-
Notifications
You must be signed in to change notification settings - Fork 0
/
metafile.yml
99 lines (95 loc) · 3.17 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
Collections:
- Name: Libra R-CNN
Metadata:
Training Data: COCO
Training Techniques:
- IoU-Balanced Sampling
- SGD with Momentum
- Weight Decay
Training Resources: 8x V100 GPUs
Architecture:
- Balanced Feature Pyramid
Paper:
URL: https://arxiv.org/abs/1904.02701
Title: 'Libra R-CNN: Towards Balanced Learning for Object Detection'
README: configs/libra_rcnn/README.md
Code:
URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/necks/bfp.py#L10
Version: v2.0.0
Models:
- Name: libra_faster_rcnn_r50_fpn_1x_coco
In Collection: Libra R-CNN
Config: configs/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.6
inference time (ms/im):
- value: 52.63
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 38.3
Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth
- Name: libra_faster_rcnn_r101_fpn_1x_coco
In Collection: Libra R-CNN
Config: configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py
Metadata:
Training Memory (GB): 6.5
inference time (ms/im):
- value: 69.44
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 40.1
Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203-8dba6a5a.pth
- Name: libra_faster_rcnn_x101_64x4d_fpn_1x_coco
In Collection: Libra R-CNN
Config: configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py
Metadata:
Training Memory (GB): 10.8
inference time (ms/im):
- value: 117.65
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 42.7
Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315-3a7d0488.pth
- Name: libra_retinanet_r50_fpn_1x_coco
In Collection: Libra R-CNN
Config: configs/libra_rcnn/libra_retinanet_r50_fpn_1x_coco.py
Metadata:
Training Memory (GB): 4.2
inference time (ms/im):
- value: 56.5
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (800, 1333)
Epochs: 12
Results:
- Task: Object Detection
Dataset: COCO
Metrics:
box AP: 37.6
Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205-804d94ce.pth