-
Notifications
You must be signed in to change notification settings - Fork 90
/
main_msc.py
84 lines (68 loc) · 3.46 KB
/
main_msc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import argparse
import os
import tensorflow as tf
from model_msc import Model_msc
"""
This script defines hyperparameters.
"""
def configure():
flags = tf.app.flags
# training
flags.DEFINE_integer('num_steps', 20000, 'maximum number of iterations')
flags.DEFINE_integer('save_interval', 1000, 'number of iterations for saving and visualization')
flags.DEFINE_integer('random_seed', 1234, 'random seed')
flags.DEFINE_float('weight_decay', 0.0005, 'weight decay rate')
flags.DEFINE_float('learning_rate', 2.5e-4, 'learning rate')
flags.DEFINE_float('power', 0.9, 'hyperparameter for poly learning rate')
flags.DEFINE_float('momentum', 0.9, 'momentum')
flags.DEFINE_string('encoder_name', 'deeplab', 'name of pre-trained model, res101, res50 or deeplab')
flags.DEFINE_string('pretrain_file', '../reference model/deeplab_resnet_init.ckpt', 'pre-trained model filename corresponding to encoder_name')
flags.DEFINE_string('data_list', './dataset/train.txt', 'training data list filename')
flags.DEFINE_integer('grad_update_every', 10, 'gradient accumulation step')
# Note: grad_update_every = true training batch size
# validation
flags.DEFINE_integer('valid_step', 20000, 'checkpoint number for validation')
flags.DEFINE_integer('valid_num_steps', 1449, '= number of validation samples')
flags.DEFINE_string('valid_data_list', './dataset/val.txt', 'validation data list filename')
# prediction / saving outputs for testing or validation
flags.DEFINE_string('out_dir', 'output', 'directory for saving outputs')
flags.DEFINE_integer('test_step', 20000, 'checkpoint number for testing/validation')
flags.DEFINE_integer('test_num_steps', 1449, '= number of testing/validation samples')
flags.DEFINE_string('test_data_list', './dataset/val.txt', 'testing/validation data list filename')
flags.DEFINE_boolean('visual', True, 'whether to save predictions for visualization')
# data
flags.DEFINE_string('data_dir', '/tempspace2/zwang6/VOC2012', 'data directory')
flags.DEFINE_integer('batch_size', 1, 'training batch size')
flags.DEFINE_integer('input_height', 321, 'input image height')
flags.DEFINE_integer('input_width', 321, 'input image width')
flags.DEFINE_integer('num_classes', 21, 'number of classes')
flags.DEFINE_integer('ignore_label', 255, 'label pixel value that should be ignored')
flags.DEFINE_boolean('random_scale', True, 'whether to perform random scaling data-augmentation')
flags.DEFINE_boolean('random_mirror', True, 'whether to perform random left-right flipping data-augmentation')
# log
flags.DEFINE_string('modeldir', 'model', 'model directory')
flags.DEFINE_string('logfile', 'log.txt', 'training log filename')
flags.DEFINE_string('logdir', 'log', 'training log directory')
flags.FLAGS.__dict__['__parsed'] = False
return flags.FLAGS
def main(_):
parser = argparse.ArgumentParser()
parser.add_argument('--option', dest='option', type=str, default='train',
help='actions: train, test, or predict')
args = parser.parse_args()
if args.option not in ['train', 'test', 'predict']:
print('invalid option: ', args.option)
print("Please input a option: train, test, or predict")
else:
# Set up tf session and initialize variables.
# config = tf.ConfigProto()
# config.gpu_options.allow_growth = True
# sess = tf.Session(config=config)
sess = tf.Session()
# Run
model = Model_msc(sess, configure())
getattr(model, args.option)()
if __name__ == '__main__':
# Choose which gpu or cpu to use
os.environ['CUDA_VISIBLE_DEVICES'] = '7'
tf.app.run()