key, value):
self.__setitem__(key, value)
def __setitem__(self, key, value):
super(Map, self).__setitem__(key, value)
self.__dict__.update({key: value})
def __delattr__(self, item):
self.__delitem__(item)
def __delitem__(self, key):
super(Map, self).__delitem__(key)
del self.__dict__[key]
########################################################################### Sequence Generator ########################################################################
class VideoPlayer:
def __init__(self, video_item, base_trans = None, frame_trans_dist = None, frame_noise_dist = None, step = 1, offset = 0, max_len = np.inf, flo_method = None):
self.cache = Cache()
self.name = video_item.name
if offset != 0:
self.name += '_o' + str(offset)
if step != 1:
self.name += '_s' + str(step)
if not np.isinf(max_len):
self.name += '_m' + str(max_len)
self.video_item = video_item
self.step = step
self.offset = offset
self.max_len = max_len
self.flo_method = flo_method
##compute img_ids
if step > 0:
a = self.offset
b = self.video_item.length
elif step < 0:
a = self.video_item.length - 1 - self.offset
b = - 1
self.img_ids = range(a, b, self.step)
if not np.isinf(self.max_len):
self.img_ids = self.img_ids[:self.max_len]
self.length = len(self.img_ids)
#cprint(str(self.img_ids), bcolors.OKBLUE)
##compute mappings
self.mappings = None
self.gt_mappings = None
if base_trans is not None or frame_trans_dist is not None:
self.name += '_' + str(random.randint(0, 1e10))
self.mappings = []
self.gt_mappings = []
for i in range(self.length):
mapping = sample_trans(base_trans, frame_trans_dist)
gt_mapping = sample_trans(mapping, frame_noise_dist)
self.mappings.append(mapping)
self.gt_mappings.append(gt_mapping)
def get_frame(self, frame_id, compute_iflow = False):
if self.cache.has_key(frame_id):
img, mask, obj_size = self.cache[frame_id]
assert(np.all(img >= 0) and np.all(img <= 1.0))
else:
img_id = self.img_ids[frame_id]
# img = self.video_item.read_img(img_id)
img, img_path = self.video_item.read_img(img_id)
assert(np.all(img >= 0) and np.all(img <= 1.0))
try:
mask = self.video_item.read_mask(img_id)
obj_size = np.array(BBox.get_bbox(mask).size())
except IOError:
cprint('Failed to load mask \'' + str(img_id) + '\' for video \'' + self.name + '\'. Return None mask..', bcolors.FAIL)
mask = None
obj_size = np.array([50, 50])
if self.mappings is not None:
img = self.mappings[frame_id].transform_img(img.copy(), obj_size, img.shape[:2], mask)
if mask is not None:
mask = self.mappings[frame_id].transform_mask(mask.copy(), obj_size, mask.shape)[0]
mask[mask == -1] = 0
self.cache[frame_id] = (img, mask, obj_size)
output = dict(image=img, mask=mask, image_path=img_path)
if compute_iflow:
try:
iflow = self.video_item.read_iflow(img_id, self.step, self.flo_method)
except Exception as e:
cprint('Failed to load \'' + self.flo_method + '\' iflow for video ' + self.name + '. Return zero iflow..', bcolors.FAIL)
iflow = np.zeros(img.shape[:2] + (2,))
if self.mappings is None:
output['iflow'] = iflow
else:
output['iflow'] = compute_flow(self.mappings[frame_id], self.gt_mappings[frame_id - 1], obj_size, img.shape[:2], flow = iflow)
if output.has_key('mask') and output['mask'] is not None:
assert output['mask'].shape[0] == output['image'].shape[0] and output['mask'].shape[1] == output['image'].shape[1]
if output.has_key('iflow'):
assert output['iflow'].shape[0] == output['image'].shape[0] and output['iflow'].shape[1] == output['image'].shape[1]
return output
class ImagePlayer:
def __init__(self, image_item, base_trans, frame_trans_dist, frame_noise_dist, compute_iflow = False, length = 2):
self.name = image_item.name + '_' + str(random.randint(0, 1e10))
self.length = length
self.imgs = []
self.masks = []
self.image_item = image_item
img = image_item.read_img()
mask = image_item.read_mask()
obj_size = BBox.get_bbox(mask).size()
mappings = []
gt_mappings = []
for i in range(length):
mapping = sample_trans(base_trans, frame_trans_dist)
#debug
#print '>'*10, 'Base Trans = ', base_trans
#print '>'*10, 'Frame Trans = ', frame_trans_dist
gt_mapping = sample_trans(mapping, frame_noise_dist)
if gt_mapping is not None:
timg = mapping.transform_img(img.copy(), obj_size, img.shape[:2], mask)
tmask = mapping.transform_mask(mask.copy(), obj_size, mask.shape)[0]
else:
timg = img.copy()
tmask = mask.copy()
tmask[tmask == -1] = 0
self.imgs.append(timg)
self.masks.append(tmask)
gt_mappings.append(gt_mapping)
mappings.append(mapping)
if compute_iflow:
self.iflows = [None]
for i in range(1, length):
iflow = compute_flow(mappings[i], gt_mappings[i - 1], obj_size, mask.shape)
self.iflows.append(iflow)
def get_frame(self, frame_id, compute_iflow = False):
output = dict(image=self.imgs[frame_id], mask=self.masks[frame_id])
if compute_iflow:
output['iflow'] = self.iflows[frame_id]
return output
########################################################################### Read DBs into DBItems ################################################################################
class DAVIS:
def __init__(self, cfg):
self.cfg = cfg
# DAVIS: 1376 Test, 2079 Training
# Jump-Cut: ?
def getItems(self, sets, categories = None):
if isinstance(sets, basestring):
sets = [sets]
if isinstance(categories, basestring):
categories = [categories]
if len(sets) == 0:
return []
with open(self.cfg['DB_INFO'],'r') as f:
db_info = yaml.load(f)
sequences = [x for x in db_info['sequences'] if x['set'] in sets and (categories is None or x['name'] in categories)]
assert len(sequences) > 0
items = []
for seq in sequences:
name = seq['name']
img_root = osp.join(self.cfg['SEQUENCES_DIR'], name)
ann_root = osp.join(self.cfg['ANNOTATION_DIR'], name)
item = DBDAVISItem(name, img_root, ann_root, seq['num_frames'])
items.append(item)
return items
class COCO:
def __init__(self, db_path, dataType):
self.pycocotools = __import__('pycocotools.coco')
if dataType == 'training':
dataType = 'train2014'
elif dataType == 'test':
dataType = 'val2014'
else:
raise Exception('split \'' + dataType + '\' is not valid! Valid splits: training/test')
self.db_path = db_path
self.dataType = dataType
def getItems(self, cats=[], areaRng=[], iscrowd=False):
annFile='%s/annotations/instances_%s.json' % (self.db_path, self.dataType)
coco = self.pycocotools.coco.COCO(annFile)
catIds = coco.getCatIds(catNms=cats);
anns = coco.getAnnIds(catIds=catIds, areaRng=areaRng, iscrowd=iscrowd)
cprint(str(len(anns)) + ' annotations read from coco', bcolors.OKGREEN)
items = []
for i in range(len(anns)):
ann = anns[i]
item = DBCOCOItem('coco-' + self.dataType + str(i), self.db_path, self.dataType, ann, coco, self.pycocotools)
items.append(item)
return items
class PASCAL_READ_MODES:
#Returns list of DBImageItem each has the image and one object instance in the mask
INSTANCE = 0
#Returns list of DBImageItem each has the image and the mask for all semantic labels
SEMANTIC_ALL = 1
#Returns list of DBImageSetItem each has set of images and corresponding masks for each semantic label
SEMANTIC = 2
class PASCAL:
def __init__(self, db_path, dataType):
if dataType == 'training':
dataType = 'train'
elif dataType == 'test':
dataType = 'val'
else:
raise Exception('split \'' + dataType + '\' is not valid! Valid splits: training/test')
self.db_path = db_path
classes = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car' , 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
self.name_id_map = dict(zip(classes, range(1, len(classes) + 1)))
self.id_name_map = dict(zip(range(1, len(classes) + 1), classes))
self.dataType = dataType
def getCatIds(self, catNms=[]):
return [self.name_id_map[catNm] for catNm in catNms]
def get_anns_path(self, read_mode):
return osp.join(self.db_path, self.dataType + '_' + str(read_mode) + '_anns.pkl')
def get_unique_ids(self, mask, return_counts=False, exclude_ids = [0, 255]):
ids, sizes = np.unique(mask, return_counts=True)
ids = list(ids)
sizes = list(sizes)
for ex_id in exclude_ids:
if ex_id in ids:
id_index = ids.index(ex_id)
ids.remove(ex_id)
sizes.remove(sizes[id_index])
assert(len(ids) == len(sizes))
if return_counts:
return ids, sizes
else:
return ids
def create_anns(self, read_mode):
with open(osp.join(self.db_path, 'ImageSets', 'Segmentation', self.dataType + '.txt'), 'r') as f:
lines = f.readlines()
names = []
for line in lines:
if line.endswith('\n'):
line = line[:-1]
if len(line) > 0:
names.append(line)
anns = []
for item in names:
mclass_path = osp.join(self.db_path, 'SegmentationClass', item + '.png')
mobj_path = osp.join(self.db_path, 'SegmentationObject', item + '.png')
mclass_uint = np.array(Image.open(mclass_path))
mobj_uint = np.array(Image.open(mobj_path))
class_ids = self.get_unique_ids(mclass_uint)
obj_ids, obj_sizes = self.get_unique_ids(mobj_uint, return_counts = True)
if read_mode == PASCAL_READ_MODES.INSTANCE:
for obj_idx in xrange(len(obj_ids)):
class_id = int(np.median(mclass_uint[mobj_uint == obj_ids[obj_idx]]))
assert( class_id != 0 and class_id != 255 and obj_ids[obj_idx] != 0 and obj_ids[obj_idx] != 255)
anns.append(dict(image_name=item, mask_name=item, object_ids=[obj_ids[obj_idx]], class_ids=[class_id], object_sizes = [obj_sizes[obj_idx]]))
elif read_mode == PASCAL_READ_MODES.SEMANTIC:
for class_id in class_ids:
assert(class_id != 0 or class_id != 255)
anns.append(dict(image_name=item, mask_name=item, class_ids=[class_id]))
elif read_mode == PASCAL_READ_MODES.SEMANTIC_ALL:
anns.append(dict(image_name=item, mask_name=item, class_ids=class_ids))
with open(self.get_anns_path(read_mode), 'w') as f:
pickle.dump(anns, f)
def load_anns(self, read_mode):
path = self.get_anns_path(read_mode)
if not osp.exists(path):
self.create_anns(read_mode)
with open(path, 'rb') as f:
anns = pickle.load(f)
return anns
def get_anns(self, catIds=[], areaRng=[], read_mode = PASCAL_READ_MODES.INSTANCE):
if areaRng == []:
areaRng = [0, np.inf]
anns = self.load_anns(read_mode)
if catIds == [] and areaRng == [0, np.inf]:
return anns
if read_mode == PASCAL_READ_MODES.INSTANCE:
filtered_anns = [ann for ann in anns if ann['class_ids'][0] in catIds and areaRng[0] < ann['object_sizes'][0] and ann['object_sizes'][0] < areaRng[1]]
else:
filtered_anns = []
catIds_set = set(catIds)
for ann in anns:
class_inter = set(ann['class_ids']) & catIds_set
#remove class_ids that we did not asked for (i.e. are not catIds_set)
if len(class_inter) > 0:
ann = ann.copy()
ann['class_ids'] = sorted(list(class_inter))
filtered_anns.append(ann)
return filtered_anns
def getItems(self, cats=[], areaRng=[], read_mode = PASCAL_READ_MODES.INSTANCE):
if len(cats) == 0:
catIds = self.id_name_map.keys()
else:
catIds = self.getCatIds(catNms=cats)
catIds = np.sort(catIds)
anns = self.get_anns(catIds=catIds, areaRng=areaRng, read_mode=read_mode)
cprint(str(len(anns)) + ' annotations read from pascal', bcolors.OKGREEN)
# rand_ids = np.arange(len(anns))
# np.random.shuffle(rand_ids)
# anns = anns[rand_ids.tolist()]
# random.shuffle(anns)
items = []
ids_map = None
if read_mode == PASCAL_READ_MODES.SEMANTIC_ALL:
old_ids = catIds
new_ids = range(1, len(catIds) + 1)
ids_map = dict(zip(old_ids, new_ids))
for i in range(len(anns)):
ann = anns[i]
img_path = osp.join(self.db_path, 'JPEGImages', ann['image_name'] + '.jpg')
if read_mode == PASCAL_READ_MODES.INSTANCE:
mask_path = osp.join(self.db_path, 'SegmentationObject', ann['mask_name'] + '.png')
item = DBPascalItem('pascal-' + self.dataType + '_' + ann['image_name'] + '_' + str(i), img_path, mask_path, ann['object_ids'])
else:
mask_path = osp.join(self.db_path, 'SegmentationClass', ann['mask_name'] + '.png')
item = DBPascalItem('pascal-' + self.dataType + '_' + ann['image_name'] + '_' + str(i), img_path, mask_path, ann['class_ids'], ids_map)
items.append(item)
return items
@staticmethod
def cluster_items(items):
clusters = {}
for i, item in enumerate(items):
assert(isinstance(item, DBPascalItem))
item_id = item.obj_ids
assert(len(item_id) == 1), 'For proper clustering, items should only have one id'
item_id = item_id[0]
if clusters.has_key(item_id):
clusters[item_id].append(item)
else:
clusters[item_id] = DBImageSetItem('set class id = ' + str(item_id), [item])
return clusters
########################################################################### DB Items ###################################################################################
class DBVideoItem:
def __init__(self, name, length):
self.name = name
self.length = length
def read_img(self, img_id):
pass
def read_mask(self, img_id):
pass
class DBDAVISItem(DBVideoItem):
def __init__(self, name, img_root, ann_root, length):
DBVideoItem.__init__(self, name, length)
self.img_root = img_root
self.ann_root = ann_root
def read_img(self, img_id):
file_name = osp.join(self.img_root, '%05d.jpg' % (img_id))
return read_img(file_name)
def read_mask(self, img_id):
file_name = osp.join(self.ann_root, '%05d.png' % (img_id))
mask = read_mask(file_name)
return mask
def read_iflow(self, img_id, step, method):
if method == 'LDOF':
if step == 1:
flow_name = osp.join(self.ann_root, '%05d_inv_LDOF.flo' % (img_id))
elif step == -1:
flow_name = osp.join(self.ann_root, '%05d_LDOF.flo' % (img_id))
else:
raise Exception('unsupported flow step for LDOF')
elif method == 'EPIC':
if step == 1:
flow_name = osp.join(self.ann_root, '%05d_inv.flo' % (img_id))
elif step == -1:
flow_name = osp.join(self.ann_root, '%05d.flo' % (img_id))
else:
raise Exception('unsupported flow step for EPIC')
else:
raise Exception('unsupported flow algorithm')
try:
return read_flo_file(flow_name)
except IOError as e:
print "Unable to open file", str(e)#Does not exist OR no read permissions
class DBImageSetItem(DBVideoItem):
def __init__(self, name, image_items = []):
DBVideoItem.__init__(self, name, len(image_items))
self.image_items = image_items
def append(self, image_item):
self.image_items.append(image_item)
self.length += 1
def read_img(self, img_id):
return self.image_items[img_id].read_img()
def read_mask(self, img_id):
return self.image_items[img_id].read_mask()
#####
class DBImageItem:
def __init__(self, name):
self.name = name
def read_mask(self):
pass
def read_img(self):
pass
class DBCOCOItem(DBImageItem):
def __init__(self, name, db_path, dataType, ann_info, coco_db, pycocotools):
DBImageItem.__init__(self, name)
self.ann_info = ann_info
self.db_path = db_path
self.dataType = dataType
self.coco_db = coco_db
self.pycocotools = pycocotools
def read_mask(self):
ann = self.coco_db.loadAnns(self.ann_info)[0]
img_cur = self.coco_db.loadImgs(ann['image_id'])[0]
rle = self.pycocotools.mask.frPyObjects(ann['segmentation'], img_cur['height'], img_cur['width'])
m_uint = self.pycocotools.mask.decode(rle)
m = np.array(m_uint[:, :, 0], dtype=np.float32)
return m
def read_img(self):
ann = self.coco_db.loadAnns(self.ann_info)[0]
img_cur = self.coco_db.loadImgs(ann['image_id'])[0]
img_path = '%s/images/%s/%s' % (self.db_path, self.dataType, img_cur['file_name'])
return read_img(img_path)
class DBPascalItem(DBImageItem):
def __init__(self, name, img_path, mask_path, obj_ids, ids_map = None):
DBImageItem.__init__(self, name)
self.img_path = img_path
self.mask_path = mask_path
self.obj_ids = obj_ids
if ids_map is None:
self.ids_map = dict(zip(obj_ids, np.ones(len(obj_ids))))
else:
self.ids_map = ids_map
def read_mask(self, orig_mask=False):
mobj_uint = np.array(Image.open(self.mask_path))
if orig_mask:
return mobj_uint.astype(np.float32)
m = np.zeros(mobj_uint.shape, dtype=np.float32)
for obj_id in self.obj_ids:
m[mobj_uint == obj_id] = self.ids_map[obj_id]
#m[mobj_uint == 255] = 255
return m
def read_img(self):
# return read_img(self.img_path)
return read_img(self.img_path), self.img_path