-
Notifications
You must be signed in to change notification settings - Fork 20
/
model.py
31 lines (27 loc) · 1.21 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.resnet import resnet50
class Model(nn.Module):
def __init__(self, feature_dim=128, dataset='cifar10'):
super(Model, self).__init__()
self.f = []
for name, module in resnet50().named_children():
if name == 'conv1':
module = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
if dataset == 'cifar10':
if not isinstance(module, nn.Linear) and not isinstance(module, nn.MaxPool2d):
self.f.append(module)
elif dataset == 'tiny_imagenet' or dataset == 'stl10':
if not isinstance(module, nn.Linear):
self.f.append(module)
# encoder
self.f = nn.Sequential(*self.f)
# projection head
self.g = nn.Sequential(nn.Linear(2048, 512, bias=False), nn.BatchNorm1d(512),
nn.ReLU(inplace=True), nn.Linear(512, feature_dim, bias=True))
def forward(self, x):
x = self.f(x)
feature = torch.flatten(x, start_dim=1)
out = self.g(feature)
return F.normalize(feature, dim=-1), F.normalize(out, dim=-1)