##Label Assignment Matters: A Gaussian Assignment Strategy for Tiny Object Detection
Crop image dataset Download Google Drive
whole image dataset Baidu Drive (Passwd:nudt)
Model | AP | AP_vt | Speed | Download |
---|---|---|---|---|
RetinaNet-S-GA | 20.2 | 8.7 | 34.0 | Google Drive Baidu Drive (Passwd:nudt) |
FCOS-S-GA | 19.6 | 7.9 | 34.8 | Google Drive Baidu Drive (Passwd:nudt) |
TTFNet-GA | 21.8 | 10.3 | 34.3 | Google Drive Baidu Drive (Passwd:nudt) |
TTFNet-MiTB1-GA | 24.2 | 10.4 | 37.6 | Google Drive Baidu Drive (Passwd:nudt) |
Code (based on mmdetection) The detailed installation steps are in the \docs\get_started.md
pytorch = 1.10.0
Linux or macOS (Windows is in experimental support)
Python 3.6+
PyTorch 1.3+
CUDA 9.2+ (If you build PyTorch from source, CUDA 9.0 is also compatible)
GCC 5+
numpy = 1.21.2
mmcv-full >=1.3.17
mmdet = 2.19.0
You can also use this command
pip install -r requirements.txt
- Install mmcv-full.
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu110/torch1.7.0/index.html
- Install MMDetection.
cd GuassionAssignment
pip install -r requirements/build.txt
pip install -v -e . # or "python setup.py develop"
- Download the AI-TOD Dataset
- Install mmdetection
- Download our training models
- Edit the
data_root,
in config files in./configs_GA/
👇 Core File 👇
Config file
config_GA/atss_darknet53_aitod_2x_ga.py.
config_GA/fcos_darknet53_ga_aitod_2x.py. config_GA/retina_darknet53_aitod_2x_ga.py
config_GA/ttfnet_darknet53_aitod_iou_mask_ban_2x.py config_GA/ttfnet_mitb1_aitod_160k_ctfocal2.py
python train.py ../config_GA/atss_darknet53_aitod_2x_ga.py
python test.py ../config_GA/atss_darknet53_aitod_2x_ga.py ../{your_checkpoint_path} --eval bbox