-
Notifications
You must be signed in to change notification settings - Fork 0
/
main_train_test_apr.py
247 lines (203 loc) · 10.3 KB
/
main_train_test_apr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Entry point training and testing multi-scene and single-scene APRs
"""
import argparse
import torch
import numpy as np
import json
import logging
from util import utils
import time
from datasets.CameraPoseDataset import CameraPoseDataset
from models.pose_losses import CameraPoseLoss
from models.pose_regressors import get_model
from os.path import join
import os
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument("model_name",
help="name of model to create (e.g. posenet, transposenet")
arg_parser.add_argument("mode", help="train or eval")
arg_parser.add_argument("backbone_path", help="path to backbone .pth - e.g. efficientnet")
arg_parser.add_argument("dataset_path", help="path to the physical location of the dataset")
arg_parser.add_argument("labels_file", help="path to a file mapping images to their poses")
arg_parser.add_argument("config_file", help="path to configuration file", default="7scenes-config.json")
arg_parser.add_argument("--checkpoint_path",
help="path to a pre-trained model (should match the model indicated in model_name")
arg_parser.add_argument("--experiment", help="a short string to describe the experiment/commit used")
args = arg_parser.parse_args()
utils.init_logger()
# Record execution details
logging.info("Start {} with {}".format(args.model_name, args.mode))
if args.experiment is not None:
logging.info("Experiment details: {}".format(args.experiment))
logging.info("Using dataset: {}".format(args.dataset_path))
logging.info("Using labels file: {}".format(args.labels_file))
# Read configuration
with open(args.config_file, "r") as read_file:
config = json.load(read_file)
model_params = config[args.model_name]
general_params = config['general']
config = {**model_params, **general_params}
logging.info("Running with configuration:\n{}".format(
'\n'.join(["\t{}: {}".format(k, v) for k, v in config.items()])))
# Set the seeds and the device
use_cuda = torch.cuda.is_available()
device_id = 'cpu'
torch_seed = 0
numpy_seed = 2
torch.manual_seed(torch_seed)
if use_cuda:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device_id = config.get('device_id')
np.random.seed(numpy_seed)
device = torch.device(device_id)
# Create the model
model = get_model(args.model_name, args.backbone_path, config).to(device)
# Load the checkpoint if needed
if args.checkpoint_path:
model.load_state_dict(torch.load(args.checkpoint_path, map_location=device_id))
logging.info("Initializing from checkpoint: {}".format(args.checkpoint_path))
if args.mode == 'train':
# Set to train mode
model.train()
# Freeze parts of the model if indicated
freeze = config.get("freeze")
freeze_exclude_phrase = config.get("freeze_exclude_phrase")
if isinstance(freeze_exclude_phrase, str):
freeze_exclude_phrase = [freeze_exclude_phrase]
if freeze:
for name, parameter in model.named_parameters():
freeze_param = True
for phrase in freeze_exclude_phrase:
if phrase in name:
freeze_param = False
break
if freeze_param:
parameter.requires_grad_(False)
# Set the loss
pose_loss = CameraPoseLoss(config).to(device)
nll_loss = torch.nn.NLLLoss()
# Set the optimizer and scheduler
params = list(model.parameters()) + list(pose_loss.parameters())
optim = torch.optim.Adam(filter(lambda p: p.requires_grad, params),
lr=config.get('lr'),
eps=config.get('eps'),
weight_decay=config.get('weight_decay'))
scheduler = torch.optim.lr_scheduler.StepLR(optim,
step_size=config.get('lr_scheduler_step_size'),
gamma=config.get('lr_scheduler_gamma'))
# Set the dataset and data loader
no_augment = config.get("no_augment")
if no_augment:
transform = utils.test_transforms.get('baseline')
else:
transform = utils.train_transforms.get('baseline')
equalize_scenes = config.get("equalize_scenes")
dataset = CameraPoseDataset(args.dataset_path, args.labels_file, transform, equalize_scenes)
loader_params = {'batch_size': config.get('batch_size'),
'shuffle': True,
'num_workers': config.get('n_workers')}
dataloader = torch.utils.data.DataLoader(dataset, **loader_params)
# Get training details
n_freq_print = config.get("n_freq_print")
n_freq_checkpoint = config.get("n_freq_checkpoint")
n_epochs = config.get("n_epochs")
# Train
checkpoint_prefix = join(utils.create_output_dir('out'),utils.get_stamp_from_log())
n_total_samples = 0.0
loss_vals = []
sample_count = []
for epoch in range(n_epochs):
# Resetting temporal loss used for logging
running_loss = 0.0
n_samples = 0
for batch_idx, minibatch in enumerate(dataloader):
for k, v in minibatch.items():
minibatch[k] = v.to(device)
gt_pose = minibatch.get('pose').to(dtype=torch.float32)
gt_scene = minibatch.get('scene').to(device)
batch_size = gt_pose.shape[0]
n_samples += batch_size
n_total_samples += batch_size
if freeze: # For TransPoseNet
model.eval()
with torch.no_grad():
transformers_res = model.forward_transformers(minibatch)
model.train()
# Zero the gradients
optim.zero_grad()
# Forward pass to estimate the pose
if freeze:
res = model.forward_heads(transformers_res)
else:
res = model(minibatch)
est_pose = res.get('pose')
est_scene_log_distr = res.get('scene_log_distr')
if est_scene_log_distr is not None:
# Pose Loss + Scene Loss
criterion = pose_loss(est_pose, gt_pose) + nll_loss(est_scene_log_distr, gt_scene)
else:
# Pose loss
criterion = pose_loss(est_pose, gt_pose)
# Collect for recoding and plotting
running_loss += criterion.item()
loss_vals.append(criterion.item())
sample_count.append(n_total_samples)
# Back prop
criterion.backward()
optim.step()
# Record loss and performance on train set
if batch_idx % n_freq_print == 0:
posit_err, orient_err = utils.pose_err(est_pose.detach(), gt_pose.detach())
logging.info("[Batch-{}/Epoch-{}] running camera pose loss: {:.3f}, "
"camera pose error: {:.2f}[m], {:.2f}[deg]".format(
batch_idx+1, epoch+1, (running_loss/n_samples),
posit_err.mean().item(),
orient_err.mean().item()))
# Save checkpoint
if (epoch % n_freq_checkpoint) == 0 and epoch > 0:
torch.save(model.state_dict(), checkpoint_prefix + '_checkpoint-{}.pth'.format(epoch))
# Scheduler update
scheduler.step()
logging.info('Training completed')
torch.save(model.state_dict(), checkpoint_prefix + '_final.pth'.format(epoch))
# Plot the loss function
loss_fig_path = checkpoint_prefix + "_loss_fig.png"
utils.plot_loss_func(sample_count, loss_vals, loss_fig_path)
else: # Test
# Set to eval mode
model.eval()
# Set the dataset and data loader
transform = utils.test_transforms.get('baseline')
dataset = CameraPoseDataset(args.dataset_path, args.labels_file, transform)
loader_params = {'batch_size': 1,
'shuffle': False,
'num_workers': config.get('n_workers')}
dataloader = torch.utils.data.DataLoader(dataset, **loader_params)
stats = np.zeros((len(dataloader.dataset), 3))
with torch.no_grad():
for i, minibatch in enumerate(dataloader, 0):
for k, v in minibatch.items():
minibatch[k] = v.to(device)
gt_scene = minibatch.get('scene')
minibatch['scene'] = None # avoid using ground-truth scene during prediction
gt_pose = minibatch.get('pose').to(dtype=torch.float32)
# Forward pass to predict the pose
tic = time.time()
res = model(minibatch)
est_pose = res.get('pose')
toc = time.time()
# Evaluate error
posit_err, orient_err = utils.pose_err(est_pose, gt_pose)
# Collect statistics
stats[i, 0] = posit_err.item()
stats[i, 1] = orient_err.item()
stats[i, 2] = (toc - tic)*1000
logging.info("Pose error: {:.3f}[m], {:.3f}[deg], inferred in {:.2f}[ms]".format(
stats[i, 0], stats[i, 1], stats[i, 2]))
# Record overall statistics
logging.info("Performance of {} on {}".format(args.checkpoint_path, args.labels_file))
logging.info("Median pose error: {:.3f}[m], {:.3f}[deg]".format(np.nanmedian(stats[:, 0]), np.nanmedian(stats[:, 1])))
logging.info("Mean inference time:{:.2f}[ms]".format(np.mean(stats[:, 2])))