forked from R-JunmingChen/NEMG-IQA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
175 lines (141 loc) · 7.69 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import copy
import time
import torch
from scipy.stats import spearmanr, pearsonr
from dataset import ImageDataset as dataset
from NestedNet import Model as model
from util import Context
from sklearn.metrics import mean_squared_error
from math import sqrt
config = Context().get_config()
logger = Context().get_logger()
# model
MODEL_SAVE_PATH = config["project"]["save_model"]
MODEL_LOAD_PATH = config["project"]["load_model"]
# datasetScores
INPUT_PATH = config["dataset"]["image_dir"]
LIST_SCORE = config["dataset"]["score_file"]
# train para
LEARNING_RATE = config['train']['learning_rate']
NUM_EPOCHS = config['train']["num_epochs"]
MUTI_GPU_MODE = config["train"]["muti_gpu"]
WEIGHT_DECAY = config["train"]["weight_decay"]
def train_model(model, device, optimizer, dataloaders, scheduler, num_epochs=100):
since = time.time()
best_PLCC = -1.0
best_SRCC = -1.0
srcc_set = []
srcc_test_set = []
plcc_set = []
plcc_test_set = []
for epoch in range(num_epochs):
logger.critical('Epoch {}/{}'.format(epoch, num_epochs - 1))
logger.info('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'test']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
groundtruth_mos_set = []
predict_mos_set = []
epoch_phase_loss = 0.0
epoch_phase_size = 0
# Iterate over data.
for batch_index, (
r_all_patch_set, d_all_patch_set, mos_set) in enumerate(
dataloaders[phase]):
r_all_patch_set = r_all_patch_set.to(device)
d_all_patch_set = d_all_patch_set.to(device)
mos_set = mos_set.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
with torch.set_grad_enabled(phase == 'train'):
total_loss, predict_mos = model(r_all_patch_set, d_all_patch_set, mos_set)
total_loss = total_loss.float()
predict_mos = predict_mos.reshape(mos_set.shape).float()
# backward + optimize only if in training phase
if phase == 'train':
total_loss.backward()
optimizer.step()
else:
predict_mos=torch.mean(predict_mos)
mos_set=torch.mean(mos_set)
# statistics
current_average_loss = total_loss.item()
epoch_phase_loss += current_average_loss * r_all_patch_set.size(0)
epoch_phase_size += r_all_patch_set.size(0)
groundtruth_mos_set.append(mos_set.flatten())
predict_mos_set.append(predict_mos.flatten())
logger.info('batch {} Loss: {:.4f} '.format(batch_index, current_average_loss))
epoch_average_loss = epoch_phase_loss / epoch_phase_size
groundtruth_mos_set = torch.cat(groundtruth_mos_set).flatten().data.cpu().numpy()
predict_mos_set = torch.cat(predict_mos_set).flatten().data.cpu().numpy()
epoch_PLCC = pearsonr(groundtruth_mos_set, predict_mos_set)[0] # (corr,p value)
epoch_SRCC = spearmanr(groundtruth_mos_set, predict_mos_set)[0] # (corr,p value)
epoch_RMSE = sqrt(mean_squared_error(predict_mos_set, groundtruth_mos_set))
logger.critical('epoch: {} {} Loss: {:.4f} PLCC: {:.4f} SRCC: {:.4f} RMSE: {:.4}'.format(epoch,
phase,
epoch_average_loss,
epoch_PLCC,
epoch_SRCC,
epoch_RMSE))
# save every 5 epoch
if epoch % 5 == 0 and phase == "test":
CUR_MODEL_SAVE_PATH = '{pt}_{epoch}'.format(pt=MODEL_SAVE_PATH, epoch=epoch)
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(best_model_wts, CUR_MODEL_SAVE_PATH)
if phase == 'test' and epoch_SRCC > best_SRCC:
best_SRCC = epoch_SRCC
best_PLCC = epoch_PLCC
CUR_MODEL_SAVE_PATH = '{pt}_best_srcc'.format(pt=MODEL_SAVE_PATH)
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(best_model_wts, CUR_MODEL_SAVE_PATH)
# record plcc and srcc for drawing
if phase == 'train':
scheduler.step(epoch_average_loss)
plcc_set.append(epoch_PLCC)
srcc_set.append(epoch_SRCC)
if phase == 'test':
plcc_test_set.append(epoch_PLCC)
srcc_test_set.append(epoch_SRCC)
logger.info('-' * 10)
logger.info('Epoch {}/{} done \n'.format(epoch, num_epochs - 1)) # epoch end
time_elapsed = time.time() - since
logger.info('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
logger.info('Best PLCC: {:4f} Best SRCC: {:4f}'.format(best_PLCC, best_SRCC))
return model, plcc_set, plcc_test_set, srcc_set, srcc_test_set
if __name__ == '__main__':
video_datasets = {x: dataset(LIST_SCORE, INPUT_PATH, mode=x) for x in ['train', 'test']}
dataloaders={'train':torch.utils.data.DataLoader(video_datasets['train'], batch_size=40, shuffle=True, num_workers=4),
'test':torch.utils.data.DataLoader(video_datasets['test'], batch_size=40, shuffle=False, num_workers=4)
}
# model
model = model()
# device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
logger.info('use {0}'.format('cuda' if torch.cuda.is_available() else 'cpu'))
if torch.cuda.device_count() > 1 and MUTI_GPU_MODE == True:
# use all gpus
device_ids = range(0, torch.cuda.device_count())
model = torch.nn.DataParallel(model.to(device), device_ids=device_ids)
logger.info("muti-gpu mode enabled, use {0:d} gpus".format(torch.cuda.device_count()))
else:
model = model.to(device)
# load existed model
if (MODEL_LOAD_PATH != None):
logger.info("load model in {}".format(MODEL_LOAD_PATH))
model.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(MODEL_LOAD_PATH).items()})
model = model.to(device)
logger.info("learning rate: {}".format(LEARNING_RATE))
res_params = list(map(id, model.resnet.parameters()))
other_params = filter(lambda p: id(p) not in res_params,
model.parameters())
res_params_ = filter(lambda p: id(p) in res_params,
model.parameters())
optimizer = torch.optim.Adam([ {'params': res_params_},{'params': other_params,'lr':LEARNING_RATE*10}], lr=LEARNING_RATE, weight_decay=WEIGHT_DECAY)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5)
best_model_wts, plcc_set, plcc_test, srcc_set, srcc_test = train_model(model, device, optimizer, dataloaders,
scheduler, num_epochs=NUM_EPOCHS)