forked from Urban3DChallenge/Urban3DChallenge.github.io
-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
1028 lines (944 loc) · 41.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
<meta
name="keywords"
content="icpr, workshop, computer vision, computer graphics, visual learning, simulation environments, robotics, machine learning, object detection, single object tracking, Multiple-object tracking"
/>
<link rel="shortcut icon" href="2022/img/website_logo.png" />
<title>
SatVideoDT: The 1st Challenge on Moving Object Detection and Tracking in
Satellite Videos
</title>
<meta
name="description"
content="SatVideoDT: The 1st Challenge on Moving Object Detection and Tracking in Satellite Videos ---"
/>
<!--Open Graph Related Stuff-->
<meta
property="og:title"
content="Challenge on Moving Object Detection and Tracking in Satellite Videos"
/>
<meta property="og:url" content="https://SatVideoDTchallenge.github.io/" />
<meta
property="og:description"
content="SatVideoDT: The 1st Challenge on Moving Object Detection and Tracking in Satellite Videos ---"
/>
<meta
property="og:site_name"
content="SatVideoDT: The 1st Challenge on Moving Object Detection and Tracking in Satellite Videos"
/>
<meta property="og:image" content="" />
<meta property="og:image:url" content="" />
<!--Twitter Card Stuff-->
<meta name="twitter:card" content="summary_large_image" />
<meta
name="twitter:title"
content="SatVideoDT: The 1st Challenge on Moving Object Detection and Tracking in Satellite Videos"
/>
<meta
name="twitter:image"
content="https://github.com/SatVideoDTChallenge/2022/img/website_logo.png"
/>
<meta name="twitter:url" content="satvideodtchallenge.github.io" />
<meta
name="twitter:description"
content="SatVideoDT: The 1st Challenge on Moving Object Detection and Tracking in Satellite Videos ---"
/>
<!-- CSS -->
<link
rel="stylesheet"
type="text/css"
href="./2022/css/bootstrap.min.css"
/>
<link
rel="stylesheet"
type="text/css"
href="./2022/css/main.css?2"
media="screen,projection"
/>
<!-- Font Awesome -->
<script src="/static/js/jquery.min.js?1"></script>
<script
src="https://kit.fontawesome.com/ff6e9b10da.js"
crossorigin="anonymous"
></script>
<script src="/static/js/moment.min.js?1"></script>
<script src="/static/js/main.js?2"></script>
<style>
.divcss5{text-align:center}
</style>
<style type="text/css">
#table1{
font: bold 16px/1.4em "Trebuchet MS", sans-serif;
}
#table1 thead th{
padding: 15px;
border: 1px solid #d8e9b7;
border-bottom: 3px solid #d8e9b7;
text-shadow: 1px 1px 1px #d8e9b7;
color: #fff;
background-color: #d8e9b7;
border-radius: 5px 5px 0px 0px;
}
#table1 thead th:empty{
background-color: transparent;
border: none;
}
#table1 tbody th{
padding: 0px 10px;
border: 1px solid #d8e9b7;
border-right: 3px solid #d8e9b7;
text-shadow: 1px 1px 1px #d8e9b7;
color: #666;
background-color: #d8e9b7;
border-radius: 5px 0px 0px 5px;
}
#table1 tbody td{
padding: 10px;
border: 2px solid #E7EFE0;
text-align: center;
text-shadow: 1px 1px 1px #fff;
color: #666;
background-color: #DEF3CA;
border-radius: 2px;
}
#table1 tbody span.check::before{
content: url(images/check0.png);
}
#table1 tfoot td{
padding: 10px 0px;
font-size: 32px;
color: #d6e2b5;
text-align: center;
text-shadow: 1px 1px 1px #444;
}
</style>
</head>
<body>
<style>
#year-header {
border: none;
display: block;
width: 100%;
background: #eaebea;
}
#year-header ul {
display: block;
margin: 0;
margin-block-start: 0;
margin-block-end: 0;
padding-inline-start: 0;
text-align: center;
}
#year-header ul li {
display: inline-block;
list-style: none;
}
#year-header ul li a {
display: block;
text-decoration: none;
border: none;
padding: 0 1.7em;
height: 3.2em;
line-height: 3.2em;
vertical-align: middle;
font-family: Helvetica, Arial, sans-serif;
font-size: 1em;
font-weight: 400;
color: #444;
}
@media (max-width: 1000px) {
#year-header ul li a {
font-size: 0.8em;
}
}
#year-header ul li a:hover {
background: #dddedd;
color: #000;
transition: 0.5s;
}
</style>
<div class="navbar navbar-default sticky-top">
<div class="container">
<div class="navbar-header">
<a class="navbar-brand" href="/"></a>
<button
class="navbar-toggle"
type="button"
data-toggle="collapse"
data-target="#navbar-main"
>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
</div>
<div class="navbar-collapse collapse" id="navbar-main">
<ul class="nav navbar-nav">
<li><a href="#Description">Description</a></li>
<li><a href="#Datasets">Datasets</a></li>
<li><a href="#Evaluation">Evaluation</a></li>
<li><a href="#Baseline">Baseline</a></li>
<li><a href="#Submission">Submission</a></li>
<li><a href="#dates">Important Dates</a></li>
<li><a href="#Conditions">Conditions</a></li>
<li><a href="#Issues">Issues</a></li>
<!-- <li><a href="#schedule">Schedule</a></li>
<li><a href="#speakers">Invited Speakers</a></li>
-->
<!-- <li><a href="#awards">Panel</a></li> -->
<!-- <li><a href="#accepted">Accepted Papers</a></li>-->
<li><a href="#organizers">Organizers</a></li>
<!--<li><a href="#programcommittee">Program Committee</a></li>-->
<!-- <li><a href="#sponsors">Sponsors</a></li> -->
</ul>
</div>
</div>
</div>
<div class="container">
<div class="page-content">
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<img class="img-fluid" src="2022/img/website_logo.png" />
<!-- <small style="float:right;margin-top:1mm;margin-right:5mm;">Image credit to <a-->
<!-- href="https://pixabay.com/users/danielhannah-8058574" target="_blank">Daniel Hannah</a></small>-->
<!--<center>Date TBD, half-day</center>-->
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="intro"></a>
<h2>News and Updates</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<div class="col-xs-12">
<p>
2022-05-16: The results of the competition have been posted at the end of this page.
</p>
<p>
2022-04-25: Extra training data has been released (<a href="https://pan.baidu.com/s/17oaT8zxmsVRv_wutHJR-Sw?pwd=VISO" target="_blank"
>Baidu Drive </a> (Extraction code: VISO).
</p>
<p>
2022-04-20: Test server</a> online. Test data has been released (<a href="https://drive.google.com/drive/folders/1iRg72Bre4QagbqxcYevcgDoDV5oR-c23?usp=sharing" target="_blank"
>google Drive </a>,<a href="https://pan.baidu.com/s/1MHXGsyGhi910n0ljMfnxpA?pwd=VISO" target="_blank"
>Baidu Drive </a> (Extraction code: VISO).
</p>
<p>
2022-03-20: The registration of the Track 2 begins and <a href="https://codalab.lisn.upsaclay.fr/competitions/3079" target="_blank"
>Validation server</a> online. The registration of the Track 3 begins and <a href="https://codalab.lisn.upsaclay.fr/competitions/3081" target="_blank"
>Validation server</a> online.
</p>
<p>
2022-03-15: The registration of the Track 1 begins and <a href="https://codalab.lisn.upsaclay.fr/competitions/2802" target="_blank"
>Validation server</a> online. Some useful tools, such as generating json files in coco format and reading and writing XML files, have been released in <a href="https://github.com/zf020114/SatVedioDTkit" target="_blank"
>GitHub</a>.
</p>
<p>
2022-03-08: Validation data has been released (<a href="https://drive.google.com/drive/folders/1iRg72Bre4QagbqxcYevcgDoDV5oR-c23?usp=sharing" target="_blank"
>google Drive </a>,<a href="https://pan.baidu.com/s/1hfkHLEyBr8srTicSz7DTSg" target="_blank"
>Baidu Drive </a> (Extraction code: VISO).
Paticipants can use the released data to develop their algorithms.
</p>
<p>
2022-03-01: Training data has been released (<a href="https://drive.google.com/drive/folders/1iRg72Bre4QagbqxcYevcgDoDV5oR-c23?usp=sharing" target="_blank"
>google Drive </a>,<a href="https://pan.baidu.com/s/1hfkHLEyBr8srTicSz7DTSg" target="_blank"
>Baidu Drive </a> (Extraction code: VISO).
Paticipants can use the released data to develop their algorithms.
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="intro"></a>
<h2>Introduction</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
Satellite video cameras can provide continuous observation for a
large-scale area, which is suitable for several downstream remote
sensing applications including
<i>traffic management, ocean monitoring, and smart city</i>.
Recently, moving objects detection and tracking in satellite
videos have attracted increasing attention in both academia and
industry. However, it remains challenging to achieve accurate and
robust moving object detection and tracking in satellite videos,
due to the lack of high-quality and well-annotated public datasets
and comprehensive benchmarks for performance evaluation. To this
end, we plan to organize a challenge based on the recent <a href="https://github.com/The-Learning-And-Vision-Atelier-LAVA/VISO" target="_blank"
>VISO</a
>
dataset, and focus on the specific challenges and research
problems in moving object detection and tracking in satellite
videos. We hope this challenge could inspire the community to
explore the tough problems in satellite video analysis, and
ultimately drive technological advancement in emerging
applications.
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Description"></a>
<h2>Description of the Challenge</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
<b
>The 1st Challenge on Moving Object Detection and Tracking in
Satellite Videos (SatVideoDT)
</b>
at
<a href="https://www.icpr2022.com/" target="_blank">ICPR 2022</a>
aims to facilitate the development of video object detection and tracking
algorithms, and push forward research in the field of moving
object detection and tracking from satellite videos. This
challenge is expected to include the following three competition
tracks.
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Track1"></a>
<h3>Track 1: Moving object detection in satellite videos.</h3>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
Given the <a href="https://github.com/The-Learning-And-Vision-Atelier-LAVA/VISO" target="_blank"
>VISO</a
>
dataset with 100 satellite videos (with
32,825 frames) captured by Jilin-1 satellite platforms, the goal
of this task is to achieve moving object detection across the
whole video. We will provide the training set (with 26,000 frames) and the validation set (with 3250 frames) with full bounding boxes annotations. The test set (with 3575 frames)
will be also provided, but with satellite images only. The
participants are expected to train their models on the training
set and validate the performance on the validation set. Then,
the finalized model is used to generate detection results on the
test set. The final performance will be automatically evaluated
by the organizers with a set of objective quantitative metrics
(see Evaluation Metrics, Track 1).
</p>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Track2"></a>
<h3>Track 2: Single object tracking in satellite videos.</h3>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
Given the initial bounding box annotations of a specific
object, this task requires estimating the location of the object
across different frames. For this task, we will provide a subset of 100 high-quality videos (videos 1 to 100) with a total of 32,825
frames. Specifically, videos 1 to 80 will be used as the training
set and videos 81 to 90 will be used as the validation set. The bounding box annotations of specific objects of each frame in the training set and validation set will be provided. The test set is composed of videos 91 to 100, and only the annotation of the first frame will be provided for initialization. The participants are expected to train their models on the training set and validate the performance on the validation set. Then, the finalized model is used to generate tracking results on the test set.
</p>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Track3"></a>
<h3>Track 3: Multiple-object tracking in satellite videos.</h3>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
This task aims at locating multiple objects of interest, maintaining their identities, and yielding their individual trajectories across the whole video. For this task, 100 sequences (videos 1 to 100) with a total of 32,825 frames from the VISO dataset will be provided. Specifically, videos 1 to 80 will be used as the training set and videos 81 to 90 will be used as the validation set. The bounding box annotations and the instance id of each object in each frame will be provided. The test set is composed of videos 91 to 100. The participants are expected to train their models on the training set and validate the performance on the validation set. Then, the finalized model is used to generate tracking results on the test set.
</p>
</div>
</div>
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Datasets"></a>
<h2>Datasets</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
This challenge is built upon our recently released
<a href="https://github.com/The-Learning-And-Vision-Atelier-LAVA/VISO target="_blank"
>VISO</a
>
dataset, the first well-annotated large-scale satellite videos
dataset for the task of moving object detection and tracking.
The dataset is captured by the Jilin-1 satellite constellation at
different positions of the satellite orbit. The recorded videos
cover several square kilometers of areas in real scenes. Each
image in the videos has a resolution of 12,000 × 5,000 and
contains a great number of objects with different scales.
Moreover, four common types of moving objects, including
plane, car, ship and train, are manually labeled. An example of a labeled video is shown below:
</p>
<div class="divcss5">
<video class="vimeo-embed" id="video" width=60% src="https://satvideodt.github.io/2022/img/demo.mp4" controls autoplay>
</video>
</div>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Evaluation"></a>
<h2>Evaluation Metrics</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Track1"></a>
<h3>Track 1: Moving object detection in satellite videos.</h3>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
To evaluate the detection performance of the methods submitted to the challenge, the commonly-used evaluation metrics (i.e., mAP) for object detection will be used. We report the average results over all the satellite videos in the evaluation dataset. Note that, the final results are ranked by mAP (IOU = 0.5) calculated in the test dataset.
</p>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Track2"></a>
<h3>Track 2: Single object tracking in satellite videos.</h3>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
Following the standard evaluation protocol of the visual tracking OTB dataset, all trackers will be evaluated using two metrics: Distance Precision Rate (DPR) and Overlap Success Rate (OSR). Note that, the final results are ranked according to the AUC values of Distance Precision Rate (DPR) and Overlap Success Rate (OSR) calculated by the participants in the test dataset with a ratio of 50% and 50% respectively.
</p>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Track3"></a>
<h3>Track 3: Multiple-object tracking in satellite videos.</h3>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
The metrics in generic Multiple-Object Tracking Challenge Benchmark will be used for quantitative evaluation. The final results of multi-objective tracking will be ranked according to the Multiple Object Tracking Accuracy (MOTA) and IDF1 values calculated by participants in the test data set with a comprehensive weighting of 50% and 50% respectively.
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Baseline"></a>
<h2>Baseline Model</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
Over the last few years, several milestone methods have been developed for satellite videos, including <a href="https://github.com/ChaoXiao12/Moving-object-detection-DSFNet"_blank"
>DSFNet</a> and <a href="https://github.com/BossBobxuan/CFME"_blank"
>CFME</a
>. In this challenge, DSFNet is used as a detection baseline model and the submitted results should be at least on par with DSFNet.
CFME is used as a single object tracking baseline model and the submitted results should be at least on par with CFME. In particular, we selected SORT as a multi object tracking baseline model. Note that, the inputs (i.e., detection results at each frame) to the baselines is used the detection results achieved by DSFNet method. The solutions with evaluation metrics values lower than these baselines will not be ranked in the leaderboard.
</p>
<div class="divcss5">
<table id="recruit">
<caption id="caption2"> Moving object detection </caption>
<tr><th>Method</th><th>mAP(IOU=0.5)</th><th>Score</th></tr>
<tr><td>DSFNet</td><td>0.43</td><td>43</td></tr>
</table>
<table id="recruit">
<caption id="caption2">Single object tracking </caption>
<tr><th>Method</th><th>DPR</th><th>OSR</th><th>Score</th></tr>
<tr><td>CFME</td><td>0.504</td><td>0.282</td><td>39.3</td></tr>
</table>
<table id="recruit" >
<caption id="caption2">Multiple-object tracking </caption>
<tr><th>Method</th><th>MOTA</th><th>IDF1</th><th>Score</th></tr>
<tr><td>SORT</td><td>0.418</td><td>0.389</td><td>40.4</td></tr>
</table>
</div>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Submission"></a>
<h2>Submission</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
We use <a
href="https://codalab.lisn.upsaclay.fr/competitions/2802"
target="_blank"
>CodaLab</a
>
for online submission in the development phase. Here, we provide an example (<a href="https://www.jianguoyun.com/p/DSZ7bkwQ8YeuChiWtrEE"> Track1.
</a> <a href="https://www.jianguoyun.com/p/DV566OcQ8YeuChi-uLIE"> Track2.</a>
<a href="https://www.jianguoyun.com/p/DcDOK2wQ8YeuChjAuLIE"> Track3.</a>) to help participants to format their submissions. In the test phase, the final results and the source codes (top three participant teams) need to be submitted to email <a href="[email protected]" target="_blank"
> [email protected]</a
>. Please refer to our online website (<a
href="https://codalab.lisn.upsaclay.fr/competitions/2802"
target="_blank"
>Track1</a> <a
href="https://codalab.lisn.upsaclay.fr/competitions/3079"
target="_blank"
>Track2</a>
<a
href="https://codalab.lisn.upsaclay.fr/competitions/3081"
target="_blank"
>Track3</a>)
for details of the submission rules.
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="dates"></a>
<h2>Important Dates</h2>
<br />
<table class="table table-striped">
<tbody>
<tr>
<td>Release part of training data;</td>
<td>Feb 15, 2022</td>
</tr>
<tr>
<td>Release of all training and validation data;</td>
<td>Feb 28, 2022</td>
</tr>
<tr>
<td>Validation server online;</td>
<td>Mar 15, 2022</td>
</tr>
<tr>
<td>Final test data release, testing server online;</td>
<td>Apr 20, 2022</td>
</tr>
<tr>
<td>Test result submission deadline;</td>
<td>May 10, 2022 (23:59 Pacific time)</td>
</tr>
<tr>
<td>Fact sheet / code / model submission deadline;</td>
<td>May 10, 2022 (23:59 Pacific time)</td>
</tr>
<tr>
<td>Test preliminary score release to the participants;</td>
<td>May 12, 2022 </td>
</tr>
<tr>
<td>Report submission deadline (optional);</td>
<td>May 15, 2022 </td>
</tr>
<tr id="schedule">
<td></td>
<td></td>
</tr>
</tbody>
</table>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Awards"></a>
<h2>Awards:</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
The organization committee of the ICPR2022 Conference will issue award certificates to the top three participant teams of each track.
Teams with better grades will be invited to submit their co-written papers to the ICPR2022 Challenge for peer review. If the paper is to be accepted and published, the participating team must specify the solution and ensure the repeatability of the competition results. Co-written paper is optional and does not affect the competitor's participation in the challenge or award.
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Conditions"></a>
<h2>SatVideoDT 2022 Terms and Conditions:</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
Each group cannot have more than six group members (i.e., 1 to 5 group members is OK). Each group can only submit one algorithm for final ranking.
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12 panel-group"><a class="anchor" id="calls"></a>
<h2>Competition Result</h2>
<div class="panel panel-default">
<div class="panel-heading" data-toggle="collapse" data-parent="#call" href="#call-challenge"
style="cursor:pointer;">
<h3 style="margin:0;">SatVideoDT Challenges@ICPR'2022</h3>
</div>
<div id="call-challenge" class="panel-collapse collapse in" data-parent="#call">
<div class="panel-body">
<p>
<b>Track 1: Moving object detection in satellite videos.</b>
</p>
<ul>
<b>1st Place:</b>
<ul>
<li>Team Name: CSU-MOD
</li>
<li>User name: CSU-MOD
</li>
<li>Members: Jian Yang, Zhuang Zhou, and Weilong Guo
</li>
<li>Affliation:
Technology and Engineering Center for Space utilization Chinese Academy of Sciences (CAS),
Key Laboratory of Space Utilization Chinese Academy of Sciences (CAS).
</li>
</ul>
</ul>
<ul>
<b>2nd Place:</b>
<ul>
<li>Team Name: Motion King
</li>
<li>User name: xixiha, XC_00
</li>
<li>Members: Kelong Tu, Xiyu Qi, Cong Xu, Shudan Zhu, and Lai Chen
</li>
<li>Affliation:
China University of Geosciences (Wuhan),
Aerospace Information Research Institute Chinese Academy of Sciences,
and Southwest Jiaotong University
</li>
</ul>
</ul>
<ul>
<b>3rd Place:</b>
<ul>
<li>Team Name:
</li>
<li>User name: JingwenH
</li>
<li>Members:
</li>
<li>Affliation:
</li>
<li><font color="red">(As 3rd Place team failed to send the fact sheet to the designated email, there is no way to receive the specific information at present. Please JingwenH send fact sheet to [email protected] in time)</font>
</li>
</ul>
</ul>
<p>
<b>Track 2: Single object tracking in satellite videos.</b>
</p>
<ul>
<b>1st Place:</b>
<ul>
<li>Team Name: SkyCV
</li>
<li>User name: binlin
</li>
<li>Members: Bin Lin, Chaocan Xue, Jinlei Zheng, Limei Qin, and Ying Li
</li>
<li>Affliation:
Guilin University of Technology, China,
Northwestern Polytechnical University, China.
</li>
</ul>
</ul>
<ul>
<b>2nd Place:</b>
<ul>
<li>Team Name: CSU-SOT
</li>
<li>User name: DonDominic
</li>
<li>Members: Manqi Zhao
</li>
<li>Affliation:
Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences (CAS),
Key Laboratory of Space Utilization, Chinese Academy of Sciences (CAS).
</li>
</ul>
</ul>
<ul>
<b>3rd Place:</b>
<ul>
<li>Team Name: ReDConJur
</li>
<li>User name: Aluka
</li>
<li>Members: Zhenzhong Chen, Lu Ruan, Mingpeng Cui, Guanchen Ding, and Guangwei Jiang
</li>
<li>Affliation:
School of Remote Sensing and Information Engineering, Wuhan University
</li>
</ul>
</ul>
<p>
<b>Track 3: Multiple-object tracking in satellite videos.</b>
</p>
<ul>
<b>1st Place:</b>
<ul>
<li>Team Name: CSU-MOT
</li>
<li>User name: xljhh
</li>
<li>Members: Yuhan Sun, Manqi Zhao, and Kaiyang Cao
</li>
<li>Affliation:
Technology and Engineering Center for Space utilization,Chinese Academy of Sciences (CAS),
Key Laboratory of Space Utilization Chinese Academy of Sciences (CAS).
</li>
</ul>
</ul>
<ul>
<b>2nd Place:</b>
<ul>
<li>Team Name: Track King
</li>
<li>User name: xixiha, zsd, root, whu_cccccsd
</li>
<li>Members: Kelong Tu, Xiyu Qi, Cong Xu, Shudan Zhu, and Lai Chen
</li>
<li>Affliation:
China University of Geosciences (Wuhan),
Aerospace Information Research Institute Chinese Academy of Sciences (CAS),
Southwest Jiaotong University,
and Wuhan University
</li>
</ul>
</ul>
<ul>
<b>3rd Place:</b>
<ul>
<li>Team Name: AHU MMIC
</li>
<li>User name: AHU MMIC
</li>
<li>Members: Qing Shen, Lei Liu, Zhicheng Zhao, Chenglong Li, and Yun Xiao
</li>
<li>Affliation:Anhui University
</li>
</ul>
</ul>
</div>
</div>
</div>
</div>
</div>
<p><br/></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Issues"></a>
<h2>Issues and Questions:</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
For any question regarding this challenge, please send an email to
<font color="red"><a href="[email protected]" target="_blank"
></b></font>. You can also join our WeChat group by scanning the code below:
<div class="divcss5"><img src="2022/img/code.jpg" width="200"/></div>
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="Conditions"></a>
<h2>Citiation:</h2>
</div>
</div>
<div class="row">
<div class="col-xs-12">
<p>
<br>
@article{yin2021detecting,
<br>
title={Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark},
<br>
author={Yin, Qian and Hu, Qingyong and Liu, Hao and Zhang, Feng and Wang, Yingqian and Lin, Zaiping and An,
Wei and Guo, Yulan},
<br>
journal={IEEE Transactions on Geoscience and Remote Sensing},
<br>
year={2021},
<br>
publisher={IEEE}
<br>
}
<br>
</p>
</div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-12">
<a class="anchor" id="organizers"></a>
<h2>Organizers</h2>
</div>
</div>
<div class="row">
<div class="col-xs-1"></div>
<div class="col-xs-2">
<a href="http://yulanguo.me/">
<img class="people-pic" src="2022/img/people/yulan.jpg" />
</a>
<div class="people-name">
<a href="http://yulanguo.me/">Yulan Guo</a>
<h6>National University of Defense Technology</h6>
</div>
</div>
<div class="col-xs-2">
<a href="https://uk.linkedin.com/in/fakharkhalid">
<img class="people-pic" src="2022/img/people/qianyin.jpg" />
</a>
<div class="people-name">
<a href="https://uk.linkedin.com/in/fakharkhalid"
>Qian Yin</a
>
<h6>National University of Defense Technology</h6>
</div>
</div>
<div class="col-xs-2">
<a href="https://qingyonghu.github.io/">
<img class="people-pic" src="2022/img/people/qingyong.jpg" />
</a>
<div class="people-name">
<a href="https://qingyonghu.github.io/">Qingyong Hu</a>
<h6>University of Oxford</h6>
</div>
</div>
<div class="col-xs-2">
<a
href="https://zf020114.github.io/"
>
<img class="people-pic" src="2022/img/people/fengzhang.jpg" />
</a>
<div class="people-name">
<a
href="https://zf020114.github.io/"
>Feng Zhang</a
>
<h6>National University of Defense Technology</h6>
</div></h6>
</div>
</div>
<div class="col-xs-1"></div>
</div>
<p><br /></p>
<div class="row">
<div class="col-xs-1"></div>
<div class="col-xs-2">
<a
href="https://zf020114.github.io/"
>
<img class="people-pic" src="2022/img/people/yezhang.jpg" />
</a>
<div class="people-name">
<a
href="https://zf020114.github.io/"
>Ye Zhang</a
>
<h6>National University of Defense Technology</h6>
</div></h6>
</div>
<div class="col-xs-2">
<a href="https://why-scholar.github.io/">
<img class="people-pic" src="2022/img/people/chaoxiao.jpg" />
</a>
<div class="people-name">
<a href="https://why-scholar.github.io/"
>Chao Xiao</a
>
<h6>National University of Defense Technology</h6>
</div>
</div>
<div class="col-xs-2">
<a href="https://why-scholar.github.io/">
<img class="people-pic" src="2022/img/people/hanyunwang.jpg" />
</a>
<div class="people-name">
<a href="https://why-scholar.github.io/"
>Hanyun Wang</a
>
<h6>Information Engineering University</h6>
</div>
</div>
<div class="col-xs-2">
<a href="https://scholar.google.com/citations?hl=zh-CN&user=QG3LdUcAAAAJ">
<img class="people-pic" src="2022/img/people/chenguangdai.jpg" />
</a>
<div class="people-name">
<a href="https://scholar.google.com/citations?hl=zh-CN&user=QG3LdUcAAAAJ">Chenguang Dai</a>
<h6>Information Engineering University</h6>
</div>
</div>
</div>
<p><br /></p>
<!-- <div class="row">
<div class="col-xs-12">
<a class="anchor" id="sponsors"></a>
<h2>Challenge sponsored by:</h2>
</div>
</div>
<div class="row">
<div class="col-xs-4 sponsor">
<a href="https://www.sensat.co.uk/"
><img src="2022/img/changguang.png"
/></a>
</div> -->
<!-- <div class="col-xs-4 sponsor">-->
<!-- <a href="https://www.tobii.com/"><img src="2022/img/tobii.jpg"/></a>-->