-
Notifications
You must be signed in to change notification settings - Fork 1
/
finetune_init.py
128 lines (103 loc) · 5.09 KB
/
finetune_init.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import os
import numpy as np
import tensorflow as tf
from alexnet import AlexNet
from dataprocess import ImageDataGenerator
from datetime import datetime
from tensorflow.contrib.data import Iterator
from config import *
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
if not os.path.isdir(checkpoint_path):
os.mkdir(checkpoint_path)
with tf.device('/cpu:0'):
tr_data = ImageDataGenerator(train_init_file,
mode='training',
batch_size=train_batch_size,
num_classes=num_classes,
shuffle=True)
val_data = ImageDataGenerator(val_file,
mode='inference',
batch_size=train_batch_size,
num_classes=num_classes,
shuffle=False)
iterator = Iterator.from_structure(tr_data.data.output_types,
tr_data.data.output_shapes)
next_batch = iterator.get_next()
training_init_op = iterator.make_initializer(tr_data.data)
validation_init_op = iterator.make_initializer(val_data.data)
x = tf.placeholder(tf.float32, [train_batch_size, 227, 227, 3])
y = tf.placeholder(tf.float32, [train_batch_size, num_classes])
keep_prob = tf.placeholder(tf.float32)
model = AlexNet(x, keep_prob, num_classes, skip_layers)
score = model.fc8
var_list = [v for v in tf.trainable_variables() ]#if v.name.split('/')[0] in train_layers]
with tf.name_scope("cross_ent"):
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=score,
labels=y))
with tf.name_scope("train"):
gradients = tf.gradients(loss, var_list)
gradients = list(zip(gradients, var_list))
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
train_op = optimizer.apply_gradients(grads_and_vars=gradients)
for gradient, var in gradients:
tf.summary.histogram(var.name + '/gradient', gradient)
for var in var_list:
tf.summary.histogram(var.name, var)
tf.summary.scalar('cross_entropy', loss)
with tf.name_scope("accuracy"):
correct_pred = tf.equal(tf.argmax(score, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
tf.summary.scalar('accuracy', accuracy)
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter(filewriter_path)
saver = tf.train.Saver()
train_batches_per_epoch = int(np.floor(tr_data.data_size / train_batch_size))
val_batches_per_epoch = int(np.floor(val_data.data_size / train_batch_size))
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
writer.add_graph(sess.graph)
model.load_initial_weights(sess)
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
saver.restore(sess, os.path.join(checkpoint_path, ckpt_name))
print ckpt_name + "is loaded model successfully!!"
print("{} Start training...".format(datetime.now()))
print("{} Open Tensorboard at --logdir {}".format(datetime.now(),
filewriter_path))
for epoch in range(num_epochs):
print("{} Epoch number: {}".format(datetime.now(), epoch+1))
sess.run(training_init_op)
for step in range(train_batches_per_epoch):
_, img_batch, label_batch = sess.run(next_batch)
sess.run(train_op, feed_dict={x: img_batch,
y: label_batch,
keep_prob: dropout_rate})
if step % display_step == 0:
s = sess.run(merged_summary, feed_dict={x: img_batch,
y: label_batch,
keep_prob: 1.})
writer.add_summary(s, epoch*train_batches_per_epoch + step)
if epoch>200:
learning_rate=0.00001
print("{} Start validation".format(datetime.now()))
sess.run(validation_init_op)
test_acc = 0.
test_count = 0
for _ in range(val_batches_per_epoch):
_, img_batch, label_batch = sess.run(next_batch)
acc = sess.run(accuracy, feed_dict={x: img_batch,
y: label_batch,
keep_prob: 1.})
test_acc += acc
test_count += 1
test_acc /= test_count
print("{} Validation Accuracy = {:.4f}".format(datetime.now(),
test_acc))
print("{} Saving checkpoint of model...".format(datetime.now()))
checkpoint_name = os.path.join(checkpoint_path,
'model_epoch'+str(epoch+1)+'.ckpt')
save_path = saver.save(sess, checkpoint_name)
print("{} Model checkpoint saved at {}".format(datetime.now(),
checkpoint_name))