forked from eclipseo/image-comparison-sources
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rd_average.py
executable file
·294 lines (260 loc) · 10.2 KB
/
rd_average.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/usr/bin/python3
# Copyright 2017-2020 Robert-André Mauchin
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
import os
import sys
import glob
import numpy as np
import pandas as pd
import six
import pytablewriter
from multiprocessing import Pool
def get_lossless_average(path, reference_format):
merged_data = {}
columns = [
"format",
"avg_bpp",
"avg_compression_ratio",
"avg_space_saving",
"wavg_encode_time",
"wavg_decode_time",
]
final_data = pd.DataFrame(columns=columns)
final_data.set_index("format", drop=False, inplace=True)
for format in next(os.walk(path))[1]:
if not glob.glob(path + "/" + format + "/lossless/*.out"):
print(
"Lossless results files could not be found for format {}.".format(
format
)
)
continue
rawdata = []
data_path = path + "/" + format + "/lossless/"
for f in glob.glob(data_path + "/*.out"):
rawdata.append(pd.read_csv(f, sep=":"))
merged_data[format] = pd.concat(rawdata)
sum_orig_file_size = np.sum(merged_data[format]["orig_file_size"])
sum_compressed_file_size = np.sum(merged_data[format]["compressed_file_size"])
sum_pixels = np.sum(merged_data[format]["pixels"])
avg_bpp = sum_compressed_file_size * 8 / sum_pixels
avg_compression_ratio = sum_orig_file_size / sum_compressed_file_size
avg_space_saving = 1 - (1 / avg_compression_ratio)
wavg_encode_time = np.average(
merged_data[format]["encode_time"], weights=merged_data[format]["pixels"]
)
wavg_decode_time = np.average(
merged_data[format]["decode_time"], weights=merged_data[format]["pixels"]
)
final_data.loc[format] = [
format,
avg_bpp,
avg_compression_ratio,
avg_space_saving,
wavg_encode_time,
wavg_decode_time,
]
final_data = final_data.assign(
weissman_score=lambda x: x.avg_compression_ratio
/ x.loc[reference_format, "avg_compression_ratio"]
* np.log(x.loc[reference_format, "wavg_encode_time"] * 1000)
/ np.log(x.wavg_encode_time * 1000)
)
final_data.sort_values("weissman_score", ascending=False, inplace=True)
results_file = path + "/" + os.path.basename(path) + ".lossless.out"
final_data.to_csv(results_file, sep=":")
file = open(path + "/" + os.path.basename(path) + ".lossless.md", "w")
markdown_writer = pytablewriter.MarkdownTableWriter()
markdown_writer.from_dataframe(final_data)
markdown_writer.stream = six.StringIO()
markdown_writer.write_table()
file.write(markdown_writer.stream.getvalue())
file.close()
print("Lossless results file successfully saved to {}.".format(results_file))
def get_lossy_average(args):
[path, format, reference_format] = args
if not glob.glob(path + "/" + format + "/lossy/*.out"):
print("Lossy results files could not be found for format {}.".format(format))
return
rawdata = []
merged_data = []
columns = [
"file_name",
"quality",
"orig_file_size",
"compressed_file_size",
"pixels",
"bpp",
"compression_ratio",
"encode_time",
"decode_time",
"ssim_score",
"msssim_score",
"ciede2000_score",
"psnrhvs_score",
"vmaf_score",
"butteraugli_score",
"dssim_score",
"ssimulacra_score",
]
final_columns = [
"quality",
"avg_bpp",
"avg_compression_ratio",
"avg_space_saving",
"wavg_encode_time",
"wavg_decode_time",
"wavg_ssim_score",
"wavg_msssim_score",
"wavg_ciede2000_score",
"wavg_psnrhvs_score",
"wavg_vmaf_score",
"wavg_butteraugli_score",
"wavg_dssim_score",
"wavg_ssimulacra_score",
]
final_data = pd.DataFrame(columns=final_columns)
data_path = path + "/" + format + "/lossy/"
for f in glob.glob(data_path + "*.out"):
rawdata.append(pd.read_csv(f, sep=":"))
quality_length = len(rawdata[0].index)
for i in range(quality_length):
merged_data.insert(i, pd.DataFrame(columns=columns))
for data in rawdata:
merged_data[i] = merged_data[i].append(data.iloc[[i]])
merged_data[i].sort_values("file_name", ascending=True, inplace=True)
quality = np.mean(merged_data[i]["quality"])
sum_orig_file_size = np.sum(merged_data[i]["orig_file_size"])
sum_compressed_file_size = np.sum(merged_data[i]["compressed_file_size"])
sum_pixels = np.sum(merged_data[i]["pixels"])
avg_bpp = sum_compressed_file_size * 8 / sum_pixels
avg_compression_ratio = sum_orig_file_size / sum_compressed_file_size
avg_space_saving = 1 - (1 / avg_compression_ratio)
wavg_encode_time = np.average(
merged_data[i]["encode_time"], weights=merged_data[i]["pixels"]
)
wavg_decode_time = np.average(
merged_data[i]["decode_time"], weights=merged_data[i]["pixels"]
)
wavg_ssim_score = np.average(
merged_data[i]["ssim_score"], weights=merged_data[i]["pixels"]
)
wavg_ciede2000_score = np.average(
merged_data[i]["ciede2000_score"], weights=merged_data[i]["pixels"]
)
wavg_msssim_score = np.average(
merged_data[i]["msssim_score"], weights=merged_data[i]["pixels"]
)
wavg_psnrhvs_score = np.average(
merged_data[i]["psnrhvs_score"], weights=merged_data[i]["pixels"]
)
wavg_vmaf_score = np.average(
merged_data[i]["vmaf_score"], weights=merged_data[i]["pixels"]
)
wavg_butteraugli_score = np.average(
merged_data[i]["butteraugli_score"], weights=merged_data[i]["pixels"]
)
wavg_dssim_score = np.average(
merged_data[i]["dssim_score"], weights=merged_data[i]["pixels"]
)
wavg_ssimulacra_score = np.average(
merged_data[i]["ssimulacra_score"], weights=merged_data[i]["pixels"]
)
final_data.loc[i] = [
quality,
avg_bpp,
avg_compression_ratio,
avg_space_saving,
wavg_encode_time,
wavg_decode_time,
wavg_ssim_score,
wavg_msssim_score,
wavg_ciede2000_score,
wavg_psnrhvs_score,
wavg_vmaf_score,
wavg_butteraugli_score,
wavg_dssim_score,
wavg_ssimulacra_score,
]
results_file = path + "/" + os.path.basename(path) + "." + format + ".lossy.out"
final_data.to_csv(results_file, sep=":", index=False)
print(
"Lossy results file for format {} successfully saved to {}.".format(
format, results_file
)
)
def main(argv):
if sys.version_info[0] < 3 and sys.version_info[1] < 5:
raise Exception("Python 3.5 or a more recent version is required.")
if len(argv) < 2 or len(argv) > 3:
print(
"rd_average.py: Calculate a per format weighted averages of the results files generated by rd_collect.py"
)
print("Arg 1: Path to the results of a subset generated by rd_collect.py")
print(' For ex: rd_average.py "results/subset1"')
print("Arg 2: Reference format with which to compare other formats.")
print(" Default to mozjpeg")
return
results_folder = os.path.normpath(argv[1])
available_formats = next(os.walk(results_folder))[1]
# Check is there is actually results files in the path provided
if (
not os.path.isdir(results_folder)
or not available_formats
or not glob.glob(results_folder + "/**/*.out", recursive=True)
):
print(
"Could not find all results file. Please make sure the path provided is correct."
)
return
try:
reference_format = argv[2]
except IndexError:
reference_format = "mozjpeg"
if (
reference_format not in available_formats
or not glob.glob(results_folder + "/" + reference_format + "/lossless/*.out")
or not glob.glob(results_folder + "/" + reference_format + "/lossy/*.out")
):
print(
"Could not find reference format results files. Please choose a format among {} or check if the reference format results files are present.".format(
available_formats
)
)
return
get_lossless_average(results_folder, reference_format)
Pool().map(
get_lossy_average,
[
(results_folder, format, reference_format)
for format in next(os.walk(results_folder))[1]
],
)
if __name__ == "__main__":
main(sys.argv)