forked from zuoyebang/bitalostable
-
Notifications
You must be signed in to change notification settings - Fork 0
/
compaction_iter.go
890 lines (829 loc) · 31.6 KB
/
compaction_iter.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
// Copyright 2018 The LevelDB-Go and Pebble and Bitalostored Authors. All rights reserved. Use
// of this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
package bitalostable
import (
"fmt"
"io"
"sort"
"strconv"
"github.com/cockroachdb/errors"
"github.com/zuoyebang/bitalostable/internal/base"
"github.com/zuoyebang/bitalostable/internal/bytealloc"
"github.com/zuoyebang/bitalostable/internal/invariants"
"github.com/zuoyebang/bitalostable/internal/keyspan"
"github.com/zuoyebang/bitalostable/internal/rangekey"
)
// compactionIter provides a forward-only iterator that encapsulates the logic
// for collapsing entries during compaction. It wraps an internal iterator and
// collapses entries that are no longer necessary because they are shadowed by
// newer entries. The simplest example of this is when the internal iterator
// contains two keys: a.PUT.2 and a.PUT.1. Instead of returning both entries,
// compactionIter collapses the second entry because it is no longer
// necessary. The high-level structure for compactionIter is to iterate over
// its internal iterator and output 1 entry for every user-key. There are four
// complications to this story.
//
// 1. Eliding Deletion Tombstones
//
// Consider the entries a.DEL.2 and a.PUT.1. These entries collapse to
// a.DEL.2. Do we have to output the entry a.DEL.2? Only if a.DEL.2 possibly
// shadows an entry at a lower level. If we're compacting to the base-level in
// the LSM tree then a.DEL.2 is definitely not shadowing an entry at a lower
// level and can be elided.
//
// We can do slightly better than only eliding deletion tombstones at the base
// level by observing that we can elide a deletion tombstone if there are no
// sstables that contain the entry's key. This check is performed by
// elideTombstone.
//
// 2. Merges
//
// The MERGE operation merges the value for an entry with the existing value
// for an entry. The logical value of an entry can be composed of a series of
// merge operations. When compactionIter sees a MERGE, it scans forward in its
// internal iterator collapsing MERGE operations for the same key until it
// encounters a SET or DELETE operation. For example, the keys a.MERGE.4,
// a.MERGE.3, a.MERGE.2 will be collapsed to a.MERGE.4 and the values will be
// merged using the specified Merger.
//
// An interesting case here occurs when MERGE is combined with SET. Consider
// the entries a.MERGE.3 and a.SET.2. The collapsed key will be a.SET.3. The
// reason that the kind is changed to SET is because the SET operation acts as
// a barrier preventing further merging. This can be seen better in the
// scenario a.MERGE.3, a.SET.2, a.MERGE.1. The entry a.MERGE.1 may be at lower
// (older) level and not involved in the compaction. If the compaction of
// a.MERGE.3 and a.SET.2 produced a.MERGE.3, a subsequent compaction with
// a.MERGE.1 would merge the values together incorrectly.
//
// 3. Snapshots
//
// Snapshots are lightweight point-in-time views of the DB state. At its core,
// a snapshot is a sequence number along with a guarantee from Pebble that it
// will maintain the view of the database at that sequence number. Part of this
// guarantee is relatively straightforward to achieve. When reading from the
// database Pebble will ignore sequence numbers that are larger than the
// snapshot sequence number. The primary complexity with snapshots occurs
// during compaction: the collapsing of entries that are shadowed by newer
// entries is at odds with the guarantee that Pebble will maintain the view of
// the database at the snapshot sequence number. Rather than collapsing entries
// up to the next user key, compactionIter can only collapse entries up to the
// next snapshot boundary. That is, every snapshot boundary potentially causes
// another entry for the same user-key to be emitted. Another way to view this
// is that snapshots define stripes and entries are collapsed within stripes,
// but not across stripes. Consider the following scenario:
//
// a.PUT.9
// a.DEL.8
// a.PUT.7
// a.DEL.6
// a.PUT.5
//
// In the absence of snapshots these entries would be collapsed to
// a.PUT.9. What if there is a snapshot at sequence number 7? The entries can
// be divided into two stripes and collapsed within the stripes:
//
// a.PUT.9 a.PUT.9
// a.DEL.8 --->
// a.PUT.7
// -- --
// a.DEL.6 ---> a.DEL.6
// a.PUT.5
//
// All of the rules described earlier still apply, but they are confined to
// operate within a snapshot stripe. Snapshots only affect compaction when the
// snapshot sequence number lies within the range of sequence numbers being
// compacted. In the above example, a snapshot at sequence number 10 or at
// sequence number 5 would not have any effect.
//
// 4. Range Deletions
//
// Range deletions provide the ability to delete all of the keys (and values)
// in a contiguous range. Range deletions are stored indexed by their start
// key. The end key of the range is stored in the value. In order to support
// lookup of the range deletions which overlap with a particular key, the range
// deletion tombstones need to be fragmented whenever they overlap. This
// fragmentation is performed by keyspan.Fragmenter. The fragments are then
// subject to the rules for snapshots. For example, consider the two range
// tombstones [a,e)#1 and [c,g)#2:
//
// 2: c-------g
// 1: a-------e
//
// These tombstones will be fragmented into:
//
// 2: c---e---g
// 1: a---c---e
//
// Do we output the fragment [c,e)#1? Since it is covered by [c-e]#2 the answer
// depends on whether it is in a new snapshot stripe.
//
// In addition to the fragmentation of range tombstones, compaction also needs
// to take the range tombstones into consideration when outputting normal
// keys. Just as with point deletions, a range deletion covering an entry can
// cause the entry to be elided.
//
// A note on the stability of keys and values.
//
// The stability guarantees of keys and values returned by the iterator tree
// that backs a compactionIter is nuanced and care must be taken when
// referencing any returned items.
//
// Keys and values returned by exported functions (i.e. First, Next, etc.) have
// lifetimes that fall into two categories:
//
// Lifetime valid for duration of compaction. Range deletion keys and values are
// stable for the duration of the compaction, due to way in which a
// compactionIter is typically constructed (i.e. via (*compaction).newInputIter,
// which wraps the iterator over the range deletion block in a noCloseIter,
// preventing the release of the backing memory until the compaction is
// finished).
//
// Lifetime limited to duration of sstable block liveness. Point keys (SET, DEL,
// etc.) and values must be cloned / copied following the return from the
// exported function, and before a subsequent call to Next advances the iterator
// and mutates the contents of the returned key and value.
type compactionIter struct {
equal Equal
merge Merge
iter internalIterator
err error
// `key.UserKey` is set to `keyBuf` caused by saving `i.iterKey.UserKey`
// and `key.Trailer` is set to `i.iterKey.Trailer`. This is the
// case on return from all public methods -- these methods return `key`.
// Additionally, it is the internal state when the code is moving to the
// next key so it can determine whether the user key has changed from
// the previous key.
key InternalKey
// keyTrailer is updated when `i.key` is updated and holds the key's
// original trailer (eg, before any sequence-number zeroing or changes to
// key kind).
keyTrailer uint64
value []byte
valueCloser io.Closer
// Temporary buffer used for storing the previous user key in order to
// determine when iteration has advanced to a new user key and thus a new
// snapshot stripe.
keyBuf []byte
// Temporary buffer used for storing the previous value, which may be an
// unsafe, i.iter-owned slice that could be altered when the iterator is
// advanced.
valueBuf []byte
// Is the current entry valid?
valid bool
iterKey *InternalKey
iterValue []byte
// `skip` indicates whether the remaining skippable entries in the current
// snapshot stripe should be skipped or processed. An example of a non-
// skippable entry is a range tombstone as we need to return it from the
// `compactionIter`, even if a key covering its start key has already been
// seen in the same stripe. `skip` has no effect when `pos == iterPosNext`.
skip bool
// `pos` indicates the iterator position at the top of `Next()`. Its type's
// (`iterPos`) values take on the following meanings in the context of
// `compactionIter`.
//
// - `iterPosCur`: the iterator is at the last key returned.
// - `iterPosNext`: the iterator has already been advanced to the next
// candidate key. For example, this happens when processing merge operands,
// where we advance the iterator all the way into the next stripe or next
// user key to ensure we've seen all mergeable operands.
// - `iterPosPrev`: this is invalid as compactionIter is forward-only.
pos iterPos
// The index of the snapshot for the current key within the snapshots slice.
curSnapshotIdx int
curSnapshotSeqNum uint64
// The snapshot sequence numbers that need to be maintained. These sequence
// numbers define the snapshot stripes (see the Snapshots description
// above). The sequence numbers are in ascending order.
snapshots []uint64
// Reference to the range deletion tombstone fragmenter (e.g.,
// `compaction.rangeDelFrag`).
rangeDelFrag *keyspan.Fragmenter
rangeKeyFrag *keyspan.Fragmenter
// The fragmented tombstones.
tombstones []keyspan.Span
// The fragmented range keys.
rangeKeys []keyspan.Span
// Byte allocator for the tombstone keys.
alloc bytealloc.A
allowZeroSeqNum bool
elideTombstone func(key []byte) bool
elideRangeTombstone func(start, end []byte) bool
// The on-disk format major version. This informs the types of keys that
// may be written to disk during a compaction.
formatVersion FormatMajorVersion
}
func newCompactionIter(
cmp Compare,
equal Equal,
formatKey base.FormatKey,
merge Merge,
iter internalIterator,
snapshots []uint64,
rangeDelFrag *keyspan.Fragmenter,
rangeKeyFrag *keyspan.Fragmenter,
allowZeroSeqNum bool,
elideTombstone func(key []byte) bool,
elideRangeTombstone func(start, end []byte) bool,
formatVersion FormatMajorVersion,
) *compactionIter {
i := &compactionIter{
equal: equal,
merge: merge,
iter: iter,
snapshots: snapshots,
rangeDelFrag: rangeDelFrag,
rangeKeyFrag: rangeKeyFrag,
allowZeroSeqNum: allowZeroSeqNum,
elideTombstone: elideTombstone,
elideRangeTombstone: elideRangeTombstone,
formatVersion: formatVersion,
}
i.rangeDelFrag.Cmp = cmp
i.rangeDelFrag.Format = formatKey
i.rangeDelFrag.Emit = i.emitRangeDelChunk
i.rangeKeyFrag.Cmp = cmp
i.rangeKeyFrag.Format = formatKey
i.rangeKeyFrag.Emit = i.emitRangeKeyChunk
return i
}
func (i *compactionIter) First() (*InternalKey, []byte) {
if i.err != nil {
return nil, nil
}
i.iterKey, i.iterValue = i.iter.First()
if i.iterKey != nil {
i.curSnapshotIdx, i.curSnapshotSeqNum = snapshotIndex(i.iterKey.SeqNum(), i.snapshots)
}
i.pos = iterPosNext
return i.Next()
}
func (i *compactionIter) Next() (*InternalKey, []byte) {
if i.err != nil {
return nil, nil
}
// Close the closer for the current value if one was open.
if i.closeValueCloser() != nil {
return nil, nil
}
// Prior to this call to `Next()` we are in one of three situations with
// respect to `iterKey` and related state:
//
// - `!skip && pos == iterPosNext`: `iterKey` is already at the next key.
// - `!skip && pos == iterPosCur`: We are at the key that has been returned.
// To move forward we advance by one key, even if that lands us in the same
// snapshot stripe.
// - `skip && pos == iterPosCur`: We are at the key that has been returned.
// To move forward we skip skippable entries in the stripe.
if i.pos == iterPosCurForward {
if i.skip {
i.skipInStripe()
} else {
i.nextInStripe()
}
}
i.pos = iterPosCurForward
i.valid = false
for i.iterKey != nil {
if i.iterKey.Kind() == InternalKeyKindRangeDelete || rangekey.IsRangeKey(i.iterKey.Kind()) {
// Return the span so the compaction can use it for file truncation and add
// it to the relevant fragmenter. We do not set `skip` to true before
// returning as there may be a forthcoming point key with the same user key
// and sequence number. Such a point key must be visible (i.e., not skipped
// over) since we promise point keys are not deleted by range tombstones at
// the same sequence number.
//
// Although, note that `skip` may already be true before reaching here
// due to an earlier key in the stripe. Then it is fine to leave it set
// to true, as the earlier key must have had a higher sequence number.
//
// NOTE: there is a subtle invariant violation here in that calling
// saveKey and returning a reference to the temporary slice violates
// the stability guarantee for range deletion keys. A potential
// mediation could return the original iterKey and iterValue
// directly, as the backing memory is guaranteed to be stable until
// the compaction completes. The violation here is only minor in
// that the caller immediately clones the range deletion InternalKey
// when passing the key to the deletion fragmenter (see the
// call-site in compaction.go).
// TODO(travers): address this violation by removing the call to
// saveKey and instead return the original iterKey and iterValue.
// This goes against the comment on i.key in the struct, and
// therefore warrants some investigation.
i.saveKey()
i.value = i.iterValue
i.valid = true
return &i.key, i.value
}
if i.rangeDelFrag.Covers(*i.iterKey, i.curSnapshotSeqNum) {
i.saveKey()
i.skipInStripe()
continue
}
switch i.iterKey.Kind() {
case InternalKeyKindDelete, InternalKeyKindSingleDelete:
// If we're at the last snapshot stripe and the tombstone can be elided
// skip skippable keys in the same stripe.
if i.curSnapshotIdx == 0 && i.elideTombstone(i.iterKey.UserKey) {
i.saveKey()
i.skipInStripe()
continue
}
switch i.iterKey.Kind() {
case InternalKeyKindDelete:
i.saveKey()
i.value = i.iterValue
i.valid = true
i.skip = true
return &i.key, i.value
case InternalKeyKindSingleDelete:
if i.singleDeleteNext() {
return &i.key, i.value
}
continue
}
case InternalKeyKindSet, InternalKeyKindSetWithDelete:
// The key we emit for this entry is a function of the current key
// kind, and whether this entry is followed by a DEL/SINGLEDEL
// entry. setNext() does the work to move the iterator forward,
// preserving the original value, and potentially mutating the key
// kind.
i.setNext()
return &i.key, i.value
case InternalKeyKindMerge:
// Record the snapshot index before mergeNext as merging
// advances the iterator, adjusting curSnapshotIdx.
origSnapshotIdx := i.curSnapshotIdx
var valueMerger ValueMerger
valueMerger, i.err = i.merge(i.iterKey.UserKey, i.iterValue)
var change stripeChangeType
if i.err == nil {
change = i.mergeNext(valueMerger)
}
var needDelete bool
if i.err == nil {
// includesBase is true whenever we've transformed the MERGE record
// into a SET.
includesBase := i.key.Kind() == InternalKeyKindSet
i.value, needDelete, i.valueCloser, i.err = finishValueMerger(valueMerger, includesBase)
}
if i.err == nil {
if needDelete {
i.valid = false
if i.closeValueCloser() != nil {
return nil, nil
}
continue
}
// A non-skippable entry does not necessarily cover later merge
// operands, so we must not zero the current merge result's seqnum.
//
// For example, suppose the forthcoming two keys are a range
// tombstone, `[a, b)#3`, and a merge operand, `a#3`. Recall that
// range tombstones do not cover point keys at the same seqnum, so
// `a#3` is not deleted. The range tombstone will be seen first due
// to its larger value type. Since it is a non-skippable key, the
// current merge will not include `a#3`. If we zeroed the current
// merge result's seqnum, then it would conflict with the upcoming
// merge including `a#3`, whose seqnum will also be zeroed.
if change != sameStripeNonSkippable {
i.maybeZeroSeqnum(origSnapshotIdx)
}
return &i.key, i.value
}
if i.err != nil {
i.valid = false
i.err = base.MarkCorruptionError(i.err)
}
return nil, nil
default:
i.err = base.CorruptionErrorf("invalid internal key kind: %d", errors.Safe(i.iterKey.Kind()))
i.valid = false
return nil, nil
}
}
return nil, nil
}
func (i *compactionIter) closeValueCloser() error {
if i.valueCloser == nil {
return nil
}
i.err = i.valueCloser.Close()
i.valueCloser = nil
if i.err != nil {
i.valid = false
}
return i.err
}
// snapshotIndex returns the index of the first sequence number in snapshots
// which is greater than or equal to seq.
func snapshotIndex(seq uint64, snapshots []uint64) (int, uint64) {
index := sort.Search(len(snapshots), func(i int) bool {
return snapshots[i] > seq
})
if index >= len(snapshots) {
return index, InternalKeySeqNumMax
}
return index, snapshots[index]
}
// skipInStripe skips over skippable keys in the same stripe and user key.
func (i *compactionIter) skipInStripe() {
i.skip = true
var change stripeChangeType
for {
change = i.nextInStripe()
if change == sameStripeNonSkippable || change == newStripe {
break
}
}
// Reset skip if we landed outside the original stripe. Otherwise, we landed
// in the same stripe on a non-skippable key. In that case we should preserve
// `i.skip == true` such that later keys in the stripe will continue to be
// skipped.
if change == newStripe {
i.skip = false
}
}
func (i *compactionIter) iterNext() bool {
i.iterKey, i.iterValue = i.iter.Next()
return i.iterKey != nil
}
// stripeChangeType indicates how the snapshot stripe changed relative to the previous
// key. If no change, it also indicates whether the current entry is skippable.
type stripeChangeType int
const (
newStripe stripeChangeType = iota
sameStripeSkippable
sameStripeNonSkippable
)
// nextInStripe advances the iterator and returns one of the above const ints
// indicating how its state changed.
//
// Calls to nextInStripe must be preceded by a call to saveKey to retain a
// temporary reference to the original key, so that forward iteration can
// proceed with a reference to the original key. Care should be taken to avoid
// overwriting or mutating the saved key or value before they have been returned
// to the caller of the exported function (i.e. the caller of Next, First, etc.)
func (i *compactionIter) nextInStripe() stripeChangeType {
if !i.iterNext() {
return newStripe
}
key := i.iterKey
// NB: The below conditional is an optimization to avoid a user key
// comparison in many cases. Internal keys with the same user key are
// ordered in (strictly) descending order by trailer. If the new key has a
// greater or equal trailer, or the previous key had a zero sequence number,
// the new key must have a new user key.
//
// A couple things make these cases common:
// - Sequence-number zeroing ensures ~all of the keys in L6 have a zero
// sequence number.
// - Ingested sstables' keys all adopt the same sequence number.
if i.keyTrailer <= base.InternalKeyZeroSeqnumMaxTrailer || key.Trailer >= i.keyTrailer {
if invariants.Enabled && i.equal(i.key.UserKey, key.UserKey) {
prevKey := i.key
prevKey.Trailer = i.keyTrailer
panic(fmt.Sprintf("bitalostable: invariant violation: %s and %s out of order", key, prevKey))
}
i.curSnapshotIdx, i.curSnapshotSeqNum = snapshotIndex(key.SeqNum(), i.snapshots)
return newStripe
} else if !i.equal(i.key.UserKey, key.UserKey) {
i.curSnapshotIdx, i.curSnapshotSeqNum = snapshotIndex(key.SeqNum(), i.snapshots)
return newStripe
}
origSnapshotIdx := i.curSnapshotIdx
i.curSnapshotIdx, i.curSnapshotSeqNum = snapshotIndex(key.SeqNum(), i.snapshots)
switch key.Kind() {
case InternalKeyKindRangeDelete:
// Range tombstones need to be exposed by the compactionIter to the upper level
// `compaction` object, so return them regardless of whether they are in the same
// snapshot stripe.
if i.curSnapshotIdx == origSnapshotIdx {
return sameStripeNonSkippable
}
return newStripe
case InternalKeyKindRangeKeySet, InternalKeyKindRangeKeyUnset, InternalKeyKindRangeKeyDelete:
// Range keys are interleaved at the max sequence number for a given user
// key, so we should not see any more range keys in this stripe.
panic("unreachable")
case InternalKeyKindInvalid:
if i.curSnapshotIdx == origSnapshotIdx {
return sameStripeNonSkippable
}
return newStripe
}
if i.curSnapshotIdx == origSnapshotIdx {
return sameStripeSkippable
}
return newStripe
}
func (i *compactionIter) setNext() {
// Save the current key.
i.saveKey()
i.value = i.iterValue
i.valid = true
i.maybeZeroSeqnum(i.curSnapshotIdx)
// There are two cases where we can early return and skip the remaining
// records in the stripe:
// - If the DB does not SETWITHDEL.
// - If this key is already a SETWITHDEL.
if i.formatVersion < FormatSetWithDelete ||
i.iterKey.Kind() == InternalKeyKindSetWithDelete {
i.skip = true
return
}
// We are iterating forward. Save the current value.
i.valueBuf = append(i.valueBuf[:0], i.iterValue...)
i.value = i.valueBuf
// Else, we continue to loop through entries in the stripe looking for a
// DEL. Note that we may stop *before* encountering a DEL, if one exists.
for {
switch t := i.nextInStripe(); t {
case newStripe, sameStripeNonSkippable:
i.pos = iterPosNext
if t == sameStripeNonSkippable {
// We iterated onto a key that we cannot skip. We can
// conservatively transform the original SET into a SETWITHDEL
// as an indication that there *may* still be a DEL/SINGLEDEL
// under this SET, even if we did not actually encounter one.
//
// This is safe to do, as:
//
// - in the case that there *is not* actually a DEL/SINGLEDEL
// under this entry, any SINGLEDEL above this now-transformed
// SETWITHDEL will become a DEL when the two encounter in a
// compaction. The DEL will eventually be elided in a
// subsequent compaction. The cost for ensuring correctness is
// that this entry is kept around for an additional compaction
// cycle(s).
//
// - in the case there *is* indeed a DEL/SINGLEDEL under us
// (but in a different stripe or sstable), then we will have
// already done the work to transform the SET into a
// SETWITHDEL, and we will skip any additional iteration when
// this entry is encountered again in a subsequent compaction.
//
// Ideally, this codepath would be smart enough to handle the
// case of SET <- RANGEDEL <- ... <- DEL/SINGLEDEL <- ....
// This requires preserving any RANGEDEL entries we encounter
// along the way, then emitting the original (possibly
// transformed) key, followed by the RANGEDELs. This requires
// a sizable refactoring of the existing code, as nextInStripe
// currently returns a sameStripeNonSkippable when it
// encounters a RANGEDEL.
// TODO(travers): optimize to handle the RANGEDEL case if it
// turns out to be a performance problem.
i.key.SetKind(InternalKeyKindSetWithDelete)
// By setting i.skip=true, we are saying that after the
// non-skippable key is emitted (which is likely a RANGEDEL),
// the remaining point keys that share the same user key as this
// saved key should be skipped.
i.skip = true
}
return
case sameStripeSkippable:
// We're still in the same stripe. If this is a DEL/SINGLEDEL, we
// stop looking and emit a SETWITHDEL. Subsequent keys are
// eligible for skipping.
if i.iterKey.Kind() == InternalKeyKindDelete ||
i.iterKey.Kind() == InternalKeyKindSingleDelete {
i.key.SetKind(InternalKeyKindSetWithDelete)
i.skip = true
return
}
default:
panic("bitalostable: unexpected stripeChangeType: " + strconv.Itoa(int(t)))
}
}
}
func (i *compactionIter) mergeNext(valueMerger ValueMerger) stripeChangeType {
// Save the current key.
i.saveKey()
i.valid = true
// Loop looking for older values in the current snapshot stripe and merge
// them.
for {
if change := i.nextInStripe(); change == sameStripeNonSkippable || change == newStripe {
i.pos = iterPosNext
return change
}
key := i.iterKey
switch key.Kind() {
case InternalKeyKindDelete, InternalKeyKindSingleDelete:
// We've hit a deletion tombstone. Return everything up to this point and
// then skip entries until the next snapshot stripe. We change the kind
// of the result key to a Set so that it shadows keys in lower
// levels. That is, MERGE+DEL -> SET.
// We do the same for SingleDelete since SingleDelete is only
// permitted (with deterministic behavior) for keys that have been
// set once since the last SingleDelete/Delete, so everything
// older is acceptable to shadow. Note that this is slightly
// different from singleDeleteNext() which implements stricter
// semantics in terms of applying the SingleDelete to the single
// next Set. But those stricter semantics are not observable to
// the end-user since Iterator interprets SingleDelete as Delete.
// We could do something more complicated here and consume only a
// single Set, and then merge in any following Sets, but that is
// complicated wrt code and unnecessary given the narrow permitted
// use of SingleDelete.
i.key.SetKind(InternalKeyKindSet)
i.skip = true
return sameStripeSkippable
case InternalKeyKindSet, InternalKeyKindSetWithDelete:
if i.rangeDelFrag.Covers(*key, i.curSnapshotSeqNum) {
// We change the kind of the result key to a Set so that it shadows
// keys in lower levels. That is, MERGE+RANGEDEL -> SET. This isn't
// strictly necessary, but provides consistency with the behavior of
// MERGE+DEL.
i.key.SetKind(InternalKeyKindSet)
i.skip = true
return sameStripeSkippable
}
// We've hit a Set or SetWithDel value. Merge with the existing
// value and return. We change the kind of the resulting key to a
// Set so that it shadows keys in lower levels. That is:
// MERGE + (SET*) -> SET.
i.err = valueMerger.MergeOlder(i.iterValue)
if i.err != nil {
i.valid = false
return sameStripeSkippable
}
i.key.SetKind(InternalKeyKindSet)
i.skip = true
return sameStripeSkippable
case InternalKeyKindMerge:
if i.rangeDelFrag.Covers(*key, i.curSnapshotSeqNum) {
// We change the kind of the result key to a Set so that it shadows
// keys in lower levels. That is, MERGE+RANGEDEL -> SET. This isn't
// strictly necessary, but provides consistency with the behavior of
// MERGE+DEL.
i.key.SetKind(InternalKeyKindSet)
i.skip = true
return sameStripeSkippable
}
// We've hit another Merge value. Merge with the existing value and
// continue looping.
i.err = valueMerger.MergeOlder(i.iterValue)
if i.err != nil {
i.valid = false
return sameStripeSkippable
}
default:
i.err = base.CorruptionErrorf("invalid internal key kind: %d", errors.Safe(i.iterKey.Kind()))
i.valid = false
return sameStripeSkippable
}
}
}
func (i *compactionIter) singleDeleteNext() bool {
// Save the current key.
i.saveKey()
i.value = i.iterValue
i.valid = true
// Loop until finds a key to be passed to the next level.
for {
if change := i.nextInStripe(); change == sameStripeNonSkippable || change == newStripe {
i.pos = iterPosNext
return true
}
key := i.iterKey
switch key.Kind() {
case InternalKeyKindDelete, InternalKeyKindMerge, InternalKeyKindSetWithDelete:
// We've hit a Delete, Merge or SetWithDelete, transform the
// SingleDelete into a full Delete.
i.key.SetKind(InternalKeyKindDelete)
i.skip = true
return true
case InternalKeyKindSet:
i.nextInStripe()
i.valid = false
return false
case InternalKeyKindSingleDelete:
continue
default:
i.err = base.CorruptionErrorf("invalid internal key kind: %d", errors.Safe(i.iterKey.Kind()))
i.valid = false
return false
}
}
}
func (i *compactionIter) saveKey() {
i.keyBuf = append(i.keyBuf[:0], i.iterKey.UserKey...)
i.key.UserKey = i.keyBuf
i.key.Trailer = i.iterKey.Trailer
i.keyTrailer = i.iterKey.Trailer
}
func (i *compactionIter) cloneKey(key []byte) []byte {
i.alloc, key = i.alloc.Copy(key)
return key
}
func (i *compactionIter) Key() InternalKey {
return i.key
}
func (i *compactionIter) Value() []byte {
return i.value
}
func (i *compactionIter) Valid() bool {
return i.valid
}
func (i *compactionIter) Error() error {
return i.err
}
func (i *compactionIter) Close() error {
err := i.iter.Close()
if i.err == nil {
i.err = err
}
// Close the closer for the current value if one was open.
if i.valueCloser != nil {
i.err = firstError(i.err, i.valueCloser.Close())
i.valueCloser = nil
}
return i.err
}
// Tombstones returns a list of pending range tombstones in the fragmenter
// up to the specified key, or all pending range tombstones if key = nil.
func (i *compactionIter) Tombstones(key []byte) []keyspan.Span {
if key == nil {
i.rangeDelFrag.Finish()
} else {
// The specified end key is exclusive; no versions of the specified
// user key (including range tombstones covering that key) should
// be flushed yet.
i.rangeDelFrag.TruncateAndFlushTo(key)
}
tombstones := i.tombstones
i.tombstones = nil
return tombstones
}
// RangeKeys returns a list of pending fragmented range keys up to the specified
// key, or all pending range keys if key = nil.
func (i *compactionIter) RangeKeys(key []byte) []keyspan.Span {
if key == nil {
i.rangeKeyFrag.Finish()
} else {
// The specified end key is exclusive; no versions of the specified
// user key (including range tombstones covering that key) should
// be flushed yet.
i.rangeKeyFrag.TruncateAndFlushTo(key)
}
rangeKeys := i.rangeKeys
i.rangeKeys = nil
return rangeKeys
}
func (i *compactionIter) emitRangeDelChunk(fragmented keyspan.Span) {
// Apply the snapshot stripe rules, keeping only the latest tombstone for
// each snapshot stripe.
currentIdx := -1
keys := fragmented.Keys[:0]
for _, k := range fragmented.Keys {
idx, _ := snapshotIndex(k.SeqNum(), i.snapshots)
if currentIdx == idx {
continue
}
if idx == 0 && i.elideRangeTombstone(fragmented.Start, fragmented.End) {
// This is the last snapshot stripe and the range tombstone
// can be elided.
break
}
keys = append(keys, k)
if idx == 0 {
// This is the last snapshot stripe.
break
}
currentIdx = idx
}
if len(keys) > 0 {
i.tombstones = append(i.tombstones, keyspan.Span{
Start: fragmented.Start,
End: fragmented.End,
Keys: keys,
})
}
}
func (i *compactionIter) emitRangeKeyChunk(fragmented keyspan.Span) {
// Elision of snapshot stripes happens in rangeKeyCompactionTransform, so no need to
// do that here.
if len(fragmented.Keys) > 0 {
i.rangeKeys = append(i.rangeKeys, fragmented)
}
}
// maybeZeroSeqnum attempts to set the seqnum for the current key to 0. Doing
// so improves compression and enables an optimization during forward iteration
// to skip some key comparisons. The seqnum for an entry can be zeroed if the
// entry is on the bottom snapshot stripe and on the bottom level of the LSM.
func (i *compactionIter) maybeZeroSeqnum(snapshotIdx int) {
if !i.allowZeroSeqNum {
// TODO(peter): allowZeroSeqNum applies to the entire compaction. We could
// make the determination on a key by key basis, similar to what is done
// for elideTombstone. Need to add a benchmark for compactionIter to verify
// that isn't too expensive.
return
}
if snapshotIdx > 0 {
// This is not the last snapshot
return
}
i.key.SetSeqNum(0)
}