This project provides a TensorRT implementation of RIFE for ultra fast frame interpolation inside ComfyUI
This project is licensed under CC BY-NC-SA, everyone is FREE to access, use, modify and redistribute with the same license.
If you like the project, please give me a star! ⭐
Note: The following results were benchmarked on FP16 engines inside ComfyUI, using 2000 frames consisting of 2 alternating similar frames, averaged 2-3 times
Device | Rife Engine | Resolution | Multiplier | FPS |
---|---|---|---|---|
H100 | rife49_ensemble_True_scale_1_sim | 512 x 512 | 2 | 45 |
H100 | rife49_ensemble_True_scale_1_sim | 512 x 512 | 4 | 57 |
H100 | rife49_ensemble_True_scale_1_sim | 1280 x 1280 | 2 | 21 |
Navigate to the ComfyUI /custom_nodes
directory
git clone https://github.com/yuvraj108c/ComfyUI-Rife-Tensorrt
cd ./ComfyUI-Rife-Tensorrt
pip install -r requirements.txt
-
Download one of the following onnx models:
-
Edit onnx/trt paths inside export_trt.py and build tensorrt engine by running:
python export_trt.py
-
Place the exported engine inside ComfyUI
/models/tensorrt/rife
directory
- Insert node by
Right Click -> tensorrt -> Rife Tensorrt
- Image resolutions between
256x256
and3840x3840
will work with the tensorrt engines
- Ubuntu 22.04 LTS, Cuda 12.4, Tensorrt 10.4.0, Python 3.10, RTX 3070 GPU
- Windows (Not tested, but should work)
- https://github.com/styler00dollar/VSGAN-tensorrt-docker
- https://github.com/Fannovel16/ComfyUI-Frame-Interpolation
- https://github.com/hzwer/ECCV2022-RIFE
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)